Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Obesity: Sex-Stratified Analysis of Hepatic Enzyme Profiles and Serum Uric Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Processing
2.2.1. Patient Characteristics
2.2.2. Laboratory Tests
2.2.3. Data Analysis
3. Results
3.1. General Data Characteristics
3.2. Laboratory Test Results
3.3. Sex-Stratified Multivariable Analysis of Risk Factors of MASLD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WHR | waist-to-hip ratio |
BMI z-score | body mass index z-score |
NAFLD | non-alcoholic fatty liver disease |
MASLD | metabolic dysfunction-associated steatotic liver disease |
MASLD− | children without MASLD |
MASLD+ | children with MASLD |
Vit D | vitamin D |
AST | aspartate transaminase |
ALT | alanine aminotransferase |
GLU | glucose |
SUA | serum uric acid |
CHO | cholesterol |
LDL | low-density lipoprotein |
HDL | high-density lipoprotein |
References
- Vos, M.B.; Abrams, S.H.; Barlow, S.E.; Caprio, S.; Daniels, S.R.; Kohli, R.; Mouzaki, M.; Sathya, P.; Schwimmer, J.B.; Sundaram, S.S.; et al. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children: Recommendations from the Expert Committee on NAFLD (ECON) and the North American Society of Pediatric Gastroenterology, Hepatology and Nutrition (NASPGHAN). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 319–334. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. J. Hepatol. 2023, 79, 1542–1556. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Paik, J.M.; Stepanova, M.; Ong, J.; Alqahtani, S.; Henry, L. Clinical profiles and mortality rates are similar for metabolic dysfunction-associated steatotic liver disease and non-alcoholic fatty liver disease. J. Hepatol. 2024, 80, 694–701. [Google Scholar] [CrossRef]
- Hardy, T.; Wonders, K.; Younes, R.; Aithal, G.P.; Aller, R.; Allison, M.; Bedossa, P.; Betsou, F.; Boursier, J.; Brosnan, M.J.; et al. The European NAFLD Registry: A real-world longitudinal cohort study of nonalcoholic fatty liver disease. Contemp. Clin. Trials. 2020, 98, 106175. [Google Scholar] [CrossRef] [PubMed]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD). J. Hepatol. 2024, 81, 492–542. [Google Scholar] [CrossRef] [PubMed]
- Clemente, M.G.; Mandato, C.; Poeta, M.; Vajro, P. Pediatric non-alcoholic fatty liver disease: Recent solutions, unresolved issues, and future research directions. World J. Gastroenterol. 2016, 22, 8078–8093. [Google Scholar] [CrossRef]
- Bonsembiante, L.; Targher, G.; Maffeis, C. Non-alcoholic fatty liver disease in obese children and adolescents: A role for nutrition? Eur. J. Clin. Nutr. 2022, 76, 28–39. [Google Scholar] [CrossRef]
- Kelly, A.S.; Barlow, S.E.; Rao, G.R.; Inge, T.H.; Hayman, L.L.; Steinberger, J.; Urbina, E.M.; Ewing, L.J.; Daniels, S.R.; American Heart Association Atherosclerosis; et al. Severe obesity in children and adolescents: Identification, associated health risks, and treatment approaches: A scientific statement from the American Heart Association. Circulation 2013, 128, 1689–1712. [Google Scholar] [CrossRef]
