Association Between Serum Cobalt and Manganese Levels with Insulin Resistance in Overweight and Obese Mexican Women
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Ethics Approval
2.3. Anthropometric Assessment
2.4. Biochemical Assessment
2.5. Insulin Resistance Assessment
2.6. Co and Mn Analysis
2.7. Statistical Analysis
3. Results
3.1. Analytical Method Validation
3.2. Nutritional Status in the Population
3.3. Biochemical Markers
3.4. Markers of Insulin Resistance and Trace Elements
3.5. Analysis of Correlations
3.6. Multiple Linear Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Obesity Federation. World Obesity Atlas 2025. World Obesity Federation. 2025. Available online: https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2025 (accessed on 2 July 2025).
- Campos-Nonato, I.; Galván-Valencia, Ó.; Hernández-Barrera, L.; Oviedo-Solís, C.; Barquera, S. Prevalencia de obesidad y factores de riesgo asociados en adultos mexicanos: Resultados de la Ensanut 2022. Salud Publica México 2023, 65 (Suppl. S2), s238–s247. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, Á.; Millán-Martínez, M.; Domínguez-Riscart, J.; Lechuga-Sancho, A.M.; González-Domínguez, R. Metal homeostasis and exposure in distinct phenotypic subtypes of insulin resistance among children with obesity. Nutrients 2023, 15, 2347. [Google Scholar] [CrossRef] [PubMed]
- Arneth, B. Mechanisms of insulin resistance in patients with obesity. Endocrines 2024, 5, 153–165. [Google Scholar] [CrossRef]
- Badr, M.; El-Rabaa, G.; Freiha, M.; Kędzia, A.; Niechciał, E. Endocrine consequences of childhood obesity: A narrative review. Front. Endocrinol. 2025, 16, 1584861. [Google Scholar] [CrossRef]
- Gianopoulos, I.; Mantzoros, C.S.; Daskalopoulou, S.S. Adiponectin and adiponectin receptors in atherosclerosis. Endocr. Rev. 2025, 46, 1–25. [Google Scholar] [CrossRef]
- Mączka, K.; Stasiak, O.; Przybysz, P.; Grymowicz, M.; Smolarczyk, R. The impact of the endocrine and immunological function of adipose tissue on reproduction in women with obesity. Int. J. Mol. Sci. 2024, 25, 9391. [Google Scholar] [CrossRef]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Rizzo, G.; Laganà, A.S.; Rapisarda, A.M.C.; La Ferrera, G.M.G.; Buscema, M.; Rossetti, P.; Nigro, A.; Muscia, V.; Valenti, G.; Sapia, F.; et al. Vitamin B12 among vegetarians: Status, assessment and supplementation. Nutrients 2016, 8, 767. [Google Scholar] [CrossRef]
- Genchi, G.; Lauria, G.; Catalano, A.; Carocci, A.; Sinicropi, M.S. Prevalence of cobalt in the environment and its role in biological processes. Biology 2023, 12, 1335. [Google Scholar] [CrossRef]
- Pouso-Vázquez, E.; Bai, X.; Batallé, G.; Roch, G.; Pol, O. Effects of heme oxygenase 1 in the molecular changes and neuropathy associated with type 2 diabetes in mice. Biochem. Pharmacol. 2022, 199, 114987. [Google Scholar] [CrossRef]
- Serrano-García, N.; Pinete-Sánchez, R.; Medina-Campos, O.N.; Ramos-Santander, M.A.; Pedraza-Chaverri, J.; Orozco-Ibarra, M. Cobalt protoporphyrin modulates antioxidant enzyme activity in the hypothalamus and motor cortex of female rats. Cell. Mol. Biol. 2024, 70, 53–60. [Google Scholar] [CrossRef]
