Predictors of Return to Work After Stroke in Hungary: A Mixed-Methods Economic and Clinical Data Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Data Analysis
2.4. Data Source
2.5. Data Integration and Interpretation
3. Results
3.1. Perspective of Return to Work Program Implementation
3.2. Characteristics of Stroke Hospitalization in Hungary
3.3. Determinants Prediction of Return to Work After Stroke
4. Discussion
4.1. Key Findings
4.2. Interpretation in Context of the Literature
4.3. Economic Implications
4.4. Strengths and Limitations
4.5. Policy Implications and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RTW | return to work |
ICF | International Classification of Functioning, Disability, and Health |
HTA | health technology assessment |
NIHSS | National Institutes of Health Stroke Scale |
mRS | Modified Rankin Scale |
FIM | Functional Independence Measure |
MoCA | Montreal Cognitive Assessment |
References
- Budincevic, H.; Tiu, C.; Bereczki, D.; Kõrv, J.; Tsiskaridze, A.; Niederkorn, K.; Czlonkowska, A.; Demarin, V. Management of Ischemic Stroke in Central and Eastern Europe. Int. J. Stroke 2015, 10, 125–127. [Google Scholar] [CrossRef]
- Linfante, I.; Wakhloo, A.K. Acute Ischemic Stroke: Paradigm for Treatment. In Thrombus and Stroke; CRC Press: Boca Raton, FL, USA, 2008; pp. 167–202. [Google Scholar]
- Corbetta, M.; Connor, L.T. Neurological Recovery after Stroke. In Functional MRI: Applications in Clinical Neurology and Psychiatry; CRC Press: Boca Raton, FL, USA, 2006; pp. 137–155. [Google Scholar]
- Katan, M.; Luft, A. Global Burden of Stroke. Semin. Neurol. 2018, 38, 208–211. [Google Scholar] [CrossRef]
- Lenti, L.; Brainin, M.; Titianova, E.; Morovic, S.; Demarin, V.; Kalvach, P.; Skoloudik, D.; Kobayashi, A.; Czlonkowska, A.; Muresanu, D.F.; et al. Stroke Care in Central Eastern Europe: Current Problems and Call for Action. Int. J. Stroke 2013, 8, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Nazari, A.M.; Abbaszadeh, A.; Kazemi, R.; Yousofvand, V.; Zandi, M. The Effect of Online Training Based on Stroke Educational Program on Patient’s Quality of Life and Caregiver’s Care Burden: A Randomized Controlled Trial. BMC Nurs. 2024, 23, 958. [Google Scholar] [CrossRef]
- Ashley, K.D.; Lee, L.T.; Heaton, K. Return to Work Among Stroke Survivors. Workplace Health Saf. 2019, 67, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Dong, Q.; Jin, A.; Zeng, S.; Wang, K.; Yang, X.; Zhu, X. Experience of Financial Toxicity and Coping Strategies in Young and Middle-Aged Patients with Stroke: A Qualitative Study. BMC Health Serv. Res. 2024, 24, 94. [Google Scholar] [CrossRef]
- Palstam, A.; Westerlind, E.; Persson, H.C.; Sunnerhagen, K.S. Work-related Predictors for Return to Work after Stroke. Acta Neurol. Scand. 2019, 139, 382–388. [Google Scholar] [CrossRef]
- Westerlind, E.; Persson, H.C.; Eriksson, M.; Norrving, B.; Sunnerhagen, K.S. Return to Work after Stroke: A Swedish Nationwide Registry-based Study. Acta Neurol. Scand. 2020, 141, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Tay, S.S.; Visperas, C.A.; Tan, M.M.J.; Chew, T.L.T.; Koh, X.H. Factors Predicting Return to Work After Inpatient Stroke Rehabilitation: A Retrospective Follow-up Study. Arch. Rehabil. Res. Clin. Transl. 2023, 5, 100253. [Google Scholar] [CrossRef]
- Kurnianto, A.A.; Kovács, S.; Ágnes, N.; Kumar, P. Economic Evaluations of Rehabilitation Interventions: A Scoping Review with Implications for Return to Work Programs. Healthcare 2025, 13, 1152. [Google Scholar] [CrossRef]