- Field, A.E.; Cook, N.R.; Gillman, M.W. Weight status in childhood as a predictor of becoming overweight or hypertensive in early adulthood. Obes. Res. 2005, 13, 163–169. [Google Scholar] [CrossRef]
- Bellini, M.I.; Urciuoli, I.; Del Gaudio, G.; Polti, G.; Iannetti, G.; Gangitano, E.; Lori, E.; Lubrano, C.; Cantisani, V.; Sorrenti, S.; et al. Nonalcoholic fatty liver disease and diabetes. World J. Diabetes 2022, 13, 668–682. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Gao, L.; Xia, Z.; Peng, L.; Shi, X.; Ma, J.; Dong, Y.; Dai, D.; Yang, Q.; Chen, X.; et al. Association between non-alcoholic fatty liver disease and metabolic abnormalities in children with different weight statuses. Public Health 2024, 235, 160–166. [Google Scholar] [CrossRef]
- Wong, R.J.; Aguilar, M.; Cheung, R.; Perumpail, R.B.; Harrison, S.A.; Younossi, Z.M.; Ahmed, A. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015, 148, 547–555. [Google Scholar] [CrossRef]
- Gangitano, E.; Scannapieco, F.; Lubrano, C.; Gnessi, L. Metabolic syndrome, hepatic steatosis and testosterone: A matter of sex. Livers 2024, 4, 534–549. [Google Scholar] [CrossRef]
- Wiegand, S.; Keller, K.M.; Röbl, M.; L’Allemand, D.; Reinehr, T.; Widhalm, K.; Holl, R.W.; APV-Study Group and the German Competence Network Adipositas. Obese boys at increased risk for nonalcoholic liver disease: Evaluation of 16,390 overweight or obese children and adolescents. Int. J. Obes. 2010, 34, 1468–1474. [Google Scholar] [CrossRef]
- Malespin, M.; Sleesman, B.; Lau, A.; Wong, S.S.; Cotler, S.J. Prevalence and correlates of suspected nonalcoholic fatty liver disease in Chinese American children. J. Clin. Gastroenterol. 2015, 49, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S.; Ben-Assuli, O.; Rabinowich, L.; Goldstein, A.; Magid, A.; Shalev, V.; Shibolet, O.; Chodick, G. The association between the serum levels of uric acid and alanine aminotransferase in a population-based cohort. Liver Int. 2015, 35, 2408–2415. [Google Scholar] [CrossRef]
- Yang, H.; Li, D.; Song, X.; Liu, F.; Wang, X.; Ma, Q.; Zhang, X.; Li, X. Joint associations of serum uric acid and ALT with NAFLD in elderly men and women: A Chinese cross-sectional study. J. Transl. Med. 2018, 16, 285. [Google Scholar] [CrossRef] [PubMed]
- Jin, B.; Wu, Z.; Wang, S.; Yu, Z.; Ullah, R.; Liang, X.; Wu, W.; Huang, K.; Ni, Y.; Wang, J.; et al. Gender differences in non-alcoholic fatty liver disease in obese children and adolescents: A large cross-sectional study. Hepatol. Int. 2024, 18, 179–187. [Google Scholar] [CrossRef]
- Luo, J.; Liu, L.W.; Liu, J.M.; Shi, Y.W.; Sun, Y.M.; Wang, Q.Y.; Wang, M.; Fan, X.; Ou, X.J.; Zhao, X.Y.; et al. Comparative study of clinicopathological features, and risk factors of advanced fibrosis between genders with non-alcoholic fatty liver disease. Chin. J. Hepatol. 2021, 29, 356–361. [Google Scholar] [CrossRef]
- WS/T 586-2018; Screening for Overweight and Obesity in School-Age Children and Adolescents. Standards Press of China: Beijing, China, 2018.