- Kawakami, T.; Hanao, N.; Nishiyama, K.; Kadota, Y.; Inoue, M.; Sato, M.; Suzuki, S. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol. Appl. Pharmacol. 2012, 258, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid. Med. Cell. Longev. 2018, 2018, 7580707. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Villahoz, B.F.; Ponzio, R.D.; Aschner, M.; Chen, P. Signaling pathways involved in manganese-induced neurotoxicity. Cells 2023, 12, 2842. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Shao, Y.; Yan, K.; Yao, T.; Liu, L.; Sun, F.; Wu, J.; Huang, Y. The link between trace metal elements and glucose metabolism: Evidence from zinc, copper, iron, and manganese-mediated metabolic regulation. Metabolites 2023, 13, 1048. [Google Scholar] [CrossRef]
- Wang, H.; Li, F.; Xue, J.; Li, Y.; Li, J. Association of blood cobalt concentrations with dyslipidemia, hypertension, and diabetes in a US population: A cross-sectional study. Medicine 2022, 101, e28568. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Lui, G.; Chang, H.; Zhang, M.; Liu, W.; Li, Z.; Liu, Y.; Huang, G. Associations of serum manganese levels with prediabetes and diabetes among ≥60-year-old Chinese adults: A population-based cross-sectional analysis. Nutrients 2016, 8, 497. [Google Scholar] [CrossRef]
- Chen, H.; Cui, Z.; Lu, W.; Wang, P.; Wang, J.; Zhou, Z.; Zhang, N.; Wang, Z.; Lin, T.; Song, Y.; et al. Association between serum manganese levels and diabetes in Chinese adults with hypertension. J. Clin. Hypertens. 2022, 24, 918–927. [Google Scholar] [CrossRef]
- Kurniati, I.; Tjiptaningrum, A.; Harahap, R.I.M.; Jaya, B.P.D. Serum trace element levels in type 2 DM patients and its correlation with glycemic control. Pharmacogn. J. 2024, 16, 660–663. [Google Scholar] [CrossRef]
- Yakout, S.; Faqeeh, F.; Al-Attas, O.; Hussain, S.D.; Saadawy, G.M.; Al-Daghri, N.M.; Alokail, M.S. Patterns of essential trace elements (Cr, Mn, Ni, and Se) in Saudi patients with type 2 diabetes mellitus. Am. J. Transl. Res. 2022, 14, 8175–8182. [Google Scholar] [PubMed]
- Khameed, A.Z.; Al-Yassin, H.D. Correlation of Serum levels of Chromium, Copper, and Manganese with the Glucose levels in Type 2 Diabetes Mellitus in Iraq. J. Fac. Med. Baghdad 2024, 65, 382–385. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, H.; He, X.; Duan, W.; Mo, X. Sex differences in the link between blood cobalt concentrations and insulin resistance in adults without diabetes. Environ. Health Prev. Med. 2021, 26, 42. [Google Scholar] [CrossRef]
- Yang, J.; Yang, A.; Cheng, N.; Huang, W.; Huang, P.; Liu, N.; Bai, Y. Sex-specific associations of blood and urinary manganese levels with glucose levels, insulin resistance and kidney function in US adults: National health and nutrition examination survey 2011–2016. Chemosphere 2020, 258, 126940. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Zhong, L.; Ji, G.; Chen, B.; Liao, M.; Li, L.; Huang, H.; Li, J.; Wei, Y.; Wu, S.; et al. Associations between metal(loid) exposure with overweight and obesity and abdominal obesity in the general population: A cross-sectional study in China. Chemosphere 2024, 350, 140963. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.; Huang, Y.; Huang, X.; Li, Z.; Fan, Y.; Zhang, Y.; Wan, T.; Lu, L.; Xu, Q.; Wu, W.; et al. Association between blood manganese levels and visceral adipose tissue in the United States: A population-based study. Nutrients 2022, 14, 4770. [Google Scholar] [CrossRef] [PubMed]
- Gómez-García, A.; Nieto-Alcantar, E.; Gómez-Alonso, C.; Figueroa-Nuñez, B.; Álvarez-Aguilar, C. Parámetros antropométricos como predictores de resistencia a la insulina en adultos con sobrepeso y obesidad. Atención Primaria 2010, 42, 364–371. [Google Scholar] [CrossRef]
- Almeda-Valdés, P.; Bello-Chavolla, O.Y.; Caballeros-Barragán, C.R.; Gómez-Velasco, D.V.; Viveros-Ruiz, T.; Vargas-Vázquez, A.; Aguilar-Salinas, C.A. Índices para la evaluación de la resistencia a la insulina en individuos mexicanos sin diabetes. Gac. Medica Mex. 2018, 154 (Suppl. S2), S50–S55. [Google Scholar] [CrossRef]
