How Could Artificial Intelligence Change the Doctor–Patient Relationship? A Medical Ethics Perspective
Abstract
1. Introduction
2. Methods
3. Results
3.1. Grounds for Employing AI Technology for Patients
3.2. Communication About the Use of AI to Patients
3.3. Confidentiality
3.4. Therapeutic Alliance and Healthcare Professionalism
4. Discussion
Dimension | European Union | China | United States |
---|---|---|---|
Main Regulatory Sources | |||
AI–Physician Relationship | AI is not a substitute for human healthcare professionals, but it is to be viewed as an auxiliary tool | AI is not a substitute for human healthcare professionals but rather serves as an auxiliary tool | AI cannot replace human healthcare professionals but serves as an auxiliary tool |
Transparency toward Patients |
|
|
|
Right to Contest Algorithmic Decisions |
|
|
|
Conception of the Physician–Patient Relationship |
|
|
|
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
WHO | World Health Organization |
WMA | World Medical Association |
UNESCO | United Nations Educational, Social, and Cultural Organization |
CDBIO | Council of Europe’s Steering Committee for Human Rights in the fields of Biomedicine and Health |
References
- Kaul, V.; Enslin, S.; Gross, S.A. History of artificial intelligence in medicine. Gastrointest. Endosc. 2020, 92, 807–812. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024. Off. J. Eur. Union 2024. Available online: https://eur-lex.europa.eu/eli/reg/2024/1689/oj (accessed on 24 April 2025).
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar] [CrossRef]
- Hamet, P.; Tremblay, J. Artificial Intelligence in Medicine. Metabolism 2017, 69S, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Seneviratne, N.; Baig, M.S.; Khan, A.H.A. Artificial Intelligence in Medicine: Where Are We Now? Acad. Radiol. 2020, 27, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Italian National Bioethics Committee and Italian National Committee for Biosafety, Biotechnologies and Life Sciences. Joint Opinion on Artificial Intelligence and Medicine: Ethical Aspects. Available online: https://bioetica.governo.it/en/opinions/joint-opinions-icbicbbsl/artificial-intelligence-and-medicine-some-ethical-aspects/ (accessed on 25 April 2025).
- Naylor, C.D. On the prospects for a (deep) learning health care system. JAMA 2018, 320, 1099–1100. [Google Scholar] [CrossRef]
- Xiang, F.; Li, Z.; Jiang, S.; Li, C.; Li, S.; Gao, T.; He, K.; Chen, J.; Zhang, J.; Zhang, J. Multimodal Masked Autoencoder Based on Adaptive Masking for Vitiligo Stage Classification. J. Imaging Inform. Med. 2025. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chest X-ray: Hospital-scale chest X-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases. In Deep Learning and Convolutional Neural Networks for Medical Imaging and Clinical Informatics; Lu, L., Wang, X., Carneiro, G., Yang, L., Eds.; Springer: Cham, Switzerland, 2019; pp. 369–392. [Google Scholar]
- Vidal-Perez, R.; Vazquez-Rodriguez, J.M. Role of artificial intelligence in cardiology. World J. Cardiol. 2023, 15, 116–118. [Google Scholar] [CrossRef]
- Itchhaporia, D. Artificial intelligence in cardiology. Trends Cardiovasc. Med. 2022, 32, 34–41. [Google Scholar] [CrossRef]
- Sangaiah, A.K.; Arumugam, M.; Bian, G.-B. An intelligent learning approach for improving ECG signal classification and arrhythmia analysis. Artif. Intell. Med. 2020, 103, 101788. [Google Scholar] [CrossRef] [PubMed]
- Hillis, J.M.; Bizzo, B.C. Use of Artificial Intelligence in Clinical Neurology. Semin. Neurol. 2022, 42, 39–47. [Google Scholar] [CrossRef]