- Bin Zainal, M.N.; Pei Wen, P.K.; Sien, N.Y.; Kee, K.M.; Chieh, K.J.; Asano, M. Supporting People with Stroke to Return to Work in Singapore: Findings from a Pilot Vocational Rehabilitation Program. Am. J. Occup. Ther. 2020, 74, 7406205040p1–7406205040p9. [Google Scholar] [CrossRef]
- Orange, C.; Lanhers, C.; Coll, G.; Coste, N.; Dutheil, F.; Hauret, I.; Pereira, B.; Coudeyre, E. Determinants of Return to Work After a Stroke: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2024, 105, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, I.; Brogårdh, C.; Pessah-Rasmussen, H.; Jonasson, S.B.; Gard, G. Work Conditions, Support, and Changing Personal Priorities Are Perceived Important for Return to Work and for Stay at Work after Stroke—A Qualitative Study. Disabil. Rehabil. 2022, 44, 2500–2506. [Google Scholar] [CrossRef] [PubMed]
- Craven, K.; Kettlewell, J.; De Dios Pérez, B.; Powers, K.; Holmes, J.; Radford, K.A. What Do Employers Need When Supporting Stroke Survivors to Return to Work?: A Mixed-Methods Study. Top. Stroke Rehabil. 2025, 32, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Matos, J.; Moura, A.; Teixeira, F.; Henriques, A.; Alves, E. Professional Reintegration among Professionally Active Portuguese Stroke Survivors: A Multicentric Study. Disabil. Rehabil. 2024, 46, 2619–2628. [Google Scholar] [CrossRef]
- Malecka, J.; Czerkawski, D.; Duhacek Sebestova, J. Driving Economic Inclusion: Analyzing the Participation of Individuals with Disabilities. E+M Ekon. Manag. 2024, 27, 1–15. [Google Scholar] [CrossRef]
- Saar, K.; Tolvanen, A.; Poutiainen, E.; Aro, T. Returning to Work after Stroke: Associations with Cognitive Performance, Motivation, Perceived Working Ability and Barriers. J. Rehabil. Med. 2023, 55, jrm00365. [Google Scholar] [CrossRef]
- Mascarenhas, R.; Nayak, A.; Pawani, D.; Misri, Z.; Mahmood, A.; Kumar, K.V.; Iyer, V.L.R. Predictors of Return to Work after a Year since Stroke: A Systematic Review. Clin. Epidemiol. Glob. Health 2024, 27, 101561. [Google Scholar] [CrossRef]
- Szőcs, I.; Dobi, B.; Lám, J.; Orbán-Kis, K.; Häkkinen, U.; Belicza, É.; Bereczki, D.; Vastagh, I. Health Related Quality of Life and Satisfaction with Care of Stroke Patients in Budapest: A Substudy of the EuroHOPE Project. PLoS ONE 2020, 15, e0241059. [Google Scholar] [CrossRef]
- Szőcs, I.; Bereczki, D.; Ajtay, A.; Oberfrank, F.; Vastagh, I. Socioeconomic Gap between Neighborhoods of Budapest: Striking Impact on Stroke and Possible Explanations. PLoS ONE 2019, 14, e0212519. [Google Scholar] [CrossRef]
- Imre, B.; Dóra, E.; Tímea, C.; István, Á.; Péter, C.; Bálint, M.; Andor, S. Health Policy Indicators of Neuromusculosceletal Rehabilitation in Hungary. Orv. Hetil. 2019, 160, 13–21. [Google Scholar] [CrossRef]
- Bálint, C. The Capacities of Primary Health Care in Hungary: A Problem Statement. Eur. J. Investig. Health Psychol. Educ. 2020, 10, 327–345. [Google Scholar] [CrossRef]
- Boncz, I.; Sebestyén, A.; Csákvári, T.; Ágoston, I.; Szabados, E.; Endrei, D. A Kardiológiai Rehabilitáció Teljesítménymutatói Magyarországon. Orv. Hetil. 2019, 160, 6–12. [Google Scholar] [CrossRef]
- Dózsa, C.; Jankus, K.; Helter, T.M. Structural Changes in the Hungarian Healthcare System Between 2000 and 2017. Value Health Reg. Issues 2019, 19, 92–98. [Google Scholar] [CrossRef]
- Zoltán, V.; György, S.; László, K.; Renáta, N.; Róza, Á. The Epidemiology of Cerebrovascular Diseases in Hungary after the Millennium | Az Agyérbetegségek Epidemiológiája Magyarországon Az Ezredfordulót Követoen. Lege Artis. Med. 2008, 18, 31–38. [Google Scholar]
