Wearable Technology in Diving: A Review of Heart Rate and Oxygen Saturation Monitoring for Enhanced Safety and Performance
Abstract
1. Introduction
2. Physiological Responses to Underwater Environments
2.1. Environmental Stressors During Diving
2.2. The Human Dive Reflex
2.3. Autonomic Nervous System Regulation
3. Heart Rate and SpO2 as Vital Indicators in Diving
3.1. Physiological Significance of Heart Rate Changes
3.2. Patterns of SpO2 Desaturation and Recovery
3.3. HR–SpO2 Coupling and Predictive Potential
4. Monitoring HR and SpO2 in Underwater Environments
4.1. Technological Approaches and Sensor Limitations
4.2. HR Changes Under Hyperoxia at Depth
4.3. Depth-Specific Interpretation of Oxygen Saturation
5. Clinical and Safety Implications
5.1. Early Detection of Physiological Warning Signs
5.2. Practical Applications and Integration in Safety Systems
6. Future Directions
6.1. Development of Integrated Multisignal Monitoring
6.2. Algorithm-Based Early Warning Systems
6.3. Recommendations for Future Study Designs
6.4. Applications in Special Populations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HR | Heart Rate |
SpO2 | Peripheral Oxygen Saturation |
DCS | Decompression Sickness |
MDR | Mammalian Diving Reflex |
ANS | Autonomic Nervous System |
HRV | Heart Rate Variability |
ECG | Electrocardiogram |
SaO2 | Arterial Oxygen Saturation |
ORi | Oxygen Reserve Index |
PiO2 | Partial Pressure of Inspired Oxygen |
FiO2 | Fraction of Inspired Oxygen |
PO2 | Partial Pressure of Oxygen |
ATA | Atmospheres Absolute |
PaO2 | Arterial Partial Pressure of Oxygen |
HRI | Human-Robot Interaction |
References
- Schaller, C.; Fümm, A.; Bachmann, S.; Oechslin, L.; Nakahara, Y.; Melliger, R.; Biaggi, P.; Wyss, C.A. Heart rate profiles and heart rate variability during scuba diving. Swiss Med. Wkly. 2021, 151, w30039. [Google Scholar] [CrossRef]
- Clark, J.E. Moving in extreme environments: Inert gas narcosis and underwater activities. Extrem. Physiol. Med. 2015, 4, 1. [Google Scholar] [CrossRef]
- Kirkland, P.J.; Mathew, D.; Modi, P.; Cooper, J.S. Nitrogen Narcosis in Diving; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Marongiu, E.; Crisafulli, A.; Ghiani, G.; Olla, S.; Roberto, S.; Pinna, M.; Pusceddu, M.; Palazzolo, G.; Sanna, I.; Concu, A. Cardiovascular responses during free-diving in the sea. Int. J. Sports Med. 2015, 36, 297–301. [Google Scholar] [CrossRef]
- Cibis, T.; Groh, B.H.; Gatermann, H.; Leutheuser, H.; Eskofier, B.M. Wearable real-time ecg monitoring with emergency alert system for scuba diving. In Proceedings of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 6074–6077. [Google Scholar] [CrossRef]
- Eun, S.-J.; Kim, J.-Y.; Lee, S.H. Development of customized diving computer based on wearable sensor for marine safety. IEEE Access 2019, 7, 17951–17957. [Google Scholar] [CrossRef]
- Lee, Y.J.; Kim, M.-G.; Shin, M.-J.; Park, T.S.; Kim, J.; Kim, S.; Lee, K.; Lee, J.; Min, J. Research on HRI Evaluation System and Diver Safety Equipment. In Proceedings of the OCEANS 2024-Halifax, Halifax, NS, Canada, 23–26 September 2024; pp. 1–9. [Google Scholar] [CrossRef]
- Junes, B.; Smart, C.; Parsh, B. Decompression sickness in SCUBA divers. Nurse Pract. 2022, 47, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Dunworth, S.A.; Natoli, M.J.; Cooter, M.; Cherry, A.D.; Peacher, D.F.; Potter, J.F.; Wester, T.E.; Freiberger, J.J.; Moon, R.E. Hypercapnia in diving: A review of CO2 retention in submersed exercise at depth. Undersea Hyperb. Med. 2017, 44, 191–209. [Google Scholar] [CrossRef]