- Cerasa, A.; Crowe, B. Generative artificial intelligence in neurology: Opportunities and risks. Eur. J. Neurol. 2024, 31, e16232. [Google Scholar] [CrossRef] [PubMed]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef]
- Chen, Z.H.; Lin, L.; Wu, C.F.; Li, C.F.; Xu, R.H.; Sun, Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. Cancer Commun. 2021, 41, 1100–1115. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Li, G.; Wu, X.; Ma, X. Artificial intelligence in radiotherapy. Semin. Cancer Biol. 2022, 86, 160–171. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C.L. Artificial intelligence in radiotherapy. Rep. Pract. Oncol. Radiother. 2020, 25, 656–666. [Google Scholar] [CrossRef]
- Rottier, J.B. Artificial intelligence: Reinforcing the place of humans in our healthcare system. Rev. Prat. 2018, 68, 1150–1151. [Google Scholar]
- Uche-Anya, E.; Anyane-Yeboa, A.; Berzin, T.M.; Ghassemi, M.; May, F.P. Artificial intelligence in gastroenterology and hepatology: How to advance clinical practice while ensuring health equity. Gut 2022, 71, 1909–1915. [Google Scholar] [CrossRef] [PubMed]
- Kröner, P.T.; Engels, M.M.; Glicksberg, B.S.; Johnson, K.W.; Mzaik, O.; van Hooft, J.E.; Wallace, M.B.; El-Serag, H.B.; Krittanawong, C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J. Gastroenterol. 2021, 27, 6794–6824. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, M.; Hashimoto, K. Artificial intelligence in gynecologic cancers: Current status and future challenges—A systematic review. Artif. Intell. Med. 2021, 120, 102164. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, C.; Zhou, S. Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. Semin. Cancer Biol. 2023, 96, 82–99. [Google Scholar] [CrossRef]
- Mundinger, A.; Mundinger, C. Artificial Intelligence in Senology—Where Do We Stand and What Are the Future Horizons? Eur. J. Breast Health 2024, 20, 73–80. [Google Scholar] [CrossRef]
- Bassi, E.; Russo, A.; Oliboni, E.; Zamboni, F.; De Santis, C.; Mansueto, G.; Montemezzi, S.; Foti, G. The role of an artificial intelligence software in clinical senology: A mammography multi-reader study. Radiol. Med. 2024, 129, 202–210. [Google Scholar] [CrossRef]
- Radakovich, N. Artificial Intelligence in Hematology: Current Challenges and Opportunities. Curr. Hematol. Malig. Rep. 2020, 15, 203–210. [Google Scholar] [CrossRef]
- Peiffer-Smadja, N. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin. Microbiol. Infect. 2020, 26, 584–595. [Google Scholar] [CrossRef]
- Valizadeh, A.; Moassefi, M.; Nakhostin-Ansari, A.; Heidari Some’eh, S.; Hosseini-Asl, H.; Saghab Torbati, M.; Aghajani, R.; Maleki Ghorbani, Z.; Menbari-Oskouie, I.; Aghajani, F.; et al. Automated diagnosis of autism with artificial intelligence: State of the art. Rev. Neurosci. 2023, 35, 141–163. [Google Scholar] [CrossRef]
- Dufour, M.M.; Lanovaz, M.J.; Cardinal, P. Artificial intelligence for the measurement of vocal stereotypy. J. Exp. Anal. Behav. 2020, 114, 368–380. [Google Scholar] [CrossRef]
