Exploring Medical Doctors’ Confidence in Artificial Intelligence: The Role of Specialty, Experience, and Perceived Job Security
Abstract
1. Introduction
2. Methods
2.1. Study Setting
2.2. Survey Instrument
2.3. Study Participants
2.4. Sample Size
2.5. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
GP | General Practitioners |
OR | Odd Ratios |
CI | Confidence Intervals |
IRB | Institutional Review Board |
KSU | King Saud University |
References
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; et al. Revolutionizing healthcare: The role of artificial intelligence in clinical practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef]
- Suleimenov, I.E.; Vitulyova, Y.S.; Bakirov, A.S.; Gabrielyan, O.A. Artificial Intelligence: What is it? In Proceedings of the 2020 6th International Conference on Computer and Technology Applications, Antalya, Turkey, 14–16 April 2020; pp. 22–25. [Google Scholar]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Bajwa, J.; Munir, U.; Nori, A.; Williams, B. Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthc. J. 2021, 8, e188–e194. [Google Scholar] [CrossRef]
- Pashkov, V.M.; Harkusha, A.O.; Harkusha, Y.O. Artificial Intelligence In Medical Practice: Regulative Issues And Perspectives. Wiad. Lek. 2020, 73, 2722–2727. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S. Generative AI in healthcare: An implementation science informed translational path on application, integration and governance. Implement. Sci. IS 2024, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Ball, R.L.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.P.; et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. 2018, 15, e1002686. [Google Scholar] [CrossRef]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Berking, C.; Haferkamp, S.; Hauschild, A.; Weichenthal, M.; Klode, J.; Schadendorf, D.; Holland-Letz, T.; et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 2019, 119, 11–17. [Google Scholar] [CrossRef]
- Topol, E.J. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again; Basic Books; Hachette UK: London, UK, 2019. [Google Scholar]
- Ahmed, M.I.; Spooner, B.; Isherwood, J.; Lane, M.; Orrock, E.; Dennison, A. A Systematic Review of the Barriers to the Implementation of Artificial Intelligence in Healthcare. Cureus 2023, 15, e46454. [Google Scholar] [CrossRef] [PubMed]
- Cross, J.L.; Choma, M.A.; Onofrey, J.A. Bias in medical AI: Implications for clinical decision-making. PLoS Digit. Health 2024, 3, e0000651. [Google Scholar] [CrossRef]
- Gerke, S.; Minssen, T.; Cohen, G. Chapter 12—Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare; Bohr, A., Memarzadeh, K., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 295–336. [Google Scholar]
- Allam, A.; Feuerriegel, S.; Rebhan, M.; Krauthammer, M. Analyzing Patient Trajectories With Artificial Intelligence. J. Med. Internet Res. 2021, 23, e29812. [Google Scholar] [CrossRef]
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Keni, S. Evaluating artificial intelligence for medical imaging: A primer for clinicians. Br. J. Hosp. Med. 2024, 85, 1–13. [Google Scholar] [CrossRef]
- Ipsos Finds Doctors Remain Wary over Patient Use of Health Data baeaAid. Available online: https://www.ipsos.com/en-uk/ipsos-finds-doctors-remain-wary-over-patient-use-health-data-are-excited-about-ai-diagnosis (accessed on 23 August 2025).
