A Pilot Analysis of Bioparameters in Patients with Dyspepsia Accompanied by Abdominal Hardness: An Exploration of Damjeok Syndrome Rooted in Traditional Medicine
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. DJS Criteria and Diagnosis
2.3. Assessment of Epigastric Symptoms
2.4. Classification into FD Subgroups
2.5. Abdominal Examination
2.6. Assessment of Extra-Gastrointestinal Symptoms
2.7. Analysis of Complete Blood Counts (CBC) and Biochemistry
2.8. Heart Rate Variability Test
2.9. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Participants
3.2. Complete Blood Count and Blood Biochemistry Profile
3.3. Heart Rate Variability Profile
3.4. Plasma 5-HIAA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DJS | Damjeok syndrome |
TKM | Traditional Korean medicine |
FGID | Functional gastrointestinal disorder |
RFD | Refractory functional dyspepsia |
CBC | Complete blood count |
5-HIAA | 5-Hydroxyindoleacetic acid |
HRV | Heart rate variability |
RMSSD | Root mean square of successive differences |
HF | High frequency |
FD | Functional dyspepsia |
PPI | Proton pump inhibitor |
QoL | Quality of life |
PDS | Postprandial distress syndrome |
EPS | Epigastric pain syndrome |
ESR | Erythrocyte sedimentation rate |
AST | Aspartate aminotransferase |
ALT | Alanine aminotransferase |
ALP | Alkaline phosphatase |
γ-GT | gamma-Glutamyl transferase |
BUN | Blood urea nitrogen |
hs-CRP | High-sensitivity C-reactive protein |
HbA1c | Hemoglobin A1c |
eGFR | Estimated glomerular filtration rate |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
SDNN | Standard deviation of NN interval |
LF | Low frequency |
LHR | Low-to-high frequency |
BMI | Body mass index |
NET | Neutrophil extracellular trap |
References
- Black, C.J.; Drossman, D.A.; Talley, N.J.; Ruddy, J.; Ford, A.C. Functional gastrointestinal disorders: Advances in understanding and management. Lancet 2020, 396, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology 2016, 150, 1262–1279.e2. [Google Scholar] [CrossRef]
- Drossman, D.A.; Hasler, W.L. Rome IV-Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology 2016, 150, 1257–1261. [Google Scholar] [CrossRef]
- Lee, K.; Kwon, C.I.; Yeniova, A.; Koyanagi, A.; Jacob, L.; Smith, L.; Lee, S.W.; Rahmati, M.; Shin, J.Y.; Shin, J.I.; et al. Global prevalence of functional dyspepsia according to Rome criteria, 1990–2020: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 4172. [Google Scholar] [CrossRef]
- Schmulson, M.J.; Drossman, D.A. What Is New in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151–163. [Google Scholar] [CrossRef]
- Talley, N.J.; Ford, A.C. Functional Dyspepsia. N. Engl. J. Med. 2015, 373, 1853–1863. [Google Scholar] [CrossRef]
- Meineche-Schmidt, V.; Talley, N.J.; Pap, A.; Kordecki, H.; Schmid, V.; Ohlsson, L.; Wahlqvist, P.; Wiklund, I.; Bolling-Sternevald, E. Impact of functional dyspepsia on quality of life and health care consumption after cessation of antisecretory treatment. A multicentre 3-month follow-up study. Scand. J. Gastroenterol. 1999, 34, 566–574. [Google Scholar] [CrossRef]
- Shinozaki, S.; Osawa, H.; Sakamoto, H.; Hayashi, Y.; Miura, Y.; Lefor, A.K.; Yamamoto, H. Adherence to an acotiamide therapeutic regimen improves long-term outcomes in patients with functional dyspepsia. J. Gastrointest. Liver Dis. 2017, 26, 345–350. [Google Scholar] [CrossRef]