- Liu, R.; Salisbury, J.P.; Vahabzadeh, A.; Sahin, N.T. Feasibility of an Autism-Focused Augmented Reality Smartglasses System for Social Communication and Behavioral Coaching. Front. Pediatr. 2017, 5, 145. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Iovino, L.; Di Renzo, M.; Ricci, P. Babies under 1 year with atypical development: Perspectives for preventive individuation and treatment. Front. Psychol. 2022, 13, 1016886. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Ricci, P.; Damato, F.M.; Iovino, L.; Ricci, L.; Cicinelli, G.; Simeoli, R.; Keller, R. Pregnancy in autistic women and social medical considerations: Scoping review and meta-synthesis. Front. Psychiatry 2023, 14, 1222127. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, R.; Damato, F.; Iovino, L.; Marti, F.; Latina, R.; Colombi, C.; Ricci, P. ESDM intervention in severe preschool autism: An Italian Case report, psychological and social medicine reflections. Ital. J. Pediatr. 2024, 50, 60. [Google Scholar] [CrossRef]
- Ferrara, R.; Ansermet, F.; Massoni, F.; Petrone, L.; Onofri, E.; Ricci, P.; Archer, T.; Ricci, S. Autism Spectrum Disorder and intact executive functioning. Clin. Ter. 2016, 167, e96–e101. [Google Scholar]
- Troili, G.M.; Businaro, R.; Massoni, F.; Ricci, L.; Petrone, L.; Ricci, P.; Ricci, S. Investigation on a group of autism children: Risk factors and medical social considerations. Clin. Ter. 2013, 164 (Suppl. S5), e273–e278. [Google Scholar] [CrossRef]
- Nagy, M.; Sisk, B. How will artificial intelligence affect patient-clinician relationships? AMA J. Ethics 2020, 22, E395–E400. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, Z.; Wang, P. The relationship between the physician-patient relationship, physician empathy, and patient trust. J. Gen. Intern. Med. 2022, 37, 1388–1393. [Google Scholar] [CrossRef]
- Ardenghi, S.; Russo, S.; Rampoldi, G.; Bani, M.; Strepparava, M.G. Medical students’ attitude toward patient-centeredness: A longitudinal study. Patient Educ. Couns. 2024, 118, 108003. [Google Scholar] [CrossRef] [PubMed]
- Poalelungi, D.G.; Musat, C.L.; Fulga, A.; Neagu, M.; Neagu, A.I.; Piraianu, A.I.; Fulga, I. Advancing Patient Care: How Artificial Intelligence Is Transforming Healthcare. J. Pers. Med. 2023, 13, 1214. [Google Scholar] [CrossRef]
- Akingbola, A.; Adeleke, O.; Idris, A.; Adewole, O.; Adegbesan, A. Artificial intelligence and the dehumanization of patient care. J. Med. Surg. Public Health 2024, 3, 100138. [Google Scholar] [CrossRef]
- Mennella, C.; Maniscalco, U.; De Pietro, G.; Esposito, M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon 2024, 10, e26297. [Google Scholar] [CrossRef] [PubMed]
- Dankwa-Mullan, I. Health Equity and Ethical Considerations in Using Artificial Intelligence in Public Health and Medicine. Prev. Cronic Dis. 2024, 21, E64. [Google Scholar] [CrossRef]
- Ratti, E.; Morrison, M. Ethical and social considerations of applying artificial intelligence in healthcare—A two-pronged scoping review. BMC Med. Ethics 2025, 26, 68. [Google Scholar] [CrossRef]
- Elendu, C.; Amaechi, D.C.; Elendu, T.C.; Jingwa, K.A.; Okoye, O.K.; Okah, M.J.; Ladele, J.A.; Farah, A.H.; Alimi, H.A. Ethical implications of AI and robotics in healthcare: A review. Medicine 2023, 102, e36671. [Google Scholar] [CrossRef]
- Chinta, S.V.; Wang, Z.; Palikhe, A.; Zhang, X.; Kashif, A.; Smith, M.A.; Liu, J.; Zhang, W. AI-driven healthcare: A review on ensuring fairness and mitigating bias. PLoS Digit. Health 2025, 4, e0000864. [Google Scholar] [CrossRef]
- Weiner, E.B.; Dankwa-Mullan, I.; Nelson, W.A.; Hassanpour, S. Ethical challenges and evolving strategies in the integration of artificial intelligence into clinical practice. PLoS Digit. Health 2025, 4, e0000810. [Google Scholar] [CrossRef]
- UNESCO. Recommendation on the Ethics of Artificial Intelligence. Paris, France, 23 November 2021. Available online: https://www.unesco.org/en/articles/recommendation-ethics-artificial-intelligence (accessed on 13 February 2025).
