Real-World Safety Concerns of Tirzepatide: A Retrospective Analysis of FAERS Data (2022–2025)
Abstract
1. Introduction
2. Methods
3. Results
3.1. Most Reported Adverse Events (Consistently Top 5)
3.2. Class-Effective AEs
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garvey, W.T.; Frias, J.P.; Jastreboff, A.M.; le Roux, C.W.; Sattar, N.; Aizenberg, D.; Mao, H.; Zhang, S.; Ahmad, N.N.; Bunck, M.C.; et al. Tirzepatide once weekly for the treatment of obesity in people with type 2 diabetes (SURMOUNT-2): A double-blind, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2023, 402, 613–626. [Google Scholar] [CrossRef]
- Chavda, V.P.; Ajabiya, J.; Teli, D.; Bojarska, J.; Apostolopoulos, V. Tirzepatide, a new era of dual-targeted treatment for diabetes and obesity: A mini-review. Molecules 2022, 27, 4315. [Google Scholar] [CrossRef]
- Moiz, A.; Khan, T.; Masood, Q.; Malik, B.H. Efficacy and safety of glucagon-like peptide-1 receptor agonists for weight loss among adults without diabetes: A systematic review of randomized controlled trials. Ann. Intern. Med. 2025, 178, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Zupec, J.; Munger, R.; Scaletta, A.; Quinn, D.H. Use of glucagon-like peptide-1 receptor agonists and incretin mimetics for type 2 diabetes and obesity: A narrative review. Nutr. Clin. Pract. 2025, 40, 327–349. [Google Scholar] [CrossRef] [PubMed]
- Febrey, S.; Jones, L.; Jones, D.; Hicks, K. What are the experiences, views and perceptions of patients, carers and clinicians of glucagon-like peptide-1 receptor agonists (GLP-1 RAs)? A scoping review. Health Expect. 2025, 28, e70251. [Google Scholar] [CrossRef] [PubMed]
- Ruder, K. Patients are flocking to compounded weight-loss drugs, but are they safe? JAMA 2025, 333, 652–655. [Google Scholar] [CrossRef]
- Takyi, A.K.; Gaffey, R.H.; Shukla, A.P. Optimizing the efficacy of anti-obesity medications: A practical guide to personalizing incretin-based therapies. Curr. Treat. Options Gastroenterol. 2025, 23, 2. [Google Scholar] [CrossRef]
- Ntani, S.N.; Sangha, Y.M.N. Prevalence and causes of medication transcription errors among hospitalized patients: An observational study and survey of nurses at a faith-based hospital in Cameroon. Glob. Health Econ. Sustain. 2024, 2, 2457. [Google Scholar] [CrossRef]
- Vest, T.A.; Gazda, N.P.; O’Neil, D.P.; Eckel, S.F. Practice-enhancing publications about the medication-use process in 2021. Am. J. Health Syst. Pharm. 2024, 81, e489–e519. [Google Scholar] [CrossRef]
- Assiri, G.A.; Shebl, N.A.; Mahmoud, M.A.; Aloudah, N.; Grant, E.; Aljadhey, H.; Sheikh, A. What is the epidemiology of medication errors, error-related adverse events and risk factors for errors in adults managed in community care contexts? A systematic review of the international literature. BMJ Open 2018, 8, e019101. [Google Scholar] [CrossRef]
- George, J.; Dsouza, P.L.; Jahnavi, Y.; Singh, H.; Kumar, P.A. Databases and tools for signal detection of drugs in post-marketing surveillance. In Signal Analysis in Pharmacovigilance; CRC Press: Boca Raton, FL, USA, 2024; pp. 32–43. [Google Scholar] [CrossRef]
- Christaki, E.; Protopapa, C.; Siamidi, A.; Vlachou, M. Obesity management: An update on the available pharmacotherapy. Innov. Med. Omics 2025, 2, 8316. [Google Scholar] [CrossRef]
- Lupianez-Merly, C.; Dilmaghani, S.; Vosoughi, K.; Camilleri, M. Review article: Pharmacologic management of obesity—Updates on approved medications, indications and risks. Aliment. Pharmacol. Ther. 2024, 59, 475–491. [Google Scholar] [CrossRef]