- Earing, C.M.N.; McKeon, D.J.; Kubis, H.-P. Divers revisited: The ventilatory response to carbon dioxide in experienced scuba divers. Respir. Med. 2014, 108, 758–765. [Google Scholar] [CrossRef]
- Di Pumpo, F.; Meloni, G.; Paganini, M.; Cialoni, D.; Garetto, G.; Cipriano, A.; Giacon, T.A.; Martani, L.; Camporesi, E.; Bosco, G. Comparison between Arterial Blood Gases and Oxygen Reserve Index™ in a SCUBA Diver: A Case Report. Healthcare 2023, 11, 1102. [Google Scholar] [CrossRef] [PubMed]
- Flouris, A.D.; Scott, J.M. Heart rate variability responses to a psychologically challenging scuba dive. J. Sports Med. Phys. Fit. 2009, 49, 382. [Google Scholar]
- Mulder, E.; Sieber, A.; Schagatay, E. Using underwater pulse oximetry in freediving to extreme depths to study risk of hypoxic blackout and diving response phases. Front. Physiol. 2021, 12, 651128, Erratum in Front Physiol. 2021, 12, 700804. https://doi.org/10.3389/fphys.2021.700804. [Google Scholar] [CrossRef]
- Sharma, R.I.; Marcinkowska, A.B.; Mankowska, N.D.; Waśkow, M.; Kot, J.; Winklewski, P.J. Cognitive functions in scuba, technical and saturation diving. Biology 2023, 12, 229. [Google Scholar] [CrossRef]
- Beker, B.M.; Cervellera, C.; De Vito, A.; Musso, C.G. Human physiology in extreme heat and cold. Int. Arch. Clin. Physiol. 2018, 1, 1–8. [Google Scholar]
- Ikäheimo, T.M. Cardiovascular diseases, cold exposure and exercise. Temperature 2018, 5, 123–146. [Google Scholar] [CrossRef]
- Kelly, K.R.; Arrington, L.J.; Bernards, J.R.; Jensen, A.E. Prolonged extreme cold water diving and the acute stress response during military dive training. Front. Physiol. 2022, 13, 842612. [Google Scholar] [CrossRef]
- Zec, M.; Antičević, V.; Lušić Kalcina, L.; Valić, Z.; Božić, J. Psychophysiological stress response in SCUBA divers: The contribution of negative automatic thoughts and negative emotions. Curr. Psychol. 2023, 42, 16751–16765. [Google Scholar] [CrossRef]
- Lindholm, P.; Lundgren, C.E.G. The physiology and pathophysiology of human breath-hold diving. J. Appl. Physiol. 2009, 106, 284–292. [Google Scholar] [CrossRef]
- Gooden, B.A. Mechanism of the human diving response. Integr. Physiol. Behav. Sci. 1994, 29, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Schagatay, E. Predicting performance in competitive apnea diving. Part III Depth. Diving Hyperb. Med. 2011, 41, 216–228. [Google Scholar]
- Foster, G.E.; Sheel, A.W. The human diving response, its function, and its control. Scand. J. Med. Sci. Sports 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Dujic, Z.; Breskovic, T.; Ljubkovic, M. Breath hold diving: In vivo model of the brain survival response in man? Med. Hypotheses 2011, 76, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Lundell, R.V.; Tuominen, L.; Ojanen, T.; Parkkola, K.; Räisänen-Sokolowski, A. Diving responses in experienced rebreather divers: Short-term heart rate variability in cold water diving. Front. Physiol. 2021, 12, 649319. [Google Scholar] [CrossRef]
- Marlinge, M.; Coulange, M.; Fitzpatrick, R.C.; Delacroix, R.; Gabarre, A.; Lainé, N.; Cautela, J.; Louge, P.; Boussuges, A.; Rostain, J.C. Physiological stress markers during breath-hold diving and SCUBA diving. Physiol. Rep. 2019, 7, e14033. [Google Scholar] [CrossRef] [PubMed]
- Zenske, A.; Koch, A.; Kähler, W.; Oellrich, K.; Pepper, C.; Muth, T.; Schipke, J.D. Assessment of a dive incident using heart rate variability. Diving Hyperb. Med. 2020, 50, 157. [Google Scholar] [CrossRef]