- Gulácsi, L.; Májer, I.; Kárpáti, K.; Brodszky, V.; Boncz, I.; Nagy, A.; Bereczki, D. Mortality of Hospitalized Stroke Patients in Hungary; 2003-2005 | A Hospitalizált Stroke-Betegek Halálozása Magyarországon, 2003–2005. Ideggyogy. Sz. 2007, 60, 321–328. [Google Scholar] [PubMed]
- Szocs, I.; Bereczki, D.; Belicza, É. Results of Stroke Care in Hungary in the Frame of International Comparison | A Stroke-Ellátás Hazai Eredményei a Nemzetközi Adatok Tükrében. Orv. Hetil. 2016, 157, 1635–1641. [Google Scholar] [CrossRef] [PubMed]
- Gresz, M. Evaluating the National Health Insurance Database of Hungary from the Aspect of a Health Insurance Specialist | Az Országos Egészségbiztosítási Pénztár Adatbázisa Az Egészségbiztosí Tási Szakorvos Szemével. Orv. Hetil. 2012, 153, 1234–1239. [Google Scholar] [CrossRef]
- Gavrielov-Yusim, N.; Friger, M. Use of Administrative Medical Databases in Population-Based Research. J. Epidemiol. Community Health 2014, 68, 283–287. [Google Scholar] [CrossRef]
- Freitas, A.; Gaspar, J.; Rocha, N.; Marreiros, G.; Da Costa-Pereira, A. Quality in Hospital Administrative Databases. Appl. Math. Inf. Sci. 2014, 8, 1–6. [Google Scholar] [CrossRef]
- Christie, L.J.; Godecke, E.; Smith, M.; Scrivener, K.; Hill, K.; Kim, J.; Crotty, M.; Cadilhac, D.A.; Dos Santos, A.; Lannin, N.A. State of Stroke Rehabilitation in Australia: A WHO STARS Assessment to Identify Strengths and Gaps Across Policy, Practice and Funding. Curr. Phys. Med. Rehabil. Rep. 2025, 13, 12. [Google Scholar] [CrossRef]
- Walker, M.F.; Hoffmann, T.C.; Brady, M.C.; Dean, C.M.; Eng, J.J.; Farrin, A.J.; Felix, C.; Forster, A.; Langhorne, P.; Lynch, E.A.; et al. Improving the Development, Monitoring and Reporting of Stroke Rehabilitation Research: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 472–479. [Google Scholar] [CrossRef]
- Teriö, M.; Eriksson, G.; Kamwesiga, J.T.; Guidetti, S. What’s in It for Me? A Process Evaluation of the Implementation of a Mobile Phone-Supported Intervention after Stroke in Uganda. BMC Public Health 2019, 19, 562. [Google Scholar] [CrossRef]
- Schwarzkopf, S.R.; Grill, E.; Dreinhöfer, K.E. Einführung in Die International Classification of Functioning, Disability and Health (ICF). Unfallchirurg 2010, 113, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.B. International Classification of Functioning, Disability and Health: An Introduction for Rehabilitation Psychologists. Rehabil. Psychol. 2005, 50, 105–112. [Google Scholar] [CrossRef]
- Goljar, N.; Burger, H.; Vidmar, G.; Marincek, C.; Krizaj, J.; Chatterji, S.; Raggi, A.; Leonardi, M.; Bickenbach, J.E. Functioning and Disability in Stroke. Disabil. Rehabil. 2010, 32, S50–S58. [Google Scholar] [CrossRef] [PubMed]
- Thanki, S.; Pressman, E.; Jones, K.M.; Skanes, R.; Armouti, A.; Guerrero, W.R.; Vakharia, K.; Parthasarathy, A.B.; Fargen, K.; Mistry, E.A.; et al. Patients’ Perceptions on Outcomes after Mechanical Thrombectomy in Acute Ischemic Stroke. Interv. Neuroradiol. 2024. online ahead of print. [Google Scholar] [CrossRef]
- Manchi, M.R.; Venkatachalam, A.M.; Atem, F.D.; Stone, S.; Mathews, A.A.; Abraham, A.M.; Chavez, A.A.; Welch, B.G.; Ifejika, N.L. Effect of Inpatient Rehabilitation Facility Care on Ninety Day Modified Rankin Score in Ischemic Stroke Patients. J. Stroke Cerebrovasc. Dis. 2023, 32, 107109. [Google Scholar] [CrossRef]
- Rangaraju, S.; Haussen, D.; Nogueira, R.G.; Nahab, F.; Frankel, M. Comparison of 3-Month Stroke Disability and Quality of Life across Modified Rankin Scale Categories. Interv. Neurol. 2017, 6, 36–41. [Google Scholar] [CrossRef]
- Lin, C.; Arevalo, A.; Nanavati, H.D. Association of Inpatient Rehabilitation with Functional Outcome in Patients with Stroke Receiving Mechanical Thrombectomy. Neurol. Res. 2023, 45, 578–582. [Google Scholar] [CrossRef]