- Woopen, C. Ethical principles and democratic prerequisites for shaping robotics and artificial intelligence. In Humans, Machines and Health: Proceedings of the XXV General Assembly of Members: Vatican City, Vatican, 25–27 February 2019; Paglia, V., Pegoraro, R., Eds.; Pontifical Academy for Life: Vatican City, Vatican, 2019; p. 217. [Google Scholar]
- World Health Organization (WHO). Ethics and Governance of Artificial Intelligence for Health; WHO: Geneva, Switzerland, 2021; Available online: https://iris.who.int/bitstream/handle/10665/341996/9789240029200-eng.pdf (accessed on 14 February 2025).
- Aquinas, T. Summa Theologica, Fathers of the English Dominican Province, Trans; University of Notre Dame Press: Notre Dame, IN, USA, 1981; Volume 1. [Google Scholar]
- Lysdahl, K.B.; Oortwijn, W.; van der Wilt, G.J.; Refolo, P.; Sacchini, D.; Mozygemba, K.; Gerhardus, A.; Brereton, L.; Hofmann, B. Ethical analysis in HTA of complex health interventions. BMC Med. Ethics 2016, 17, 16. [Google Scholar] [CrossRef]
- Prakash, S.; Balaji, J.N.; Joshi, A.; Surapaneni, K.M. Ethical Conundrums in the Application of Artificial Intelligence (AI) in Healthcare—A Scoping Review of Reviews. J. Pers. Med. 2022, 12, 1914. [Google Scholar] [CrossRef]
- Hildt, E. What Is the Role of Explainability in Medical Artificial Intelligence? A Case-Based Approach. Bioengineering 2025, 12, 375. [Google Scholar] [CrossRef]
- McDougall, R.J. Computer knows best? The need for value-flexibility in medical AI. J. Med. Ethics 2019, 45, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, N.; Sotiris, S. Understanding confidentiality and the law on access to medical records. Obstet. Gynaecol. Reprod. Med. 2010, 20, 161–163. [Google Scholar] [CrossRef]
- Mittelstadt, B. The Impact of Artificial Intelligence on the Doctor-Patient Relationship; Council of Europe: Strasbourg, France, 2021; Available online: https://rm.coe.int/inf-2022-5-report-impact-of-ai-on-doctor-patient-relations-e/1680a68859 (accessed on 26 February 2025).
- Dwork, C. Differential privacy. In Automata, Languages and Programming; Bugliesi, M., Preneel, B., Sasson, V., Wegener, I., Eds.; Springer: Berlin, Germany, 2006; pp. 1–12. [Google Scholar]
- Ohm, P. Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA Law Rev. 2010, 57, 1701–1777. [Google Scholar]
- Chen, Y.; Stavropoulou, C.; Narasinkan, R.; Baker, A.; Scarbrough, H. Professionals’ responses to the introduction of AI innovations in radiology and their implications for future adoption: A qualitative study. BMC Health Serv. Res. 2021, 21, 813. [Google Scholar] [CrossRef]
- Arnold, M. Teasing out AI in medicine: An ethical critique of AI and machine learning in medicine. J. Bioethical Inq. 2021, 18, 121–139. [Google Scholar] [CrossRef]
- Coeckelbergh, M. E-care as craftsmanship: Virtuous work, skilled engagement, and information technology in health care. Med. Health Care Philos. 2013, 16, 807–816. [Google Scholar] [CrossRef]
- Lorenzini, g.; Arbelaez Ossa, l.; Shaw, D.M.; Elger, B.S. Artificial intelligence and the doctor–patient relationship expanding the paradigm of shared decision making. Bioethics 2023, 37, 424–429. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, L.; Zhang, Z.; Wang, D.; Zhu, H.; Gao, Y.; Fan, X.; Tian, F. “Brilliant AI doctor” in rural China: Tensions and challenges in AI-powered CDSS deployment. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Shortliffe, E.H.; Sepúlveda, M.J. Clinical decision support in the era of artificial intelligence. JAMA 2018, 320, 2199–2200. [Google Scholar] [CrossRef] [PubMed]