- Mulder, E.; Sieber, A.; McKnight, C.; Schagatay, E. Underwater pulse oximetry reveals increased rate of arterial oxygen desaturation across repeated freedives to 11 metres of freshwater. Diving Hyperb. Med. 2023, 53, 16. [Google Scholar] [CrossRef] [PubMed]
- Mulder, E.; Staunton, C.; Sieber, A.; Schagatay, E. Unlocking the depths: Multiple factors contribute to risk for hypoxic blackout during deep freediving. Eur. J. Appl. Physiol. 2023, 123, 2483–2493. [Google Scholar] [CrossRef]
- Bruzzi, R.S.; Moraes, M.M.; Martins, Y.A.T.; Hudson, A.S.R.; Ladeira, R.V.P.; Nunez-Espinosa, C.; Wanner, S.P.; Arantes, R.M.E. Heart rate variability, thyroid hormone concentration, and neuropsychological responses in Brazilian navy divers: A case report of diving in Antarctic freezing waters. An. Acad. Bras. Ciênc. 2022, 94, e20210501. [Google Scholar] [CrossRef] [PubMed]
- Lundell, R.V.; Ojanen, T. A systematic review of HRV during diving in very cold water. Int. J. Circumpolar Health 2023, 82, 2203369. [Google Scholar] [CrossRef]
- Marabotti, C.; Scalzini, A.; Menicucci, D.; Passera, M.; Bedini, R.; L’Abbate, A. Cardiovascular changes during SCUBA diving: An underwater D oppler echocardiographic study. Acta Physiol. 2013, 209, 62–68. [Google Scholar] [CrossRef]
- de la Merced Díaz-González, C.; Pérez-Bello, C.; De la Rosa-Hormiga, M.; González-Henríquez, J.J.; de las Mercedes Reyes-Noha, M. Hospital environmental factors that influence peripheral oxygen saturation measurements: A cross-sectional study. Healthcare 2024, 12, 940. [Google Scholar] [CrossRef]
- Sarkar, M.; Assaad, M. Noninvasive non-contact SpO2 monitoring using an integrated polarization-sensing CMOS imaging sensor. Sensors 2022, 22, 7796. [Google Scholar] [CrossRef]
- Wingelaar, T.T.; van Ooij, P.-J.A.M.; van Hulst, R.A. Oxygen toxicity and special operations forces diving: Hidden and dangerous. Front. Psychol. 2017, 8, 1263. [Google Scholar] [CrossRef]
- Andersson, J.; Schagatay, E.; Gislén, A.; Holm, B. Cardiovascular responses to cold-water immersions of the forearm and face, and their relationship to apnoea. Eur. J. Appl. Physiol. 2000, 83, 566–572. [Google Scholar] [CrossRef]
- Andersson, J.; Schagatay, E. Arterial oxygen desaturation during apnea in humans. Undersea Hyperb. Med. 1998, 25, 21. [Google Scholar]
- Fernández, F.d.A.; Rodríguez-Zamora, L.; Schagatay, E. Hook breathing facilitates SaO2 recovery after deep dives in freedivers with slow recovery. Front. Physiol. 2019, 10, 1076. [Google Scholar] [CrossRef]
- Andersson, J.P.A.; Linér, M.H.; Runow, E.; Schagatay, E.K.A. Diving response and arterial oxygen saturation during apnea and exercise in breath-hold divers. J. Appl. Physiol. 2002, 93, 882–886. [Google Scholar] [CrossRef] [PubMed]
- Beatty, P.; Evans, W.; Gravelyn, S.; Tumperi, M.; Daubon, D.; Veith, A. Physiological monitoring to prevent diving disorders. Front. Physiol. 2024, 15, 1517361. [Google Scholar] [CrossRef]
- Fattorini, L.; Rodio, A.; Di Libero, T.; Ieno, C.; Tranfo, G.; Pigini, D.; Pinto, A.; Marchetti, E. Hyperbaric effects on heart rate in professional SCUBA divers in thermal water. Front. Sports Act. Living 2024, 6, 1429732. [Google Scholar] [CrossRef]
- Anthony, G.; Mitchell, S.J. Respiratory physiology of rebreather diving. In Proceedings of the Rebreathers and Scientific Diving, Wrigley Marine Science Center, Catalina Island, CA, USA, 16–19 February 2015. [Google Scholar]
- Bosco, G.; De Marzi, E.; Michieli, P.; Omar, H.R.; Camporesi, E.M.; Padulo, J.; Paoli, A.; Mangar, D.; Schiavon, M. 12-lead Holter monitoring in diving and water sports: A preliminary investigation. Diving Hyperb. Med. 2014, 44, 202–207. [Google Scholar]