- Jiang, S.M.; Jia, L.; Lei, X.G.; Xu, M.; Wang, S.B.; Liu, J.; Song, M.; Li, W.D. Incidence and psychological-behavioral characteristics of refractory functional dyspepsia: A large, multi-center, prospective investigation from China. World J. Gastroenterol. 2015, 21, 1932–1937. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.C.; Moayyedi, P.; Black, C.J.; Yuan, Y.; Veettil, S.K.; Mahadeva, S.; Kengkla, K.; Chaiyakunapruk, N.; Lee, Y.Y. Systematic review and network meta-analysis: Efficacy of drugs for functional dyspepsia. Aliment. Pharmacol. Ther. 2021, 53, 8–21. [Google Scholar] [CrossRef] [PubMed]
- Madisch, A.; Andresen, V.; Enck, P.; Labenz, J.; Frieling, T.; Schemann, M. The Diagnosis and Treatment of Functional Dyspepsia. Dtsch. Arztebl. Int. 2018, 115, 222–232. [Google Scholar] [CrossRef]
- Shetty, A.J.; Balaraju, G.; Shetty, S.; Pai, C.G. Quality of life in dyspepsia and its subgroups using EQ-5D (EuroQol) questionnaire. Saudi J. Gastroenterol. 2017, 23, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Hantoro, I.F.; Syam, A.F.; Mudjaddid, E.; Setiati, S.; Abdullah, M. Factors associated with health-related quality of life in patients with functional dyspepsia. Health Qual. Life Outcomes 2018, 16, 83. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Bertwistle, D.; Khela, K.; Middleton-Dalby, C.; Hall, J. Global retrospective analysis of clinician- and patient-reported clinical characteristics and humanistic burden of patients with gastroesophageal cancers on first-line treatment. BMC Cancer 2023, 23, 186. [Google Scholar] [CrossRef]
- Huber, A.; Oldridge, N.; Höfer, S. International SF-36 reference values in patients with ischemic heart disease. Qual. Life Res. 2016, 25, 2787–2798. [Google Scholar] [CrossRef]
- Finkelstein, F.O.; van Nooten, F.; Wiklund, I.; Trundell, D.; Cella, D. Measurement properties of the Short Form-36 (SF-36) and the Functional Assessment of Cancer Therapy—Anemia (FACT-An) in patients with anemia associated with chronic kidney disease. Health Qual. Life Outcomes 2018, 16, 111. [Google Scholar] [CrossRef]
- Choi, H.S.; Kim, J.K.; Choi, S.H. Recent Advances in Diagnosis of Gastrointestinal Disease. J. Soc. Korean Med. Diagn. 2009, 13, 1–9. [Google Scholar]
- Lim, Y.S.; Rho, G.H.; Choi, G.H.; Lee, S.H.; Choi, S.H. A Literature Study on the Diagnostic Factors and Value as a Syndrome of Damjeok. J. Korean Med. 2023, 44, 170–188. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, J. Recent Advances and Perspective of Studies on Phlegm Syndrome in Chinese Medicine. Evid. Based Complement. Altern. Med. 2016, 2016, 6463270. [Google Scholar] [CrossRef]
- Greenwood, M.T. Dysbiosis, Spleen Qi, Phlegm, and Complex Difficulties. Med. Acupunct. 2017, 29, 128–137. [Google Scholar] [CrossRef]
- Park, J.; Choi, T.J.; Kang, K.S.; Choi, S.H. The Interrelationships between Intestinal Permeability and Phlegm Syndrome and Therapeutic Potential of Some Medicinal Herbs. Biomolecules 2021, 11, 284. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Yang, D.H.; Kim, M.Y.; Lee, S.C.; Park, Y.J. Development of Questionnire for Damum Patternization. J. Soc. Korean Med. Diagn. 2006, 10, 64–77. [Google Scholar]
- Zhu, Z. Experience in diagnosis and treatment of Zhengjia in traditional Chinese medicine. Fujian J. Tradit. Chin. Med. 1962, 5, 36–37. [Google Scholar]