- Li, H.; Ji, C.Y.; Zong, X.N.; Zhang, Y.Q. Body mass index growth curves for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi 2009, 47, 493–498. [Google Scholar] [CrossRef]
- Li, H.; Ji, C.Y.; Zong, X.N.; Zhang, Y.Q. Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi 2009, 47, 487–492. [Google Scholar] [CrossRef]
- Endocrinology, Genetics and Metabolism Group; Pediatrics Society of Chinese Medical Association; Gastroenterology Group, Pediatrics Society of Chinese Medical Association; Adolescent Medicine Specialty Committee; Pediatrics Society of Chinese Medical Association. Experts consensus on diagnosis and treatment of nonalcoholic fatty liver disease in children. Chin. J. Practical. Pediatr. 2018, 33, 487–492. [Google Scholar] [CrossRef]
- Wang, J.; Lin, H.; Chiavaroli, V.; Jin, B.; Yuan, J.; Huang, K.; Wu, W.; Dong, G.; Derraik, J.G.B.; Fu, J. High prevalence of cardiometabolic comorbidities among children and adolescents with severe obesity from a large metropolitan centre (Hangzhou, China). Front. Endocrinol. 2022, 13, 807380. [Google Scholar] [CrossRef]
- Chen, X.; Wen, X.; Zhang, Y.; Zhu, X.; Dou, Y.; Han, Y.; Wang, Y.; Hu, Y.H.; He, W.; Chen, H.; et al. A cross-sectional survey of the 7-year prevalence of non-alcoholic fatty liver disease among children and adolescents in Minhang District, Shanghai. Chin J. Evid. Based. Pediatr. 2022, 17, 109–115. [Google Scholar] [CrossRef]
- Furthner, D.; Anderwald, C.-H.; Bergsten, P.; Forslund, A.; Kullberg, J.; Ahlström, H.; Manell, H.; Ciba, I.; Mangge, H.; Maruszczak, K.; et al. Single Point Insulin Sensitivity Estimator in Pediatric Non-Alcoholic Fatty Liver Disease. Front. Endocrinol 2022, 13, 830012. [Google Scholar] [CrossRef] [PubMed]
- Yetim, A.; Şahin, M.; Kandemir, L.; Bulakçı, B.; Aksakal, M.T.; Karapınar, E.; Sever, H.; Baş, F. Evaluation of the ability of insulin resistance and lipid-related indices to predict the presence of NAFLD in obese adolescents. Lipids Health Dis. 2024, 23, 208. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, R.; Fintini, D.; Ravà, L.; Mariani, M.; Aureli, A.; Inzaghi, E.; Pedicelli, S.; Deodati, A.; Bizzarri, C.; Cappa, M.; et al. Insulin Clearance at the Pubertal Transition in Youth with Obesity and Steatosis Liver Disease. Int. J. Mol. Sci. 2023, 24, 14963. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.D.; Garber, A.J.; Farmer, J.A. Role of insulin signaling in maintaining energy homeostasis. Endocr. Pract. 2008, 14, 373–380. [Google Scholar] [CrossRef]
- Palma, R.; Pronio, A.; Romeo, M.; Scognamiglio, F.; Ventriglia, L.; Ormando, V.M.; Lamazza, A.; Pontone, S.; Federico, A.; Dallio, M. The role of insulin resistance in fueling NAFLD pathogenesis: From molecular mechanisms to clinical implications. J. Clin. Med. 2022, 11, 3649. [Google Scholar] [CrossRef]
- Thakur, S.; Kumar, V.; Das, R.; Sharma, V.; Mehta, D.K. Biomarkers of Hepatic Toxicity: An Overview. Curr. Ther. Res. Clin. Exp. 2024, 100, 100737. [Google Scholar] [CrossRef]