- Oh, S.; Kim, J.H.; Choi, S.-W.; Lee, H.J.; Hong, J.; Kwon, S.H. Physician Confidence in Artificial Intelligence: An Online Mobile Survey. J. Med. Internet Res. 2019, 21, e12422. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Ye, X.; Chen, D. Improved health outcomes of nasopharyngeal carcinoma patients 3 years after treatment by the AI-assisted home enteral nutrition management. Front. Nutr. 2024, 11, 1481073. [Google Scholar] [CrossRef]
- Alkhatieb, M.; Subke, A.A. Artificial Intelligence in Healthcare: A Study of Physician Attitudes and Perceptions in Jeddah, Saudi Arabia. Cureus 2024, 16, e57256. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, S.; Yang, H.; Guo, J.; Wu, Y.; Liu, J. Ethical Considerations of Using ChatGPT in Health Care. J. Med. Internet Res. 2023, 25, e48009. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef] [PubMed]
- Al-Medfa, M.K.; Al-Ansari, A.M.S.; Darwish, A.H.; Qreeballa, T.A.; Jahrami, H. Physicians’ attitudes and knowledge toward artificial intelligence in medicine: Benefits and drawbacks. Heliyon 2023, 9, e14744. [Google Scholar] [CrossRef]
- Banerjee, A.; Sarangi, P.K.; Kumar, S. Medical Doctors’ Perceptions of Artificial Intelligence (AI) in Healthcare. Cureus 2024, 16, e70508. [Google Scholar] [CrossRef]
- Giavina-Bianchi, M.; Amaro Jr, E.; Machado, B.S. Medical Expectations of Physicians on AI Solutions in Daily Practice: Cross-Sectional Survey Study. JMIRx Med 2024, 5, e50803. [Google Scholar] [CrossRef]
- Orlova, I.A.; Akopyan, Z.A.; Plisyuk, A.G.; Tarasova, E.V.; Borisov, E.N.; Dolgushin, G.O.; Khvatova, E.I.; Grigoryan, M.A.; Gabbasova, L.A.; Kamalov, A.A. Opinion research among Russian Physicians on the application of technologies using artificial intelligence in the field of medicine and health care. BMC Health Serv. Res. 2023, 23, 749. [Google Scholar] [CrossRef]
- Banerjee, M.; Chiew, D.; Patel, K.T.; Johns, I.; Chappell, D.; Linton, N.; Cole, G.D.; Francis, D.P.; Szram, J.; Ross, J.; et al. The impact of artificial intelligence on clinical education: Perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med. Educ. 2021, 21, 429. [Google Scholar] [CrossRef] [PubMed]
- Ng, F.Y.C.; Thirunavukarasu, A.J.; Cheng, H.; Tan, T.F.; Gutierrez, L.; Lan, Y.; Ong, J.C.L.; Chong, Y.S.; Ngiam, K.Y.; Ho, D.; et al. Artificial intelligence education: An evidence-based medicine approach for consumers, translators, and developers. Cell Rep. Med. 2023, 4, 101230. [Google Scholar] [CrossRef] [PubMed]
- Charow, R.; Jeyakumar, T.; Younus, S.; Dolatabadi, E.; Salhia, M.; Al-Mouaswas, D.; Anderson, M.; Balakumar, S.; Clare, M.; Dhalla, A.; et al. Artificial Intelligence Education Programs for Health Care Professionals: Scoping Review. JMIR Med. Educ. 2021, 7, e31043. [Google Scholar] [CrossRef]
- Scandiffio, J.; Zhang, M.; Karsan, I.; Charow, R.; Anderson, M.; Salhia, M.; Wiljer, D. The role of mentoring and coaching of healthcare professionals for digital technology adoption and implementation: A scoping review. Digit. Health 2024, 10, 20552076241238075. [Google Scholar] [CrossRef] [PubMed]
- Mäkitie, A.A.; Alabi, R.O.; Ng, S.P.; Takes, R.P.; Robbins, K.T.; Ronen, O.; Shaha, A.R.; Bradley, P.J.; Saba, N.F.; Nuyts, S.; et al. Artificial Intelligence in Head and Neck Cancer: A Systematic Review of Systematic Reviews. Adv. Ther. 2023, 40, 3360–3380. [Google Scholar] [CrossRef]