- Na, B.J.; Choi, S.H. Clinical Analysis of the 991 Outpatients with Gastrointestinal Symptoms and Extra-gastrointestinal Symptoms. J. Korean Med. 2012, 33, 107–120. [Google Scholar]
- Wu, J.C. Psychological Co-morbidity in Functional Gastrointestinal Disorders: Epidemiology, Mechanisms and Management. J. Neurogastroenterol. Motil. 2012, 18, 13–18. [Google Scholar] [CrossRef]
- Lee, Q.J.; Lee, Y.H.; Shin, T.M. The Development and Response Characteristic Analysis of Damjeok Diagnosis System Using Ultrasonic Sensor. Trans. Korean Inst. Electr. Eng. D 2006, 55, 189–194. [Google Scholar]
- Rho, G.H.; Choi, G.H.; Lee, S.H.; Choi, S.H.; Noh, H.M. The Effect of Korean Medical Complex Treatment on Functional Dyspepsia Patients: Through Measurement of Functional Dyspepsia Symptoms through NDI-K, Pressure Pain Threshold through an Algometer. J. Physiol. Pathol. Korean Med. 2022, 36, 100–104. [Google Scholar] [CrossRef]
- Choi, S.H. Damjeok Syndrome: Origin of All Disease, 1st ed.; Chosunmedia: Seoul, Republic of Korea, 2024. [Google Scholar]
- Cha, E.S.; Na, Y.H. Treatment of Damjeok Syndrome in a Cooperative Way with Korean Medical Treatment and Visceral Manipulation. J. PMS 2024, 7, 45–52. [Google Scholar]
- Kunselman, A.R. A brief overview of pilot studies and their sample size justification. Fertil. Steril. 2024, 121, 899–901. [Google Scholar] [CrossRef]
- In, J. Introduction of a pilot study. Korean J. Anesthesiol. 2017, 70, 601–605. [Google Scholar] [CrossRef]
- Napthali, K.; Koloski, N.; Walker, M.M.; Talley, N.J. Women and functional dyspepsia. Womens Health 2016, 12, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Tack, J.; Talley, N.J.; Camilleri, M.; Holtmann, G.; Hu, P.; Malagelada, J.R.; Stanghellini, V. Functional gastroduodenal disorders. Gastroenterology 2006, 130, 1466–1479. [Google Scholar] [CrossRef]
- Stanghellini, V.; Chan, F.K.; Hasler, W.L.; Malagelada, J.R.; Suzuki, H.; Tack, J.; Talley, N.J. Gastroduodenal Disorders. Gastroenterology 2016, 150, 1380–1392. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Voin, V.; Topale, N.; Iwanaga, J.; Loukas, M.; Tubbs, R.S. The Clinical anatomy of the physical examination of the abdomen: A comprehensive review. Clin. Anat. 2017, 30, 352–356. [Google Scholar] [CrossRef] [PubMed]
- Valentín-Mazarracin, I.; Nogaledo-Martín, M.; López-de-Uralde-Villanueva, I.; Fernández-de-Las-Peñas, C.; Stokes, M.; Arias-Buría, J.L.; Díaz-Arribas, M.J.; Plaza-Manzano, G. Reproducibility and Concurrent Validity of Manual Palpation with Rehabilitative Ultrasound Imaging for Assessing Deep Abdominal Muscle Activity: Analysis with Preferential Ratios. Diagnostics 2021, 11, 298. [Google Scholar] [CrossRef]
- Ha, N.Y.; Ko, S.J.; Park, J.W.; Kim, J. Development of a Standard Tool of Pattern Identification for Functional Dyspepsia: A Cross-Sectional Study from Korea. Healthcare 2024, 12, 2331. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Tyce, G.M. Origin and metabolism of serotonin. J. Cardiovasc. Pharmacol. 1990, 16 (Suppl. 3), S1–S7. [Google Scholar] [CrossRef]
- Ewang-Emukowhate, M.; Subramaniam, K.; Lam, F.; Hayes, A.; Mandair, D.; Toumpanakis, C.; Grossman, A.; Nair, D.; Caplin, M. Plasma or serum 5-hydroxyindoleacetic acid can be used interchangeably in patients with neuroendocrine tumours. Scand. J. Clin. Lab. Investig. 2023, 83, 576–581. [Google Scholar] [CrossRef]