- Schwimmer, J.B.; Newton, K.P.; Awai, H.I.; Choi, L.J.; Garcia, M.A.; Ellis, L.L.; Vanderwall, K.; Fontanesi, J. Paediatric gastroenterology evaluation of overweight and obese children referred from primary care for suspected non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2013, 38, 1267–1277. [Google Scholar] [CrossRef]
- Bussler, S.; Vogel, M.; Pietzner, D.; Harms, K.; Buzek, T.; Penke, M.; Händel, N.; Körner, A.; Baumann, U.; Kiess, W.; et al. New pediatric percentiles of liver enzyme serum levels (alanine aminotransferase, aspartate aminotransferase, γ-glutamyltransferase): Effects of age, sex, body mass index, and pubertal stage. Hepatology 2018, 68, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Staiano, A.E.; Katzmarzyk, P.T. Ethnic and sex differences in body fat and visceral and subcutaneous adiposity in children and adolescents. Int. J. Obes. 2012, 36, 1261–1269. [Google Scholar] [CrossRef]
- Mirza, M.S. Obesity, visceral fat, and NAFLD: Querying the role of adipokines in the progression of nonalcoholic fatty liver disease. ISRN Gastroenterol. 2011, 2011, 592404. [Google Scholar] [CrossRef]
- Tang, S.P.; Mao, X.L.; Chen, Y.H.; Yan, L.L.; Ye, L.P.; Li, S.W. Reactive Oxygen Species Induce Fatty Liver and Ischemia-Reperfusion Injury by Promoting Inflammation and Cell Death. Front. Immunol. 2022, 13, 870239. [Google Scholar] [CrossRef]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Role of estrogens in the regulation of liver lipid metabolism. Adv. Exp. Med. Biol. 2017, 1043, 227–256. [Google Scholar] [CrossRef]
- DiStefano, J.K. NAFLD and NASH in Postmenopausal women: Implications for diagnosis and treatment. Endocrinology 2020, 10, 161. [Google Scholar] [CrossRef]
- Kwo, P.Y.; Cohen, S.M.; Lim, J.K. ACG Clinical Guideline: Evaluation of abnormal liver chemistries. Am. J. Gastroenterol. 2017, 112, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Lu, L.G. Evaluation of abnormal liver function and its clinical significance. J. Clin. Hepatol. 2015, 31, 1543–1546. [Google Scholar] [CrossRef]
- Yun, H.; Shi, J.; Hu, C.; Zhang, L.; Liu, H.; Lou, G. Serum AST levels are associated with progressive hepatic fibrosis in non-alcoholic fatty liver disease. Chin. Hepatol. 2010, 15, 160–163. [Google Scholar] [CrossRef]
- Gong, X.; Li, S.; Chen, S.; Wang, M. Study on the correlation between ALT, AST, UA, and Non-alcoholic fatty liver disease pathology. J. Med. Res. 2016, 45, 90–93. [Google Scholar] [CrossRef]
- Russo, E.; Leoncini, G.; Esposito, P.; Garibotto, G.; Pontremoli, R.; Viazzi, F. Fructose and uric acid: Major mediators of cardiovascular disease risk starting at pediatric age. Int. J. Mol. Sci. 2020, 21, 4479. [Google Scholar] [CrossRef]
- Fan, J.; Wang, D. Serum uric acid and nonalcoholic fatty liver disease. Front. Endocrinol. 2024, 15, 1455132. [Google Scholar] [CrossRef]
- Xu, C. Hyperuricemia and nonalcoholic fatty liver disease: From bedside to bench and back. Hepatol. Int. 2016, 10, 286–293. [Google Scholar] [CrossRef]