- Moslavac, S.; Džidić, I. Stroke Outcomes in Croatian Patients Measured by Modified Rankin Scale. Neurol. Croat. 2013, 62, 41–47. [Google Scholar]
- Gulácsi, L.; Majer, I.; Boncz, I.; Brodszky, V.; Merkely, B.; Maurovich, H.P.; Kárpáti, K. Hospital Costs of Acute Myocardial Infarction in Hungary; 2003–2005. Orv. Hetil. 2007, 148, 1259–1266. [Google Scholar] [CrossRef]
- Back, T.; Schaeg, M.; Back, C.; Epifanov, Y.; Hemmen, T.; Dodel, R.C.; Schöffski, O. Kosten Der Stroke-Unit-Care in Deutschland. Nervenarzt 2004, 75, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Godwin, K.M.; Wasserman, J.; Ostwald, S.K. Cost Associated with Stroke: Outpatient Rehabilitative Services and Medication. Top. Stroke Rehabil. 2011, 18, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Miri, F.; Jahanmehr, N.; Goudarzi, R. Cost-Effectiveness Analysis of Rehabilitation Methods for Stroke Survivors. Middle East. J. Rehabil. Health Stud. 2024, 11, e141716. [Google Scholar] [CrossRef]
- Fattore, G.; Torbica, A.; Susi, A.; Giovanni, A.; Benelli, G.; Gozzo, M.; Toso, V. The Social and Economic Burden of Stroke Survivors in Italy: A Prospective, Incidence-Based, Multi-Centre Cost of Illness Study. BMC Neurol. 2012, 12, 137. [Google Scholar] [CrossRef]
- MacDonald, S.L.; Hall, R.E.; Bell, C.M.; Cronin, S.; Jaglal, S.B. Sex Differences in the Outcomes of Adults Admitted to Inpatient Rehabilitation after Stroke. PMR 2022, 14, 779–785. [Google Scholar] [CrossRef]
- Grundtvig, J.; Sværke, K.; Preskou, M.; Christensen, L.M.; Steiner, T.; Christensen, H. Comparison of Access to Stroke Diagnostics, Treatment, Rehabilitation, and Outcome between Men and Women. Glob. Epidemiol. 2025, 9, 100201. [Google Scholar] [CrossRef]
- Lackó, M. The Poor Health Status of the Hungarians; Comparative Macro-Analysis of the Likely Explanatory Factors on Hungarian and Austrian Data, 1960–2004. Danube 2011, 2011, 1–21. [Google Scholar]
- Wang, Z.; Wu, C.; Zhang, B.; Sun, H.; Liu, W.; Yang, Y.; Gu, Y.; Pu, L.; Zheng, L.; Bao, S.; et al. Global, Regional and National Burdens of Alcoholic Cardiomyopathy among the Working-Age Population, 1990–2021: A Systematic Analysis. J. Health Popul. Nutr. 2025, 44, 170. [Google Scholar] [CrossRef]
- Dokova, K.G.; Feigin, V.L. Trends in Stroke Burden in Central and Eastern Europe from 1990–2019. Neuroepidemiology 2022, 56, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Kayola, G.; Mataa, M.M.; Asukile, M.; Chishimba, L.; Chomba, M.; Mortel, D.; Nutakki, A.; Zimba, S.; Saylor, D. Stroke Rehabilitation in Low- and Middle-Income Countries: Challenges and Opportunities. Am. J. Phys. Med. Rehabil. 2023, 102, S24–S32. [Google Scholar] [CrossRef] [PubMed]
- Gard, G.; Pessah-Rasmussen, H.; Brogårdh, C.; Nilsson, Å.; Lindgren, I. Need for Structured Healthcare Organization and Support for Return to Work after Stroke in Sweden: Experiences of Stroke Survivors. J. Rehabil. Med. 2019, 51, 741–748. [Google Scholar] [CrossRef]
- Radford, K.A.; Craven, K.; McLellan, V.; Sach, T.H.; Brindle, R.; Holloway, I.; Hartley, S.; Bowen, A.; O’Connor, R.; Stevens, J.; et al. An Individually Randomised Controlled Multi-Centre Pragmatic Trial with Embedded Economic and Process Evaluations of Early Vocational Rehabilitation Compared with Usual Care for Stroke Survivors: Study Protocol for the RETurn to Work After StroKE (RETAKE). Trials 2020, 21, 1010. [Google Scholar] [CrossRef]