- Weyman-Vela, Y.; Simental-Mendía, L.E.; Camacho-Luis, A.; Gamboa-Gómez, C.I.; Guerrero-Romero, F. The triglycerides and glucose index is associated with mild cognitive impairment in older adults. Endocr. Res. 2022, 47, 89–93. [Google Scholar] [CrossRef]
- Hernández-Mendoza, H.; Álvarez-Loredo, H.E.; Romero-Guzmán, E.T.; Gaytán-Hernández, D.; Chang-Rueda, C.; Martínez-Navarro, I.; Juárez-Flores, B.I.; Rios-Lugo, M.J. Relationship Between Serum Levels of Arsenic, Cadmium, and Mercury and Body Mass Index and Fasting Plasma Glucose in a Mexican Adult Population. Biol. Trace Elem. Res. 2022, 200, 4916–4923. [Google Scholar] [CrossRef]
- Wondmkun, Y.T. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes Metab. Syndr. Obes. 2020, 13, 3611–3616. [Google Scholar] [CrossRef]
- de Oliveira, A.R.S.; Cruz, K.J.C.; Morais, J.B.S.; dos Santos, L.R.; Melo, S.R.d.S.; Fontenelle, L.C.; Severo, J.S.; Beserra, J.B.; de Sousa, T.G.V.; de Freitas, S.T.; et al. Magnesium, selenium and zinc deficiency compromises antioxidant defense in women with obesity. Biometals 2024, 37, 1551–1563. [Google Scholar] [CrossRef]
- Morais, J.B.S.; Cruz, K.J.C.; de Oliveira, A.R.S.; Cardoso, B.E.P.; Dias, T.M.d.S.; Melo, S.R.d.S.; dos Santos, L.R.; Severo, J.S.; de Freitas, S.T.; Henriques, G.S.; et al. Association between parameters of cortisol metabolism, biomarkers of minerals (zinc, selenium, and magnesium), and insulin resistance and oxidative stress in women with obesity. Biol. Trace Elem. Res. 2023, 201, 5677–5691. [Google Scholar] [CrossRef] [PubMed]
- Martinez, K.E.; Tucker, L.A.; Bailey, B.W.; LeCheminant, J.D. Expanded normal weight obesity and insulin resistance in US adults of the National Health and Nutrition Examination Survey. J. Diabetes Res. 2017, 2017, 9502643. [Google Scholar] [CrossRef] [PubMed]
- Sarıkaya, E.; Kara, L.; Suman Gök, E.; Berber, U.; Şiraz, Ü.G.; Hatipoglu, N. Post-pandemic insights: Increased insulin resistance without dysglycemia in youths with overweight and obesity. Pediatr. Int. 2025, 67, e70068. [Google Scholar] [CrossRef] [PubMed]
- Gariballa, S.; Alkaabi, J.; Yasin, J.; Al Essa, A. Total adiponectin in overweight and obese subjects and its response to visceral fat loss. BMC Endocr. Disord. 2019, 19, 55. [Google Scholar] [CrossRef]
- Tascilar, M.E.; Ozgen, I.T.; Abaci, A.; Serdar, M.; Aykut, O. Trace elements in obese Turkish children. Biol. Trace Elem. Res. 2011, 143, 188–195. [Google Scholar] [CrossRef]
- Debertin, J.G.; Holzhausen, E.A.; Walker, D.I.; Pacheco, B.P.; James, K.A.; Alderete, T.L.; Corlin, L. Associations between metals and metabolomic profiles related to diabetes among adults in a rural region. Environ. Res. 2024, 243, 117776. [Google Scholar] [CrossRef]
- Chen, G. The interactions of insulin and vitamin A signaling systems for the regulation of hepatic glucose and lipid metabolism. Cells 2021, 10, 2160. [Google Scholar] [CrossRef]
- Lakhani, H.V.; Zehra, M.; Pillai, S.; Shapiro, J.I.; Sodhi, K. Dysregulation of HO-1-SIRT1 axis is associated with AngII-induced adipocyte dysfunction. J. Clin. Med. Sci. 2024, 8, 1000275. [Google Scholar] [PubMed Central]
- Burgess, A.; Li, M.; Vanella, L.; Kim, D.H.; Rezzani, R.; Rodella, L.; Sodhi, K.; Canestraro, M.; Martasek, P.; Peterson, S.J.; et al. Adipocyte heme oxygenase-1 induction attenuates metabolic syndrome in both male and female obese mice. Hypertension 2010, 56, 1124–1130. [Google Scholar] [CrossRef]