- Cohen, I.G.; Graver, H. A doctor’s touch: What big data in health care can teach us about predictive policing. J. Law Med. Ethics 2019, 47 (Suppl. S2), 91–98. [Google Scholar] [CrossRef]
- Bauer, K. Cybermedicine and the moral integrity of the physician–patient relationship. Ethics Inf. Technol. 2004, 6, 83–91. [Google Scholar] [CrossRef]
- Sauerbrei, A.; Kerasidou, A.; Lucivero, F.; Hallowell, N. The impact of artificial intelligence on the person-centred, doctor-patient relationship: Some problems and solutions. BMC Med. Inform. Decis. Mak. 2023, 23, 73. [Google Scholar] [CrossRef]
- Salmon, C.; Bell, K.; Reyes, E.; Ireland, E.; Danek, R. An analysis of telehealth in a post-pandemic rural, Midwestern community: Increased comfort and a preference for primary care. BMC Health Serv. Res. 2025, 25, 270. [Google Scholar] [CrossRef]
- Pairon, A.; Philips, H.; Verhoeven, V. A scoping review on the use and usefulness of online symptom checkers and triage systems: How to proceed? Front. Med. 2023, 9, 1040926. [Google Scholar] [CrossRef]
- Wanderås, M.R.; Abildsnes, E.; Thygesen, E.; Martinez, S.G. Video consultation in general practice: A scoping review on use, experiences, and clinical decisions. BMC Health Serv. Res. 2023, 23, 316. [Google Scholar] [CrossRef]
- Payne, R.; Clarke, A.; Swann, N.; van Dael, J.; Brenman, N.; Rosen, R.; Mackridge, A.; Moore, L.; Kalin, A.; Ladds, E.; et al. Patient safety in remote primary care encounters: Multimethod qualitative study combining Safety I and Safety II analysis. BMJ Qual. Saf. 2024, 33, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Różyńska, J. Taking the principle of the primacy of the human being seriously. Med. Health Care Philos. 2021, 24, 547–562. [Google Scholar] [CrossRef]
- Hofmann, B. The death of dignity is greatly exaggerated: Reflections 15 years after the declaration of dignity as a useless concept. Bioethics 2020, 34, 602–611. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association. WMA Statement on Augmented Intelligence in Medical Care. October 2019. Available online: https://www.wma.net/policies-post/wma-statement-on-augmented-intelligence-in-medical-care/ (accessed on 28 August 2025).
- Hryciw, B.N.; Fortin, Z.; Ghossein, J.; Kyeremanteng, K. Doctor-patient interactions in the age of AI: Navigating innovation and expertise. Front. Med. 2023, 10, 1241508. [Google Scholar] [CrossRef]
- Bresnick, J. EHR Users Want Their Time Back, and Artificial Intelligence Can Help. HealthITAnalytics, 2018. Available online: https://healthitanalytics.com/news/ehr-users-want-their-time-back-and-artificial-intelligence-can-help (accessed on 15 March 2025).
- Scaffardi, L. La medicina alla prova dell’intelligenza artificiale. DPCE Online 2022, 1, 349–359. [Google Scholar]
- Aminololama-Shakeri, S.; López, J.E. The doctor-patient relationship with artificial intelligence. Am. J. Roentgenol. 2019, 212, 308–310. [Google Scholar] [CrossRef] [PubMed]
- Sung, J.J.Y.; Savulescu, J.; Ngiam, K.Y.; An, B.; Ang, T.L.; Yeoh, K.G.; Cham, T.J.; Tsao, S.; Chua, T.S. Artificial intelligence for gastroenterology: Singapore artificial intelligence for Gastroenterology Working Group Position Statement. J. Gastroenterol. Hepatol. 2023, 38, 1669–1676. [Google Scholar] [CrossRef]
- Hung, A.J.; Chen, A.B.; Cacciamani, G.E.; Gill, I.S. Artificial intelligence will (may) make doctors expendable (in good ways): Pro. Eur. Urol. Focus 2021, 7, 683–684. [Google Scholar] [CrossRef]