- Tohmola, N.; Johansson, A.; Sane, T.; Renkonen, R.; Hämäläinen, E.; Itkonen, O. Transient elevation of serum 5-HIAA by dietary serotonin and distribution of 5-HIAA in serum protein fractions. Ann. Clin. Biochem. 2015, 52, 428–433. [Google Scholar] [CrossRef]
- Lenchner, J.R.; Santos, C. Biochemistry, 5 Hydroxyindoleacetic Acid. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Kim, G.M.; Woo, J.M. Determinants for heart rate variability in a normal Korean population. J. Korean Med. Sci. 2011, 26, 1293–1298. [Google Scholar] [CrossRef]
- Catai, A.M.; Pastre, C.M.; Godoy, M.F.; Silva, E.D.; Takahashi, A.C.M.; Vanderlei, L.C.M. Heart rate variability: Are you using it properly? Standardisation checklist of procedures. Braz. J. Phys. Ther. 2020, 24, 91–102. [Google Scholar] [CrossRef]
- Barutcu, I.; Esen, A.M.; Kaya, D.; Turkmen, M.; Karakaya, O.; Melek, M.; Esen, O.B.; Basaran, Y. Cigarette smoking and heart rate variability: Dynamic influence of parasympathetic and sympathetic maneuvers. Ann. Noninvasive Electrocardiol. 2005, 10, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Sondermeijer, H.P.; van Marle, A.G.; Kamen, P.; Krum, H. Acute effects of caffeine on heart rate variability. Am. J. Cardiol. 2002, 90, 906–907. [Google Scholar] [CrossRef]
- Perini, R.; Veicsteinas, A. Heart rate variability and autonomic activity at rest and during exercise in various physiological conditions. Eur. J. Appl. Physiol. 2003, 90, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.D.; Larsen, P.D.; Galletly, D.C. Comparison of heart rate variability in supine, and left and right lateral positions. Anaesthesia 2003, 58, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Serdar, C.C.; Cihan, M.; Yücel, D.; Serdar, M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. 2021, 31, 010502. [Google Scholar] [CrossRef]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef]
- Futagami, S.; Yamawaki, H.; Agawa, S.; Higuchi, K.; Ikeda, G.; Noda, H.; Kirita, K.; Akimoto, T.; Wakabayashi, M.; Sakasegawa, N.; et al. New classification Rome IV functional dyspepsia and subtypes. Transl. Gastroenterol. Hepatol. 2018, 3, 70. [Google Scholar] [CrossRef]
- Goggins, E.; Mitani, S.; Tanaka, S. Clinical perspectives on vagus nerve stimulation: Present and future. Clin. Sci. 2022, 136, 695–709. [Google Scholar] [CrossRef]
- VanElzakker, M.B. Chronic fatigue syndrome from vagus nerve infection: A psychoneuroimmunological hypothesis. Med. Hypotheses 2013, 81, 414–423. [Google Scholar] [CrossRef]
- Li, H.; Page, A.J. Altered Vagal Signaling and Its Pathophysiological Roles in Functional Dyspepsia. Front. Neurosci. 2022, 16, 858612. [Google Scholar] [CrossRef]
- Ali, M.K.; Chen, J.D.Z. Roles of Heart Rate Variability in Assessing Autonomic Nervous System in Functional Gastrointestinal Disorders: A Systematic Review. Diagnostics 2023, 13, 293. [Google Scholar] [CrossRef] [PubMed]
- McCraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef]
- Cohen, L. Time-frequency distributions-a review. Proc. IEEE 2002, 77, 941–981. [Google Scholar] [CrossRef]
- Akselrod, S.; Gordon, D.; Ubel, F.A.; Shannon, D.C.; Berger, A.C.; Cohen, R.J. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science 1981, 213, 220–222. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [Google Scholar] [CrossRef] [PubMed]