- Li, M.; Kim, D.H.; Tsenovoy, P.L.; Peterson, S.J.; Rezzani, R.; Rodella, L.F.; Aronow, W.S.; Ikehara, S.; Abraham, N.G. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 2008, 57, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Yang, Y.; Zhao, J.; Zhou, Q.; Li, Y.; Yang, M.; Hu, Y.; Xu, J.; Zhao, M.; Xu, Q. Associations of metals and metal mixtures with glucose homeostasis: A combined bibliometric and epidemiological study. J. Hazard. Mater. 2024, 470, 134224. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Lu, Y.; Bai, Y.; Cheng, Z. Sex-specific and dose-response relationships of urinary cobalt and molybdenum levels with glucose levels and insulin resistance in U.S. adults. J. Environ. Sci. 2023, 124, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Menke, A.; Guallar, E.; Cowie, C.C. Metals in urine and diabetes in U.S. adults. Diabetes 2016, 65, 164–171. [Google Scholar] [CrossRef]
- Sánchez, C.; López-Jurado, M.; Aranda, P.; Llopis, J. Plasma levels of copper, manganese and selenium in an adult population in southern Spain: Influence of age, obesity and lifestyle factors. Sci. Total Environ. 2010, 408, 1014–1020. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, C.; Bu, J. Relationship between selected serum metallic elements and obesity in children and adolescents in the U.S. Nutrients 2017, 9, 104. [Google Scholar] [CrossRef]
- Rotter, I.; Kosik-Bogacka, D.; Dołęgowska, B.; Safranow, K.; Lubkowska, A.; Laszczyńska, M. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int. J. Environ. Res. Public Health 2015, 12, 3944–3961. [Google Scholar] [CrossRef]
- Riseberg, E.; Chui, K.; James, K.A.; Melamed, R.; Alderete, T.L.; Corlin, L. A longitudinal study of exposure to manganese and incidence of metabolic syndrome. Nutrients 2022, 14, 4271. [Google Scholar] [CrossRef]
- Lee, S.-H.; Jouihan, H.A.; Cooksey, R.C.; Jones, D.; Kim, H.J.; Winge, D.R.; McClain, D.A. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology 2013, 154, 1029–1038. [Google Scholar] [CrossRef]
Parameters | Overweight | Obesity | p Value |
---|---|---|---|
n = 54 | n = 58 | ||
Age (years) | 22 (20.75–30.25) | 23 (21–32.25) | 0.305 |
Weight (kg) | 69.45 (65.38–75.45) | 86.80 (80.10–96.60) | <0.001 |
Height (cm) | 157.50 (154–161.25) | 160 (156–163) | 0.056 |
WC (cm) | 91 (86.88–96.25) | 106 (99.13–114.25) | <0.001 |
HC (cm) | 104 (100.75–107.63) | 116.50 (112–123) | <0.001 |
WHR | 0.87 (0.85–0.92) | 0.91 (0.87–0.95) | 0.004 |
WHtR | 0.58 (0.55–0.60) | 0.66 (0.62–0.71) | <0.001 |
BMI (kg/m2) | 28.20 (26.61–29.03) | 34.14 (32.44–37.16) | <0.001 |
FG (mg/dL) | 83.96 (78.10–91.36) | 87.56 (79.05–95.77) | 0.212 |
TG (mg/dL) | 107.46 (83.10–156.49) | 128.10 (87.43–189.53) | 0.085 |
TC (mg/dL) | 152.26 (125.26–167.43) | 159.86 (142.95–190.43) | 0.057 |
FINS (µU/mL) | 15.70 (11.25–21.14) | 21.95 (17.50–30.15) | <0.001 |
Adpn (ng/mL) | 6.17 (5.07–7.69) | 5.15 (3.62–6.81) | 0.011 |
HOMA-IR | 3.50 (2.19–4.29) | 4.71 (3.71–6.94) | <0.001 |
QUICKI | 0.32 (0.31–0.34) | 0.30 (0.29–0.31) | <0.001 |
TyG index | 4.58 (4.45–4.73) | 4.63 (4.47–4.83) | 0.055 |
TyG-BMI | 127.61 (121.02–135.14) | 162.03 (149.84–172.09) | <0.001 |
Co (μg/dL) | 0.35 (0.23–0.58) | 0.40 (0.32–0.59) | 0.237 |
Mn (μg/dL) | 0.20 (0.14–0.35) | 0.30 (0.16–0.46) | 0.136 |
Parameters | Reference Value | Overweight | Obesity | ||
---|---|---|---|---|---|
n | % | n | % | ||
WC (cm) | ≥88 | 36 | 66.67 | 58 | 100 |
FG (mg/dL) | ≥100 | 4 | 7.41 | 9 | 15.52 |
FINS (µU/mL) | ≥25 | 8 | 14.81 | 24 | 41.38 |