- Chalutz-Ben Gal, H.; Margherita, A. The adoption of Artificial Intelligence (AI) in healthcare: A model of value assessment, human resource and health system factors. Technol. Anal. Strateg. Manag. 2025, 1–14. [Google Scholar] [CrossRef]
- Elfaham, R.H.; Alnaaim, S.A.; Maqbul, M.S.; Elfaham, S.H.; Alharbi, G.A.; Alshehri, W.A.; Almahayawi, F.A.; Aljadani, N.M.; Bahkali, R.I.; Eldeen Elbahaie, A.A.; et al. The Human-AI Frontier: An In-Depth Exploration of Physicians’ Apprehension and Outlook Towards Artificial Intelligence in Gastroenterology Healthcare. Gastroenterol. Endosc. 2025, 3, 211–220. [Google Scholar] [CrossRef]
- Riddle, E.W.; Kewalramani, D.; Narayan, M.; Jones, D.B. Surgical Simulation: Virtual Reality to Artificial Intelligence. Curr. Probl. Surg. 2024, 61, 101625. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Rahimi, B.; Nadri, H.; Lotfnezhad Afshar, H.; Timpka, T. A Systematic Review of the Technology Acceptance Model in Health Informatics. Appl. Clin. Inform. 2018, 9, 604–634. [Google Scholar] [CrossRef]
- Jacob, C.; Sanchez-Vazquez, A.; Ivory, C. Understanding Clinicians’ Adoption of Mobile Health Tools: A Qualitative Review of the Most Used Frameworks. JMIR mHealth uHealth 2020, 8, e18072. [Google Scholar] [CrossRef] [PubMed]
- Alrashed, F.A.; Ahmad, T.; Almurdi, M.M.; Alderaa, A.A.; Alhammad, S.A.; Serajuddin, M.; Alsubiheen, A.M. Incorporating Technology Adoption in Medical Education: A Qualitative Study of Medical Students’ Perspectives. Adv. Med. Educ. Pract. 2024, 15, 615–625. [Google Scholar] [CrossRef]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Eldesoky, H.A.M.; AlThubaity, D.; Shalby, A.Y.M.; Mohammed, F.A. Solicitude toward artificial intelligence among health care providers and its relation to their patient’s safety culture in Saudi Arabia. BMC Health Serv. Res. 2025, 25, 889. [Google Scholar] [CrossRef]
- Alami, H.; Rivard, L.; Lehoux, P.; Hoffman, S.J.; Cadeddu, S.B.M.; Savoldelli, M.; Samri, M.A.; Ag Ahmed, M.A.; Fleet, R.; Fortin, J.-P. Artificial intelligence in health care: Laying the Foundation for Responsible, sustainable, and inclusive innovation in low- and middle-income countries. Glob. Health 2020, 16, 52. [Google Scholar] [CrossRef]
- Yu, L.; Zhai, X. Use of artificial intelligence to address health disparities in low- and middle-income countries: A thematic analysis of ethical issues. Public Health 2024, 234, 77–83. [Google Scholar] [CrossRef]
- Giordano, C.; Brennan, M.; Mohamed, B.; Rashidi, P.; Modave, F.; Tighe, P. Accessing Artificial Intelligence for Clinical Decision-Making. Front. Digit. Health 2021, 3, 645232. [Google Scholar] [CrossRef]
- Fei, J.; Yong, J.; Hui, Z.; Yi, D.; Hao, L.; Sufeng, M.; Yilong, W.; Qiang, D.; Haipeng, S.; Yongjun, W. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2. [Google Scholar] [CrossRef]
- Tekkeşin, A. Artificial Intelligence in Healthcare: Past, Present and Future. Anatol. J. Cardiol. 2019, 22, 8–9. [Google Scholar] [CrossRef]
- Bi, W.L.; Hosny, A.; Schabath, M.B.; Giger, M.L.; Birkbak, N.J.; Mehrtash, A.; Allison, T.; Arnaout, O.; Abbosh, C.; Dunn, I.F.; et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA A Cancer J. Clin. 2019, 69, 127–157. [Google Scholar] [CrossRef]