- Mulder, E.; Schagatay, E.; Sieber, A. First evaluation of a newly constructed underwater pulse oximeter for use in breath-holding activities. Front. Physiol. 2021, 12, 649674. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Lee, H.-H.; Kim, S.; Jang, Y.-J.; Baek, Y.-J.; Kang, K.-Y. Diving bradycardia of elderly Korean women divers, haenyeo, in cold seawater: A field report. Ind. Health 2016, 54, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable photoplethysmographic sensors—Past and present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Maeda, Y.; Sekine, M.; Tamura, T. The advantages of wearable green reflected photoplethysmography. J. Med. Syst. 2011, 35, 829–834. [Google Scholar] [CrossRef]
- MacLeod, D.B.; Cortinez, L.I.; Keifer, J.C.; Cameron, D.; Wright, D.R.; White, W.D.; Moretti, E.W.; Radulescu, L.R.; Somma, J. The desaturation response time of finger pulse oximeters during mild hypothermia. Anaesthesia 2005, 60, 65–71. [Google Scholar] [CrossRef]
- Bove, A.A. Diving medicine. Am. J. Respir. Crit. Care Med. 2014, 189, 1479–1486. [Google Scholar] [CrossRef]
- Edmonds, C.; Bennett, M.; Lippmann, J.; Mitchell, S. Diving and Subaquatic Medicine; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Wilmshurst, P. Diving and oxygen. BMJ Br. Med. J. 1998, 317, 996. [Google Scholar] [CrossRef]
- Lund; Kentala; Scheinin; Klossner; Helenius; Jalonen. Heart rate variability in healthy volunteers during normobaric and hyperbaric hyperoxia. Acta Physiol. Scand. 1999, 167, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Schipke, J.D.; Muth, T.; Pepper, C.; Schneppendahl, J.; Hoffmanns, M.; Dreyer, S. Hyperoxia and the cardiovascular system: Experiences with hyperbaric oxygen therapy. Med. Gas Res. 2022, 12, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, I.T.; Zhilyaev, S.Y.; Moskvin, A.N.; Krivchenko, A.I.; Piantadosi, C.A.; Allen, B.W. Baroreflex-mediated cardiovascular responses to hyperbaric oxygen. J. Appl. Physiol. 2013, 115, 819–828. [Google Scholar] [CrossRef]
- Bosco, G.; Rizzato, A.; Moon, R.E.; Camporesi, E.M. Environmental physiology and diving medicine. Front. Psychol. 2018, 9, 72. [Google Scholar] [CrossRef]
- Circuit, S. US Navy Diving Manual. Direction of Commander; Naval Sea Systems Command: Washington, DC, USA, 2008.
- Severinghaus, J.W. Simple, accurate equations for human blood O2 dissociation computations. J. Appl. Physiol. 1979, 46, 599–602. [Google Scholar] [CrossRef]
- Blumhorst, E.; Kono, S.; Cave, J. An Exploratory Study of Adaptive Scuba Diving’s Effects on Psychological Well-Being among Military Veterans. Ther. Recreat. J. 2020, 54, 173–188. [Google Scholar] [CrossRef]
- Santiago Perez, T.; Crowe, B.M.; Rosopa, P.J.; Townsend, J.N.; Kaufman, M.R. Diving into health: A mixed methods study on the impact of scuba diving in people with physical impairments. Healthcare 2023, 11, 984. [Google Scholar] [CrossRef] [PubMed]
Author (Year) | Participants | Environment | Measured Parameters | Main Findings |
---|---|---|---|---|
Flouris and Scott (2009) [12] | 3 trained scuba divers | Pool (5 m, 27 °C) | HR, HRV | HR increased during challenging task performance; HRV decreased. |
Marabotti et al. (2013) [31] | 18 experienced scuba divers | Pool (5 m, 10 m, 21 °C) | HR | Post-dive HR significantly decreased; no marked bradycardia during dive. Left ventricular functional changes observed. |
Bosco et al. (2014) [42] | 16 trained scuba divers | Sea (various temperatures) | HR, ECG | High-quality 12-lead ECG recording feasible underwater. HR increased before diving, decreased during diving, and decreased further after diving. Arrhythmias and conduction abnormalities observed but no evidence of ischemia. |