- Abi Zeid Daou, C.; Aboul Hosn, O.; Ghzayel, L.; Mourad, M. Exploring connections between weight-loss medications and thyroid cancer: A look at the FDA Adverse Event Reporting System database. Endocrinol. Diabetes Metab. 2025, 8, e70038. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Kwan, A.T.H. Increased reporting of accidental overdose with glucagon-like peptide-1 receptor agonists: A population-based study. In Expert Opinion on Drug Safety; 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/39552465/ (accessed on 5 September 2025). [CrossRef]
- Chiappini, S.; Guirguis, A.; John, A.; Corkery, J.M.; Schifano, F. Is there a risk for semaglutide misuse? Focus on the Food and Drug Administration’s FDA Adverse Events Reporting System (FAERS) pharmacovigilance dataset. Pharmaceuticals 2023, 16, 994. [Google Scholar] [CrossRef]
- Barnes, J. Advances in methods and techniques in pharmacovigilance for herbal and traditional medicines and other natural health products. In Pharmacovigilance for Herbal and Traditional Medicines: Advances, Challenges and International Perspectives; 2022; pp. 93–139. Available online: https://www.scribd.com/document/766337469/Joanne-Barnes-Pharmacovigilance-for-Herbal-and-Traditional-Medicines-Advances-Challenges-and-International-Perspectives-Adis-2022 (accessed on 5 September 2025). [CrossRef]
- Chen, W.; Cai, P.; Zou, W.; Fu, Z. Psychiatric adverse events associated with GLP-1 receptor agonists: A real-world pharmacovigilance study based on the FDA Adverse Event Reporting System database. Front. Endocrinol. 2024, 15, 1330936. [Google Scholar] [CrossRef]
- FAERS Quarterly Data Extract Files [Internet]. U.S. Food and Drug Administration. Available online: https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html (accessed on 4 June 2025).
- Alenzi, K.A.; Alsuhaibani, D.; Batarfi, B.; Alshammari, T.M. Pancreatitis with use of new diabetic medications: A real-world data study using the post-marketing FDA adverse event reporting system (FAERS) database. Front. Pharmacol. 2024, 15, 1364110. [Google Scholar] [CrossRef]
- Alshammari, T.M.; Ata, S.I.; Mahmoud, M.A.; Alhawassi, T.M.; Aljadhey, H.S. Signals of bleeding among direct-acting oral anticoagulant users compared to those among warfarin users: Analyses of the post-marketing FDA Adverse Event Reporting System (FAERS) database, 2010–2015. Ther. Clin. Risk Manag. 2018, 14, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Altebainawi, A.F.; Alfaraj, L.A.; Alharbi, A.A.; Alkhuraisi, F.F.; Alshammari, T.M. Association between proton pump inhibitors and rhabdomyolysis risk: A post-marketing surveillance using FDA adverse event reporting system (FAERS) database. Ther. Adv. Drug Saf. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Thaibah, H.A.; Banji, O.J.F.; Banji, D.; Alshammari, T.M. Diabetic ketoacidosis and the use of new hypoglycemic groups: Real-world evidence utilizing the Food and Drug Administration Adverse Event Reporting System. Pharmaceuticals 2025, 18, 214. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ding, Y.; Shan, Y. Post-marketing safety monitoring of tirzepatide: A pharmacovigilance study based on the FAERS database. Expert Opin. Drug Saf. 2025, 8, 959–967. [Google Scholar] [CrossRef]
- Zopf, Y.; Rabe, C.; Neubert, A.; Gassmann, K.G.; Rascher, W.; Hahn, E.G.; Brune, K.; Dormann, H. Women encounter ADRs more often than do men. Eur. J. Clin. Pharmacol. 2008, 64, 999–1004. [Google Scholar] [CrossRef]
- Watson, S.; Caster, O.; Rochon, P.A.; den Ruijter, H. Reported adverse drug reactions in women and men: Aggregated evidence from globally collected individual case reports during half a century. EClinicalMedicine 2019, 17, 100188. [Google Scholar] [CrossRef]
- Adult Obesity Prevalence Maps [Internet]. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/obesity/data-and-statistics/adult-obesity-prevalence-maps.html (accessed on 1 June 2025).