- Kingsford, P.A.; Ambrose, J.A. Artificial intelligence and the doctor-patient relationship. Am. J. Med. 2024, 137, 381–382. [Google Scholar] [CrossRef]
- Geantă, M.; Bădescu, D.; Chirca, N.; Nechita, O.C.; Radu, C.G.; Rascu, S.; Rădăvoi, D.; Sima, C.; Toma, C.; Jinga, V. The Potential Impact of Large Language Models on Doctor-Patient Communication: A Case Study in Prostate Cancer. Healthcare 2024, 12, 1548. [Google Scholar] [CrossRef]
- Zhu, C. Research on Emotion Recognition-Based Smart Assistant System: Emotional Intelligence and Personalized Services. J. Syst. Manag. Sci. 2023, 13, 227–242. [Google Scholar] [CrossRef]
- Finkenberg, J. NASS 2023 presidential address: Artificial intelligence and its effect on the art of medicine and the physician-patient relationship. Spine J. 2024, 24, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Keane, P.A.; Denniston, A.K. Time to regenerate: The doctor in the age of artificial intelligence. J. R. Soc. Med. 2018, 111, 113–116. [Google Scholar] [CrossRef]
- Ratkevičiūtė, K.; Aliukonis, V. Exploring Opportunities and Challenges of AI in Primary Healthcare: A Qualitative Study with Family Doctors in Lithuania. Healthcare 2025, 13, 1429. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, S.; Basile, G.; Zaami, S. Telemedicine, Telepsychiatry and COVID-19 Pandemic: Future Prospects for Global Health. Healthcare 2022, 10, 2085. [Google Scholar] [CrossRef]
- Bellini, V.; Valente, M.; Gaddi, A.V.; Pelosi, P.; Bignami, E. Artificial Intelligence and Telemedicine in Anesthesia: Potential and Problems. Minerva Anestesiol. 2022, 88, 729–734. [Google Scholar] [CrossRef]
- Basile, G.; Accetta, R.; Marinelli, S.; D’Ambrosi, R.; Petrucci, Q.A.; Giorgetti, A.; Nuara, A.; Zaami, S.; Fozzato, S. Traumatology: Adoption of the Sm@rtEven Application for the Remote Evaluation of Patients and Possible Medico-Legal Implications. J. Clin. Med. 2022, 11, 3644. [Google Scholar] [CrossRef]
- Braun, M.; Hummel, P.; Beck, S.; Dabrock, P. Primer on an ethics of AI-based decision support systems in the clinic. J. Med. Ethics 2021, 47, e3. [Google Scholar] [CrossRef]
- Taddeo, M.; Floridi, L. How AI can be a force for good. Science 2018, 361, 751–752. [Google Scholar] [CrossRef] [PubMed]
- Garza-Herrera, R. Humans use tools: From handcrafted tools to artificial intelligence. J. Vasc. Surg. Venous Lymphat. Disord. 2024, 12, 101705. [Google Scholar] [CrossRef]
- Čartolovni, A.; Malešević, A.; Poslon, L. Critical analysis of the AI impact on the patient-physician relationship: A multi-stakeholder qualitative study. Digit. Health 2023, 9, 20552076231220833. [Google Scholar] [CrossRef]
- Geis, J.R.; Brady, A.P.; Wu, C.C.; Spencer, J.; Ranschaert, E.; Jaremko, J.L.; Langer, S.G.; Kitts, A.B.; Birch, J.; Shields, W.F.; et al. Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement. J. Am. Coll. Radiol. 2019, 16, 1516–1521. [Google Scholar] [CrossRef]
- Habermas, J. Moral Consciousness and Communicative Action; Polity Press: Cambridge, UK, 1992. [Google Scholar]
- Jonas, H. The Imperative of Responsibility: In Search of An Ethics for the Technological Age; University of Chicago Press: Chicago, IL, USA, 1984; pp. 21–26, 141–153, 130–194. [Google Scholar]
- European Parliament & Council. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data (General Data Protection Regulation, GDPR). Off. J. Eur. Union 2016, L119, 1–88. Available online: https://gdpr-info.eu (accessed on 26 August 2025).