HOMA-IR | ≥2.5 | 38 | 70.37 | 57 | 98.28 |
QUICKI | ≤0.33 | 37 | 68.52 | 56 | 96.55 |
TyG index | ≥4.68 | 17 | 31.48 | 25 | 43.1 |
TYG-BMI | ≥227 | 0 | 0 | 2 | 3.45 |
Parameters | Co (μg/dL) | Mn (μg/dL) | ||
---|---|---|---|---|
Overweight | Obesity | Overweight | Obesity | |
Age (years) | −0.052 (0.708) | −0.169 (0.206) | −0.019 (0.894) | 0.296 (*0.024) |
Weight (kg) | −0.154 (0.265) | −0.171 (0.200) | −0.023 (0.866) | −0.074 (0.579) |
Height (cm) | −0.119 (0.391) | 0.000 (0.999) | −0.097 (0.485) | −0.058 (0.666) |
WC (cm) | −0.270 (*0.048) | 0.054 (0.689) | −0.089 (0.523) | −0.011 (0.935) |
HC (cm) | −0.181 (0.190) | −0.164 (0.217) | 0.034 (0.804) | 0.076 (0.571) |
WHR | −0.188 (0.174) | 0.163 (0.220) | −0.154 (0.268) | −0.070 (0.602) |
WHtR | −0.257 (0.060) | 0.062 (0.642) | −0.058 (0.677) | −0.016 (0.905) |
BMI (kg/m2) | −0.120 (0.389) | −0.202 (0.133) | 0.071(0.610) | −0.048 (0.726) |
FG (mg/dL) | 0.259 (0.059) | 0.076 (0.570) | −0.313 (*0.021) | 0.101 (0.450) |
TG (mg/dL) | 0.048 (0.730) | 0.135 (0.311) | −0.203 (0.142) | 0.036 (0.786) |
TC (mg/dL) | −0.019 (0.891) | −0.025 (0.854) | 0.024 (0.864) | 0.059 (0.660) |
FINS (µU/mL) | −0.047 (0.734) | −0.383 (0.003) | −0.152 (0.272) | −0.229 (0.084) |
Adpn (ng/mL) | 0.119 (0.390) | −0.027 (0.838) | 0.107 (0.441) | 0.117 (0.383) |
HOMA-IR | −0.082 (0.557) | −0.332 (0.011) | −0.202 (0.143) | −0.137 (0.306) |
QUICKI | 0.082 (0.557) | 0.332 (0.011) | 0.202 (0.143) | 0.137 (0.306) |
TyG index | −0.014 (0.918) | 0.131 (0.327) | −0.271 (*0.048) | 0.071 (0.594) |
TyG-BMI | −0.085 (0.540) | −0.133 (0.323) | −0.077(0.580) | −0.043 (0.751) |
Parameters | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
B (95% CI) | β | p Value | B (95% CI) | β | p Value | |
FINS | −0.299 (−0.475, −0.106) | −0.373 | 0.003 | −0.284 (−0.484, −0.085) | −0.363 | 0.006 |
HOMA-IR | −0.287 (−0.474, −0.099) | −0.361 | 0.003 | −0.271 (−0.475, −0.067) | −0.339 | 0.010 |
QUICKI | 0.011 (0.004, 0.018) | 0.351 | 0.004 | 0.010 (0.002, 0.018) | 0.320 | 0.015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Sánchez, J.; Hernández-Mendoza, H.; Garza-Treviño, G.; Morales, L.G.; Juárez Flores, B.I.; Arreguín-Coronado, A.; Vázquez-Vázquez, L.C.; Rios-Lugo, M.J. Association Between Serum Cobalt and Manganese Levels with Insulin Resistance in Overweight and Obese Mexican Women. Healthcare 2025, 13, 2511. https://doi.org/10.3390/healthcare13192511
Soto-Sánchez J, Hernández-Mendoza H, Garza-Treviño G, Morales LG, Juárez Flores BI, Arreguín-Coronado A, Vázquez-Vázquez LC, Rios-Lugo MJ. Association Between Serum Cobalt and Manganese Levels with Insulin Resistance in Overweight and Obese Mexican Women. Healthcare. 2025; 13(19):2511. https://doi.org/10.3390/healthcare13192511
Chicago/Turabian StyleSoto-Sánchez, Jacqueline, Héctor Hernández-Mendoza, Gilberto Garza-Treviño, Lorena García Morales, Bertha Irene Juárez Flores, Andrea Arreguín-Coronado, Luis Cesar Vázquez-Vázquez, and María Judith Rios-Lugo. 2025. "Association Between Serum Cobalt and Manganese Levels with Insulin Resistance in Overweight and Obese Mexican Women" Healthcare 13, no. 19: 2511. https://doi.org/10.3390/healthcare13192511
APA StyleSoto-Sánchez, J., Hernández-Mendoza, H., Garza-Treviño, G., Morales, L. G., Juárez Flores, B. I., Arreguín-Coronado, A., Vázquez-Vázquez, L. C., & Rios-Lugo, M. J. (2025). Association Between Serum Cobalt and Manganese Levels with Insulin Resistance in Overweight and Obese Mexican Women. Healthcare, 13(19), 2511. https://doi.org/10.3390/healthcare13192511