- Goyal, R.; Singhal, M.; Jialal, I. Type 2 Diabetes [Internet]. StatPearls, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK513253/ (accessed on 1 June 2025).
- Farzam, K.; Patel, P. Tirzepatide. In StatPearls [Internet]; StatPearls Publishing: St. Petersburg, FL, USA, 2024. [Google Scholar]
- Karagiannis, T.; Malandris, K.; Avgerinos, I.; Stamati, A.; Kakotrichi, P.; Liakos, A.; Vasilakou, D.; Kakaletsis, N.; Tsapas, A.; Bekiari, E. Subcutaneously administered tirzepatide vs. semaglutide for adults with type 2 diabetes: A systematic review and network meta-analysis of randomised controlled trials. Diabetologia 2024, 67, 1206–1222. [Google Scholar] [CrossRef]
- Yao, H.; Liu, J.; Zhang, R.; Li, R.; Wang, Y.; Sun, X.; Yuan, C.S. Comparative effectiveness of GLP-1 receptor agonists on glycaemic control, body weight, and lipid profile for type 2 diabetes: Systematic review and network meta-analysis. BMJ 2024, 384, e076410. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 7. Diabetes Technology: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. 1), S126–S144. [Google Scholar] [CrossRef] [PubMed]
- Filippatos, T.D.; Panagiotopoulou, T.V.; Elisaf, M.S. Adverse effects of GLP-1 receptor agonists. Rev. Diabet. Stud. 2015, 11, 202. [Google Scholar] [CrossRef] [PubMed]
- Karagiannis, T.; Avgerinos, I.; Liakos, A.; Del Prato, S.; Matthews, D.R.; Tsapas, A.; Bekiari, E. Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: A systematic review and meta-analysis. Diabetologia 2022, 65, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Liu, L. A real-world data analysis of tirzepatide in the FDA adverse event reporting system (FAERS) database. Front. Pharmacol. 2024, 15, 1397029. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Caruso, I.; Cari, L.; Berardicurti, O.; Di Nisio, C.; Di Michele, L.; Di Giovanni, P.; Laviola, L.; Giorgino, F. The real-world safety profile of tirzepatide: Pharmacovigilance analysis of the FDA Adverse Event Reporting System (FAERS) database. J. Endocrinol. Investig. 2024, 47, 2671–2678. [Google Scholar] [CrossRef]
- Khurana, A.; Kaur, R.; Sharma, S.; Singh, G.; Kapoor, D. Safety profile of tirzepatide: A real-world pharmacovigilance analysis of EudraVigilance database. Clin. Epidemiol. Glob. Health 2024, 30, 101805. [Google Scholar] [CrossRef]
Adverse Drug Reaction of Interest | Other Adverse Drug Reactions | |
---|---|---|
Drug of interest | a | b |
All other drugs in the database | c | d |
Characteristic | Category | Number of Reports (%) |
---|---|---|
Sex | Female (F) | 44,120 (66.9) |
Male (M) | 13,410 (20.3) | |
Unknown (UNK) | 8444 (12.8) | |
Age | (<18 years) | 16 (0.02) |
(18–39 years) | 7519 (11.4) | |
(40–59 years) | 21,809 (33.1) | |
(60–89 years) | 12,943 (19.6) | |
(≥90 years) | 21 (0.04) | |
Unknown (UNK) | 23,666 (35.9) | |
Reporter Type | Healthcare Professional (HP) | 2062 (3.1) |
Medical Doctor (MD) | 1110 (1.7) | |
Pharmacist (PH) | 691 (1.0) | |
Consumer (CN) | 61,838 (93.7) | |
Lawyer (LW) | 222 (0.3) | |
Other/Unknown | 51 (0.1) | |
Outcome | Death (DE) | 221 (0.3) |
Hospitalization (HO) | 2418 (3.7) | |