- Sun, D.Q.; Wu, S.J.; Liu, W.Y.; Lu, Q.D.; Zhu, G.Q.; Shi, K.Q.; Braddock, M.; Song, D.; Zheng, M.H. Serum uric acid: A new therapeutic target for nonalcoholic fatty liver disease. Expert. Opin. Ther. Targets. 2016, 20, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Barişik, V.; Korkmaz, H.A.; Çekdemir, Y.E.; Torlak, D.; Aktuğ, H.; Yavaşoğlu, A.; Erbaş, O. The therapeutic effect of allopurinol in fatty liver disease in rats. Acta Endocrinol. 2023, 19, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Al-Shargi, A.; El Kholy, A.A.; Adel, A.; Hassany, M.; Shaheen, S.M. Allopurinol versus febuxostat: A new approach for the management of hepatic steatosis in metabolic dysfunction-associated steatotic liver disease. Biomedicines 2023, 11, 3074. [Google Scholar] [CrossRef]
- Wang, Y.; Charchar, F.J. Establishment of sex difference in circulating uric acid is associated with higher testosterone and lower sex hormone-binding globulin in adolescent boys. Sci. Rep. 2021, 11, 17323. [Google Scholar] [CrossRef]
- Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.; Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 2008, 40, 1461–1465. [Google Scholar] [CrossRef]
Variable | Males (n = 148) | Females (n = 114) | ||||
---|---|---|---|---|---|---|
MASLD+ (n = 52) | MASLD− (n = 96) | p | MASLD+ (n = 17) | MASLD− (n = 97) | p | |
Age (years) ± s | 10.23 ± 1.79 | 9.45 ± 1.89 | 0.016 | 9.53 ± 1.69 | 8.85 ± 1.62 | 0.137 |
Pre-puberty:puberty | 24:28 | 56:40 | 0.158 | 3:14 | 25:72 | 0.140 |
Height SDS | 1.95 | 1.48 | 0.744 | 1.57 | 1.32 | 0.399 |
M (p25, p75) | (0.69, 2.51) | (0.72, 2.48) | (1.07, 2.68) | (0.59, 2.36) | ||
Weight SDS | 4.04 | 3.01 | 0.018 | 5.24 (3.75, 6.21) | 3.27 (2.37, 4.80) | 0.025 |
M (p25, p75) | (2.96, 5.23) | (2.13, 4.26) | ||||
BMI z-score | 2.78 | 2.49 | 0.013 | 3.55 | 2.60 | 0.006 |
M (P25, P75) | (2.38, 3.30) | (2.10, 3.04) | (2.84, 3.82) | (2.33, 3.14) | ||
WHR | 0.87 | 0.84 | 0.073 | 0.86 | 0.80 | 0.016 |
M (P25, P75) | (0.82, 0.92) | (0.79, 0.89) | (0.81, 0.91) | (0.77, 0.85) | ||
Percentage of body fat (%) | 40.90 | 37.30 | 0.001 | 39.60 | 33.65 | 0.008 |
M (P25, P75) | (36.70, 45.50) | (32.80, 40.76) | (34.10, 42.15) | (31.0, 38.63) |
Variable | Males | Females | ||||
---|---|---|---|---|---|---|
MASLD+ | MASLD− | p | MASLD+ | MASLD− | p | |
Vit D (ng/mL) | 17.90 | 21.70 | 0.129 | 21.50 | 19.80 | 0.616 |
M (p25, p75) | (13.40, 25.10) | (15.98, 26.00) | (15.45, 25.45) | (13.65, 24.90) | ||
Glycated haemoglobin (%) | 5.50 | 5.50 | 0.193 | 5.40 | 5.40 | 0.182 |
M (p25, p75) | (5.30, 5.60) | (5.30, 5.60) | (5.30, 5.70) | (5.20, 5.65) | ||
Insulin (μU/mL) | 29.60 | 16.60 | <0.001 | 44.80 | 16.20 | <0.001 |
M (p25, p75) | (17.72, 35.58) | (11.65, 25.20) | (15.00, 53.60) | (11.00, 25.10) | ||
ALT (IU/L) | 28.50 | 19.00 | <0.001 | 29.00 | 20.00 | <0.001 |
M (P25, P75) | (21.25, 44.75) | (16.00, 25.00) | (21.50, 33.50) | (16.00, 24.00) | ||
AST (IU/L) | 25.50 | 22.00 | <0.001 | 23.00 | 20.00 | <0.001 |
M (P25, P75) | (22.00, 32.75) | (19.00, 26.00) | (21.50, 33.50) | (16.00, 24.00) | ||
GLU (mmol/L) | 4.90 | 5.10 | 0160 | 4.90 | 5.00 | 0.260 |
M (P25, P75) | (4.70, 5.28) | (4.80, 5.30) | (4.80, 5.30) | (4.75, 5.20) | ||