- Galligan, J.J.; Parkman, H. Recent advances in understanding the role of serotonin in gastrointestinal motility and functional bowel disorders. Neurogastroenterol. Motil. 2007, 19 (Suppl. 2), 1–4. [Google Scholar] [CrossRef]
- Grover, M.; Camilleri, M. Effects on gastrointestinal functions and symptoms of serotonergic psychoactive agents used in functional gastrointestinal diseases. J. Gastroenterol. 2013, 48, 177–181. [Google Scholar] [CrossRef]
- Crowell, M.D. Role of serotonin in the pathophysiology of the irritable bowel syndrome. Br. J. Pharmacol. 2004, 141, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Atluri, D.K.; Chandar, A.K.; Fass, R.; Falck-Ytter, Y. Systematic review with meta-analysis: Selective serotonin reuptake inhibitors for noncardiac chest pain. Aliment. Pharmacol. Ther. 2015, 41, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, A.Y.; Mujagic, Z.; Jonkers, D.M.; Ludidi, S.; Keszthelyi, D.; Hesselink, M.A.; Clemens, C.H.; Conchillo, J.M.; Kruimel, J.W.; Masclee, A.A. Alterations in serotonin metabolism in the irritable bowel syndrome. Aliment. Pharmacol. Ther. 2016, 43, 272–282. [Google Scholar] [CrossRef]
- Wiśniewska-Jarosińska, M.; Harasiuk, A.; Klupińska, G.; Śmigielski, J.; Stec-Michalska, K.; Chojnacki, C. Diagnostic value of measuring serum serotonin and urinary 5-hydroxyindoleacetic acid concentration in the diagnosis of functional dyspepsia. Gastroenterol. Rev. 2010, 5, 285–291. [Google Scholar] [CrossRef]
- Bellono, N.W.; Bayrer, J.R.; Leitch, D.B.; Castro, J.; Zhang, C.; O’Donnell, T.A.; Brierley, S.M.; Ingraham, H.A.; Julius, D. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell 2017, 170, 185–198.e16. [Google Scholar] [CrossRef]
- Alcaino, C.; Knutson, K.R.; Treichel, A.J.; Yildiz, G.; Strege, P.R.; Linden, D.R.; Li, J.H.; Leiter, A.B.; Szurszewski, J.H.; Farrugia, G.; et al. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc. Natl. Acad. Sci. USA 2018, 115, E7632–E7641. [Google Scholar] [CrossRef]
- Park, D.; Lee, C.; Woo, D.H.; Kim, B.; Yang, Y.S.; Song, C.W. Transcriptome Features of Blood Samples in Patients Resembling Symptoms with Functional Dyspepsia. Korea Inst. Toxicol. 2025. manuscript in preparation. [Google Scholar]
- Wang, H.; Kim, S.J.; Lei, Y.; Wang, S.; Wang, H.; Huang, H.; Zhang, H.; Tsung, A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct. Target. Ther. 2024, 9, 235. [Google Scholar] [CrossRef]
Damjeok syndrome must fulfill all the following 3 conditions: |
|
Characteristics | Damjeok Syndrome (n = 16) | Healthy Control (n = 15) | p Value |
---|---|---|---|
Female, n (%) | 16 (100) | 15 (100) | - |
Age, year | 49.9 ± 6.7 | 50.7 ± 2.4 | 0.69 |
BMI, kg/m2 | 21.0 ± 2.2 | 23.3 ± 3.4 | 0.04 |
Duration of illness, month | 58.0 ± 46.2 | 0 | - |
Abdominal hardness | |||
Presence, n (%) | 16 (100) | 0 (0) | - |
Grade (0–4) | 3.9 ± 0.3 | 0 | - |
DJS symptom | |||
Epigastric symptom | |||
Epigastric fullness, n (%) | 14 (87.5) | 0 (0) | - |
Epigastric pain, n (%) | 7 (43.8) | 0 (0) | - |
Epigastric burning, n (%) | 6 (37.5) | 0 (0) | - |
Total score (0–12) | 7.0 ± 2.8 | 0 | - |
FD-based subtype | |||
PDS, n (%) | 7 (43.8) | 0 (0) | - |
EPS, n (%) | 2 (12.5) | 0 (0) | - |
PDS + EPS, n (%) | 7 (43.8) | 0 (0) | - |