- European Parliament & Council. Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act). Off. J. Eur. Union 2024, 1–152. Available online: https://eur-lex.europa.eu (accessed on 26 August 2025).
- European Parliament & Council. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on Medical Devices, Amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and Repealing Council Directives 90/385/EEC and 93/42/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0745 (accessed on 27 August 2025).
- China Personal Information Protection Law, 20 August 2021. Available online: https://personalinformationprotectionlaw.com/ (accessed on 1 September 2025).
- Han, Y.; Ceross, A.; Bergmann, J. Regulatory Frameworks for AI-Enabled Medical Device Software in China: Comparative Analysis and Review of Implications for Global Manufacturer. JMIR AI 2024, 3, e46871. [Google Scholar] [CrossRef]
- Sun, S. Research on the Application of Artificial Intelligence in Medical Field from the Perspective of Behavioral Law. Beijing Law Rev. 2024, 15, 899–920. [Google Scholar] [CrossRef]
- Food and Drug Administration. Clinical Decision Support Software. Guidance for Industry and Food and Drug Administration Staff, 28 September 2022. Available online: https://www.fda.gov/media/109618/download?utm_source=chatgpt.com (accessed on 3 September 2025).
- Food and Drug Administration, Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan, January 2021. Available online: https://www.fda.gov/media/145022/download?utm_source=chatgpt.com (accessed on 3 September 2025).
- AMA, Augmented Intelligence Development, Deployment, and Use in Health Care, November 2024; p. 16. Available online: https://www.ama-assn.org/system/files/ama-ai-principles.pdf?utm_source=chatgpt.com (accessed on 1 September 2025).
- Zaami, S.; Melcarne, R.; Patrone, R.; Gullo, G.; Negro, F.; Napoletano, G.; Monti, M.; Aceti, V.; Panarese, A.; Borcea, M.C.; et al. Oncofertility and Reproductive Counseling in Patients with Breast Cancer: A Retrospective Study. J. Clin. Med. 2022, 11, 1311. [Google Scholar] [CrossRef]
- Zampatti, S.; Peconi, C.; Megalizzi, D.; Calvino, G.; Trastulli, G.; Cascella, R.; Strafella, C.; Caltagirone, C.; Giardina, E. Innovations in Medicine: Exploring ChatGPT’s Impact on Rare Disorder Management. Genes 2024, 15, 421. [Google Scholar] [CrossRef] [PubMed]
- Gulìa, C.; Signore, F.; Gaffi, M.; Gigli, S.; Votino, R.; Nucciotti, R.; Bertacca, L.; Zaami, S.; Baffa, A.; Santini, E.; et al. Y RNA: An Overview of Their Role as Potential Biomarkers and Molecular Targets in Human Cancers. Cancers 2020, 12, 1238. [Google Scholar] [CrossRef] [PubMed]
- Meekins-Doherty, L.; Dive, L.; McEwen, A.; Sexton, A. Generative AI and the Profession of Genetic Counseling. J. Genet. Couns. 2025, 34, e2009. [Google Scholar] [CrossRef]
- Piergentili, R.; Del Rio, A.; Signore, F.; Umani Ronchi, F.; Marinelli, E.; Zaami, S. CRISPR-Cas and Its Wide-Ranging Applications: From Human Genome Editing to Environmental Implications, Technical Limitations, Hazards and Bioethical Issues. Cells 2021, 10, 969. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.-Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Mello, M.M.; Char, D.; Xu, S.H. Ethical Obligations to Inform Patients About Use of AI Tools. JAMA 2025, 334, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Devadas, R.M.; Sowmya, T. Quantum Machine Learning: A Comprehensive Review of Integrating AI with Quantum Computing for Computational Advancements. MethodsX 2025, 14, 103318. [Google Scholar] [CrossRef] [PubMed]
- Durant, T.J.S.; Knight, E.; Nelson, B.; Dudgeon, S.; Lee, S.J.; Walliman, D.; Young, H.P.; Ohno-Machado, L.; Schulz, W.L. A Primer for Quantum Computing and Its Applications to Healthcare and Biomedical Research. J. Am. Med. Inform. Assoc. 2024, 31, 1774–1784. [Google Scholar] [CrossRef]
AI Application in Healthcare | Opportunities | Main Ethical Concerns |
---|---|---|