SUA (μmol/L) | 411.00 | 354.00 | <0.001 | 343.00 | 349.00 | 0.102 |
M (P25, P75) | (364.25, 462.00) | (297.00, 396.50) | (313.50, 448.50) | (302.50, 396.00) | ||
CHO (mmol/L) | 4.50 | 4.42 | 0.452 | 4.27 | 4.40 | 0.566 |
M (P25, P75) | (3.90, 4.92) | (4.04, 5.04) | (4.00, 4.54) | (3.94, 5.08) | ||
TGs (mmol/L) | 1.27 | 1.06 | 0.060 | 1.23 | 1.03 | 0.426 |
M (P25, P75) | (0.85, 1.79) | (0.77, 1.47) | (0.86, 1.58) | (0.68, 1.45) | ||
HDL (mmol/L) | 1.31 | 0.73 | 0.002 | 1.26 | 1.39 | 0.002 |
M (P25, P75) | (1.14, 1.48) | (0.46, 1.12) | (1.12, 1.32) | (1.24, 1.59) | ||
LDL (mmol/L) | 2.63 | 2.55 | 0.840 | 2.51 | 2.51 | 0.628 |
M (P25, P75) | (2.09, 2.99) | (2.10, 3.06) | (2.38, 2.80) | (2.09, 3.14) | ||
ALB (g/L) | 46.90 | 46.40 | 0.823 | 46.40 | 46.70 | 0.800 |
M (P25, P75) | (45.80, 48.47) | (44.95, 48.20) | (44.95, 48.55) | (45.10, 48.30) |
Variable | Males | Females | ||||||
---|---|---|---|---|---|---|---|---|
β | P | OR | 95% CI | Β | p | OR | 95% CI | |
ALT | 0.072 | <0.001 | 1.075 | 1.032–1.119 | 0.065 | 0.169 | 1.072 | 0.969–1.170 |
AST | 0.047 | 0.289 | 1.048 | 0.961–1.142 | 0.146 | 0.003 | 1.157 | 1.051–1.274 |
SUA | 0.008 | 0.008 | 1.008 | 1.002–1.013 | −0.006 | 0.251 | 0.994 | 0.984–1.004 |
Insulin | 0.053 | 0.003 | 1.055 | 1.018–1.092 | 0.038 | 0.004 | 1.039 | 1.013–1.066 |
BMI z-score | −0.198 | 0.854 | 0.821 | 0.100–6.748 | 2.459 | 0.111 | 11.697 | 0.571–239.801 |
Age | 0.121 | 0.598 | 1.129 | 0.720–1.771 | 0.349 | 0.386 | 1.417 | 0.644–3.120 |
Weight SDS | 0.359 | 0.466 | 1.431 | 0.545–3.758 | −0.408 | 0.447 | 0.665 | 0.232–1.902 |
Height SDS | −0.395 | 0.292 | 0.674 | 0.323–1.404 | 0.432 | 0.410 | 1.541 | 0.551–4.311 |
Percentage of body fat | 0.032 | 0.490 | 1.033 | 0.943–1.131 | −0.093 | 0.424 | 0.911 | 0.725–1.145 |
HDL | −1.251 | 0.245 | 0.283 | 0.034–2.371 | −1.694 | 0.322 | 0.184 | 0.006–5.242 |
Pubertal stage | 0.166 | 0.766 | 1.181 | 0.395–3.536 | 1.576 | 0.190 | 4.834 | 0.458–51.064 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Qian, Y.; Zhang, J.; Wan, N. Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Obesity: Sex-Stratified Analysis of Hepatic Enzyme Profiles and Serum Uric Acid. Healthcare 2025, 13, 2219. https://doi.org/10.3390/healthcare13172219
Zhang T, Qian Y, Zhang J, Wan N. Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Obesity: Sex-Stratified Analysis of Hepatic Enzyme Profiles and Serum Uric Acid. Healthcare. 2025; 13(17):2219. https://doi.org/10.3390/healthcare13172219
Chicago/Turabian StyleZhang, Tian, Yi Qian, Jin Zhang, and Naijun Wan. 2025. "Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Obesity: Sex-Stratified Analysis of Hepatic Enzyme Profiles and Serum Uric Acid" Healthcare 13, no. 17: 2219. https://doi.org/10.3390/healthcare13172219
APA StyleZhang, T., Qian, Y., Zhang, J., & Wan, N. (2025). Metabolic Dysfunction-Associated Steatotic Liver Disease in Children with Obesity: Sex-Stratified Analysis of Hepatic Enzyme Profiles and Serum Uric Acid. Healthcare, 13(17), 2219. https://doi.org/10.3390/healthcare13172219