Extra-gastrointestinal symptom | |||
Headache/Dizziness, n (%) | 14 (87.5) | 0 (0) | - |
Chest discomfort, n (%) | 12 (75.0) | 0 (0) | - |
Neck and shoulder stiffness, n (%) | 13 (81.3) | 0 (0) | - |
Fatigue, n (%) | 14 (87.5) | 0 (0) | - |
Anxiety/Depression, n (%) | 13 (81.3) | 0 (0) | - |
Parameter | Reference Range | DJS Group (n = 16) | HC Group (n = 15) | p Value |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Complete blood count | ||||
RBC (106/µL) | 3.7–4.7 | 4.4 ± 0.4 | 4.3 ± 0.3 | 0.57 |
Hb (g/dL) | 11–15 | 13.4 ± 1.0 | 13.2 ± 1.0 | 0.67 |
WBC (103/µL) | 4–10 | 4.4 ± 1.0 | 5.2 ± 1.3 | 0.10 |
Neutrophil (103/µL) | ≥1.5 | 2.3 ± 0.5 | 3.1 ± 0.8 | 0.01 |
Lymphocyte (103/µL) | ≤4 | 1.7 ± 0.5 | 1.6 ± 0.6 | 0.65 |
Platelet (103/µL) | 150–370 | 262.6 ± 46.4 | 247.8 ± 66.7 | 0.52 |
ESR (mm/h) | ≤25 | 12.8 ± 10.9 | 12.2 ± 7.3 | 0.86 |
Blood biochemistry | ||||
hs-CRP (mg/L) | ≤0.9 | 0.4 ± 0.3 | 0.5 ± 0.6 | 0.48 |
HbA1c (%) | ≤5.6 | 5.5 ± 0.3 | 5.7 ± 0.5 | 0.15 |
Total-Cholesterol (mg/dL) | <200 | 208.2 ± 48.2 | 212.9 ± 37.4 | 0.76 |
HDL-Cholesterol (mg/dL) | >40 | 70.3 ± 17.1 | 72.7 ± 16.7 | 0.69 |
LDL-Cholesterol (mg/dL) | <100 | 125.3 ± 45.8 | 129.6 ± 35.2 | 0.77 |
Triglyceride (mg/dL) | <150 | 89.4 ± 32.9 | 76.7 ± 40.3 | 0.34 |
Total protein (g/dL) | 6.6–8.7 | 7.5 ± 0.5 | 7.3 ± 0.2 | 0.23 |
Albumin (g/dL) | 3.5–5.2 | 4.7 ± 0.3 | 4.6 ± 0.2 | 0.40 |
AST (U/L) | 0–32 | 20.3 ± 4.4 | 18.9 ± 3.0 | 0.32 |
ALT (U/L) | 0–33 | 13.4 ± 5.4 | 17.3 ± 8.1 | 0.12 |
ALP (U/L) | 0–32 | 20.3 ± 4.4 | 18.9 ± 3.0 | 0.32 |
γ-GT (U/L) | 6–42 | 17.4 ± 6.6 | 16.1 ± 5.6 | 0.56 |
Total bilirubin (mg/dL) | 0.0–1.2 | 0.6 ± 0.2 | 0.5 ± 0.2 | 0.52 |
Direct bilirubin (mg/dL) | 0.0–0.3 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.60 |
BUN (mg/dL) | 6–20 | 14.0 ± 4.9 | 12.7 ± 3.1 | 0.38 |
Creatinine (mg/dL) | 0.5–0.9 | 0.7 ± 0.1 | 0.6 ± 0.1 | 0.01 |
eGFR (mL/min/1.73 m2) | ≥90 | 97.6 ± 13.3 | 106.0 ± 6.6 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, Y.-S.; Son, C.-G.; Lee, J.-H.; Yang, S.-d.; Park, D.; Rho, G.-H.; Choi, G.-H.; Choi, S.-H. A Pilot Analysis of Bioparameters in Patients with Dyspepsia Accompanied by Abdominal Hardness: An Exploration of Damjeok Syndrome Rooted in Traditional Medicine. Healthcare 2025, 13, 2307. https://doi.org/10.3390/healthcare13182307
Lim Y-S, Son C-G, Lee J-H, Yang S-d, Park D, Rho G-H, Choi G-H, Choi S-H. A Pilot Analysis of Bioparameters in Patients with Dyspepsia Accompanied by Abdominal Hardness: An Exploration of Damjeok Syndrome Rooted in Traditional Medicine. Healthcare. 2025; 13(18):2307. https://doi.org/10.3390/healthcare13182307
Chicago/Turabian StyleLim, Yun-Seo, Chang-Gue Son, Jin-Hee Lee, Sung-don Yang, Daeui Park, Gi-Hwan Rho, Gyu-Ho Choi, and Seo-Hyung Choi. 2025. "A Pilot Analysis of Bioparameters in Patients with Dyspepsia Accompanied by Abdominal Hardness: An Exploration of Damjeok Syndrome Rooted in Traditional Medicine" Healthcare 13, no. 18: 2307. https://doi.org/10.3390/healthcare13182307
APA StyleLim, Y.-S., Son, C.-G., Lee, J.-H., Yang, S.-d., Park, D., Rho, G.-H., Choi, G.-H., & Choi, S.-H. (2025). A Pilot Analysis of Bioparameters in Patients with Dyspepsia Accompanied by Abdominal Hardness: An Exploration of Damjeok Syndrome Rooted in Traditional Medicine. Healthcare, 13(18), 2307. https://doi.org/10.3390/healthcare13182307