Assisted Diagnostics (radiology, dermatology, digital pathology) | Increased diagnostic accuracy; reduction of errors; faster diagnosis | Shift of clinical authority from practitioner to algorithm; AI-related errors; de-skilling; challenges to informed consent; opacity of the decision-making process |
Predictive Medicine and Big Data Analytics | Personalized prevention; improvement of care pathways | Excessive patient profiling; risk of stigmatization; data confidentiality issues |
Generative AI (reports, clinical documentation, communication) | Faster, more timely drafting of reports and records, resulting in higher efficiency | Risk of errors or misleading information; loss of confidentiality |
Telemedicine and Automated Triage | Broader and faster access to care; remote monitoring | Reduction of human interaction; exclusion of less digitally literate patients; risk of over-reliance on automated systems |
Clinical Decision Support Systems (CDSSs) | Greater therapeutic precision; lower prescribing errors; fostering tailored, personalized forms of treatment | Shift of clinical authority from practitioner to algorithm; AI-related errors; de-skilling; challenges to informed consent; opacity of the decision-making process |
Surgical and Assistive Robotics | Higher surgical precision; reduced invasivity; support in daily care activities | Physical and emotional distancing from patients; high costs and inequitable access; de-skilling |
Dimension | Potential Benefits | Ethical Risks and Critical Issues |
---|---|---|
Quality of Care | Greater diagnostic and therapeutic accuracy; personalization of treatments; predictive medicine | Possible errors due to data bias; opacity of AI systems; AI-related errors; professional de-skilling; programming choices that prioritize interests other than those of patients |
Accessibility | Shorter waiting times; improved continuity of care; possibility of remote follow-up | Exclusion of less digitally literate patients; inequities in access due to economic or technological barriers |
Physician Autonomy | Decision-making support; reduction in bureaucratic workload; more time for patient interaction | Professional de-skilling; shift of decision-making authority from clinician to AI system |
Informed Consent and Trust | More time available to inform patients | Increased complexity of the information process; opacity of AI systems; loss of trust in physicians |
Equity | Potential reduction in disparities through standardization | Limited usefulness of AI for minority groups, as algorithms are trained on datasets that do not adequately represent them [88] |
Data Confidentiality | Automatic anonymization | Use of data without consent; breaches of anonymity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montanari Vergallo, G.; Campanozzi, L.L.; Gulino, M.; Bassis, L.; Ricci, P.; Zaami, S.; Marinelli, S.; Tambone, V.; Frati, P. How Could Artificial Intelligence Change the Doctor–Patient Relationship? A Medical Ethics Perspective. Healthcare 2025, 13, 2340. https://doi.org/10.3390/healthcare13182340
Montanari Vergallo G, Campanozzi LL, Gulino M, Bassis L, Ricci P, Zaami S, Marinelli S, Tambone V, Frati P. How Could Artificial Intelligence Change the Doctor–Patient Relationship? A Medical Ethics Perspective. Healthcare. 2025; 13(18):2340. https://doi.org/10.3390/healthcare13182340
Chicago/Turabian StyleMontanari Vergallo, Gianluca, Laura Leondina Campanozzi, Matteo Gulino, Lorena Bassis, Pasquale Ricci, Simona Zaami, Susanna Marinelli, Vittoradolfo Tambone, and Paola Frati. 2025. "How Could Artificial Intelligence Change the Doctor–Patient Relationship? A Medical Ethics Perspective" Healthcare 13, no. 18: 2340. https://doi.org/10.3390/healthcare13182340
APA StyleMontanari Vergallo, G., Campanozzi, L. L., Gulino, M., Bassis, L., Ricci, P., Zaami, S., Marinelli, S., Tambone, V., & Frati, P. (2025). How Could Artificial Intelligence Change the Doctor–Patient Relationship? A Medical Ethics Perspective. Healthcare, 13(18), 2340. https://doi.org/10.3390/healthcare13182340