- Lambert, S.I.; Madi, M.; Sopka, S.; Lenes, A.; Stange, H.; Buszello, C.P.; Stephan, A. An integrative review on the acceptance of artificial intelligence among healthcare professionals in hospitals. Npj Digit. Med. 2023, 6, 111. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.Q.; Medaglia, R. Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Gov. Inf. Q. 2019, 36, 368–383. [Google Scholar] [CrossRef]
- Loh, E. Medicine and the rise of the robots: A qualitative review of recent advances of artificial intelligence in health. BMJ Lead. 2018, 2, 59. [Google Scholar] [CrossRef]
Items | Category | Number of Doctors (N = 176) |
---|---|---|
Age | 25–34 years | 56 (31.8%) |
35–44 years | 68 (38.6%) | |
45–54 years | 42 (23.9%) | |
55+ years | 10 (5.7%) | |
Specialty | General Practitioners | 60 (34.1%) |
Specialists | 90 (51.1%) | |
Surgeons | 26 (14.8%) | |
Years of Experience | 5–10 years | 72 (40.9%) |
11–20 years | 70 (39.8%) | |
21+ years | 34 (19.3%) |
Confidence Level | General Practitioners (n = 60) | Specialists (n = 90) | Surgeons (n = 26) | χ2 (p) |
---|---|---|---|---|
High Confidence | 27 (45%) | 72 (80%) | 10 (38%) | 14.5 (0.001) |
Moderate Confidence | 21 (35%) | 12 (13%) | 12 (46%) | |
Low Confidence | 12 (20%) | 6 (7%) | 4 (15%) |
Items | Categories | Mean Score Scale |
---|---|---|
Years of Experience | 5–10 years | 4.1 |
11–20 years | 4.3 | |
21+ years | 3.8 | |
Age group | 25–34 years | 4.2 |
35–44 years | 4.1 | |
45–54 years | 3.9 | |
55+ years | 3.5 |
Group | High Confidence in AI | Low/Moderate Confidence | Odds of High Confidence |
---|---|---|---|
Specialists (n = 90) | 72 (80%) | 18 (20%) | 72/18 = 4.00 |
General Practitioners (n = 60) | 27 (45%) | 33 (55%) | 27/33 = 0.82 |
Surgeons (n = 26) | 10 (38%) | 16 (62%) | 10/16 = 0.63 |
Variable | Beta (β) | Standard Error | t-Value | p-Value |
---|---|---|---|---|
Years of Experience | 0.05 | 0.03 | 1.67 | 0.097 |
Age | 0.15 | 0.08 | 1.9 | 0.058 |
Specialty | 0.89 | 0.25 | 3.56 | 0.001 |
Job Displacement Concern | −0.12 | 0.04 | −3 | 0.003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrashed, F.A.; Ahmad, T.; Alsabih, A.O.; Mahmoud, S.; Almurdi, M.M.; Abdulghani, H.M. Exploring Medical Doctors’ Confidence in Artificial Intelligence: The Role of Specialty, Experience, and Perceived Job Security. Healthcare 2025, 13, 2377. https://doi.org/10.3390/healthcare13182377
Alrashed FA, Ahmad T, Alsabih AO, Mahmoud S, Almurdi MM, Abdulghani HM. Exploring Medical Doctors’ Confidence in Artificial Intelligence: The Role of Specialty, Experience, and Perceived Job Security. Healthcare. 2025; 13(18):2377. https://doi.org/10.3390/healthcare13182377
Chicago/Turabian StyleAlrashed, Fahad Abdulaziz, Tauseef Ahmad, Ahmad Othman Alsabih, Shimaa Mahmoud, Muneera M. Almurdi, and Hamza Mohammad Abdulghani. 2025. "Exploring Medical Doctors’ Confidence in Artificial Intelligence: The Role of Specialty, Experience, and Perceived Job Security" Healthcare 13, no. 18: 2377. https://doi.org/10.3390/healthcare13182377
APA StyleAlrashed, F. A., Ahmad, T., Alsabih, A. O., Mahmoud, S., Almurdi, M. M., & Abdulghani, H. M. (2025). Exploring Medical Doctors’ Confidence in Artificial Intelligence: The Role of Specialty, Experience, and Perceived Job Security. Healthcare, 13(18), 2377. https://doi.org/10.3390/healthcare13182377