Disability (DS) | 181 (0.3) | |
Other (OT) | 3983 (6.0) | |
Unknown (UNK) | 59,171 (89.7) | |
Reporting Country | United States (US) | 63,664 (96.5) |
United Kingdom (GB) | 1187 (1.8) | |
Japan (JP) | 522 (0.8) | |
Others (20+ countries) | 601 (0.9) | |
Reporting Year | 2022 | 4931 (7.5) |
2023 | 20,600 (31.2) | |
2024 | 37,854 (57.4) | |
Q1 2025 | 2589 (3.9) |
Year | Number of Incorrect Dose Administration ADEs | Reported ADEs for the Drug of Interest | ROR (95% CI) | PRR (95% CI) | EBGM | IC |
---|---|---|---|---|---|---|
2022 | 1248 | 4931 | 22.15 (20.75–23.65) | 16.80 (15.74–17.93) | 16.01 | 4.00 |
2023 | 5824 | 20,600 | 27.31 (26.43–28.23) | 19.87 (19.23–20.54) | 16.10 | 4.00 |
2024 | 9800 | 37,854 | 23.43 (22.82–24.05) | 17.62 (17.16–18.09) | 12.68 | 3.66 |
Q1 2025 | 2589 | 11,206 | 17.61 (16.75–18.52) | 13.78 (13.10–14.49) | 10.13 | 3.34 |
Adverse Event | 2022 | 2023 | 2024 | Q1 2025 | Total |
---|---|---|---|---|---|
Incorrect dose administered | 1248 | 5824 | 9800 | 2589 | 19,461 |
Injection-site pain | 592 | 2946 | 5273 | 1038 | 9849 |
Nausea | 655 | 2390 | 3602 | 1031 | 7678 |
Off-label use | 748 | 3162 | 2704 | 379 | 6993 |
Extra dose administered | 283 | 1078 | 2984 | 699 | 5044 |
Injection-site hemorrhage | 289 | 1344 | 2056 | 370 | 4059 |
Diarrhea | 286 | 1056 | 1787 | 619 | 3748 |
Injection-site erythema | 153 | 987 | 1747 | 376 | 3263 |
Vomiting | 268 | 885 | 1573 | 515 | 3241 |
Accidental underdose | — | — | 1981 | 485 | 2466 |
Constipation | — | 703 | 1171 | 370 | 2244 |
Product dose omission issue | — | 593 | 1122 | 468 | 2183 |
Injection-site bruising | 137 | 588 | 1169 | 269 | 2163 |
Blood glucose increased | — | 547 | 1019 | — | 1566 |
Fatigue | 111 | — | 809 | 222 | 1142 |
Inappropriate schedule of product administration | 184 | 737 | — | — | 921 |
Decreased appetite | 214 | 657 | — | — | 871 |
Abdominal pain upper | — | — | — | 236 | 236 |
Weight decreased | 192 | — | — | — | 192 |
Headache | 102 | — | — | — | 102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almansour, H.A.; Thaibah, H.A.; Alfarhan, M.; Al-Qahtani, S.A.; Khardali, A.A.; Alshammari, T.M. Real-World Safety Concerns of Tirzepatide: A Retrospective Analysis of FAERS Data (2022–2025). Healthcare 2025, 13, 2259. https://doi.org/10.3390/healthcare13182259
Almansour HA, Thaibah HA, Alfarhan M, Al-Qahtani SA, Khardali AA, Alshammari TM. Real-World Safety Concerns of Tirzepatide: A Retrospective Analysis of FAERS Data (2022–2025). Healthcare. 2025; 13(18):2259. https://doi.org/10.3390/healthcare13182259
Chicago/Turabian StyleAlmansour, Hadi A., Hilal A. Thaibah, Moaddey Alfarhan, Saeed A. Al-Qahtani, Amani A. Khardali, and Thamir M. Alshammari. 2025. "Real-World Safety Concerns of Tirzepatide: A Retrospective Analysis of FAERS Data (2022–2025)" Healthcare 13, no. 18: 2259. https://doi.org/10.3390/healthcare13182259
APA StyleAlmansour, H. A., Thaibah, H. A., Alfarhan, M., Al-Qahtani, S. A., Khardali, A. A., & Alshammari, T. M. (2025). Real-World Safety Concerns of Tirzepatide: A Retrospective Analysis of FAERS Data (2022–2025). Healthcare, 13(18), 2259. https://doi.org/10.3390/healthcare13182259