Marongiu et al. (2015) [4] | 7 trained freedivers | Sea (10 m, 20 m, 30 m, 22–25 °C) | HR, SpO2 | HR and cardiac output increased during descent/ascent. HR decreased during static apnea. SaO2 decreased with depth. |
Zenske et al. (2020) [26] | 3 experienced scuba divers | Lake (5–10 °C) | HR, HRV | HR decreased during dive, transient HR increase immediately after incident. HRV indices increased overall. |
Schaller et al. (2021) [1] | 13 scuba divers with varying experience | Lake (5–20 °C) | HR, HRV | HR high before dive, decreased post-dive. Autonomic conflict observed. |
Mulder et al. (2021) [43] | 6 freedivers | Pool (32 °C) | HR, SpO2 | SUB oximeter matched commercial devices. Forehead sensor more reliable than finger under vasoconstriction. |
Mulder et al. (2021) [13] | 4 elite freedivers | Sea (19 m and 73 m, 22 °C) | HR, SpO2 | HR and SpO2 monitored down to 82 m. Greater SpO2 desaturation at depth. HR increased pre-dive, decreased during descent, peaked after ascent. |
Bruzzi et al. (2022) [29] | 4 Brazilian Navy scuba divers | Sea (Antarctica, −1.7 °C) | HRV | Short dives reduced both parasympathetic and sympathetic activity (HRV indices). |
Mulder et al. (2023) [27] | 6 recreational freedivers | Pool (11 m, 32 °C) | HR, SpO2 | Progressive SpO2 decline during repeated dives; some divers reached SpO2 as low as 47%. HR increased before diving, decreased during dive, and recovered post-dive. |
Di Pumpo et al. (2023) [11] | 1 non-professional scuba diver | Pool (15 m) | HR, SpO2 | SpO2 and ORi reflected oxygen status. Hyperoxia identified at depth. HR monitoring basic. |
Mulder et al. (2023) [28] | 14 elite freedivers | Sea (10–25 m shallow, >35 m deep, 22 °C) | HR, SpO2 | Greater SpO2 desaturation in deep dives, HR higher than shallow dives, autonomic conflict observed. |
O2 Fraction (FiO2) | Maximum Depth (m) for 1.6 ATA PO2 |
---|---|
21% (Air) | 66 m |
32% (Enriched Air Nitrox 32%) | 33.8 m |
36% (Enriched Air Nitrox 36%) | 28.4 m |
100% O2 | 6.0 m |
Depth | Pressure (ATA) | Expected SpO2 | Warning Threshold |
---|---|---|---|
Surface (0 m) | 1.0 | 95–99% | <94% |
10 m | 2.0 | 97–100% | <96% |
20 m | 3.0 | 98–100% | <97.5% |
30 m | 4.0 | ~99–100% | <98.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, T.S.; Kim, M.-G.; Park, J.-H.; Hong, J.-M.; Lee, D.; Han, I.H.; Shin, M.-J. Wearable Technology in Diving: A Review of Heart Rate and Oxygen Saturation Monitoring for Enhanced Safety and Performance. Healthcare 2025, 13, 2346. https://doi.org/10.3390/healthcare13182346
Park TS, Kim M-G, Park J-H, Hong J-M, Lee D, Han IH, Shin M-J. Wearable Technology in Diving: A Review of Heart Rate and Oxygen Saturation Monitoring for Enhanced Safety and Performance. Healthcare. 2025; 13(18):2346. https://doi.org/10.3390/healthcare13182346
Chicago/Turabian StylePark, Tae Sung, Min-Gyu Kim, Jong-Hwan Park, Jeong-Min Hong, Dowon Lee, In Ho Han, and Myung-Jun Shin. 2025. "Wearable Technology in Diving: A Review of Heart Rate and Oxygen Saturation Monitoring for Enhanced Safety and Performance" Healthcare 13, no. 18: 2346. https://doi.org/10.3390/healthcare13182346
APA StylePark, T. S., Kim, M.-G., Park, J.-H., Hong, J.-M., Lee, D., Han, I. H., & Shin, M.-J. (2025). Wearable Technology in Diving: A Review of Heart Rate and Oxygen Saturation Monitoring for Enhanced Safety and Performance. Healthcare, 13(18), 2346. https://doi.org/10.3390/healthcare13182346