- Radford, K.A.; Wright-Hughes, A.; Thompson, E.; Clarke, D.J.; Phillips, J.; Holmes, J.; Powers, K.; Trusson, D.; Craven, K.; Watkins, C.; et al. Effectiveness of Early Vocational Rehabilitation versus Usual Care to Support RETurn to Work after StroKE: A Pragmatic, Parallel-Arm Multicenter, Randomized Controlled Trial. Int. J. Stroke 2025, 20, 471–485. [Google Scholar] [CrossRef]
- Clarke, D.J.; Powers, K.; Trusson, D.; Craven, K.; Phillips, J.; Holmes, J.; McKevitt, C.; Bowen, A.; Watkins, C.L.; Farrin, A.J.; et al. The RETurn to Work After StroKE (RETAKE) Trial: Findings from a Mixed-Methods Process Evaluation of the Early Stroke Specialist Vocational Rehabilitation (ESSVR) Intervention. PLoS ONE 2024, 19, 30311101. [Google Scholar] [CrossRef]
- Moore, N.; Reeder, S.; O’Keefe, S.; Alves-Stein, S.; Schneider, E.; Moloney, K.; Radford, K.; Lannin, N.A. “I’ve Still Got a Job to Go Back to”: The Importance of Early Vocational Rehabilitation after Stroke. Disabil. Rehabil. 2024, 46, 2769–2776. [Google Scholar] [CrossRef]
- Olaoye, O.A.; Soeker, S.M.; Rhoda, A. The Development of a Return to Work Intervention Programme for Stroke Survivor (SReTWIP): A Delphi Survey. BMC Neurol. 2020, 20, 91. [Google Scholar] [CrossRef]
- Lucas-Noll, J.; Clua-Espuny, J.L.; Lleixà-Fortuño, M.; Gavaldà-Espelta, E.; Queralt-Tomas, L.; Panisello-Tafalla, A.; Carles-Lavila, M. The Costs Associated with Stroke Care Continuum: A Systematic Review. Health Econ. Rev. 2023, 13, 32. [Google Scholar] [CrossRef]
- Nemes, A.; Varga, Z.A. Status of Vascular Surgery in Hungary. Int. Congr. Ser. 2004, 1272, 308–311. [Google Scholar] [CrossRef]
- Abreu, A.; Pesah, E.; Supervia, M.; Turk-Adawi, K.; Bjarnason-Wehrens, B.; Lopez-Jimenez, F.; Ambrosetti, M.; Andersen, K.; Giga, V.; Vulic, D.; et al. Cardiac Rehabilitation Availability and Delivery in Europe: How Does It Differ by Region and Compare with Other High-Income Countries? Eur. J. Prev. Cardiol. 2019, 26, 1131–1146. [Google Scholar] [CrossRef] [PubMed]
- Act CXII of 2011 on the Right of Informational Self-Determination and on Freedom of Information. Available online: https://www.naih.hu/files/Privacy_Act-CXII-of-2011_EN_201310.pdf (accessed on 31 July 2025).
Domain | Key Factors Identified | Insights from Experts |
---|---|---|
Clinical Predictors | Stroke severity, cognitive function, motor impairment | Stroke severity is the most dominant factor; cognitive and motor recovery are essential for evaluating work readiness. |
Comorbidities and Complications | Diabetes, hypertension, chronic pain, post-stroke fatigue | Frequently cited as delaying RTW or limiting capacity, requiring careful follow-up and adjustments. |
Psychological Factors | Depression, anxiety, motivation, resilience | Often underestimated but strongly predictive; high motivation aids RTW and depression is a significant barrier. |
Clinical Assessments | Barthel Index, return-to-work assessment forms | Used to assess functional status and cognitive capacity; not uniformly applied across institutions. |
Workplace Factors | Job type, employer flexibility, accommodations, work environment | Manual labor is less favorable than office work; employer openness is key for successful RTW. |
Assessment and Decision Process | Case-by-case evaluation based on functional capacity exams | Clinical judgment and team consensus often guide final RTW decisions. |
Rehabilitation and Technologies | Early and continuous rehab, telerehabilitation, vocational therapy | Tech and structured rehab aid reintegration; telerehab helps rural patients but access remains uneven. |
Economic Factors | Social insurance rules, employer incentives/disincentives | Some policies may discourage RTW; rigid insurance timelines hinder gradual re-entry. |
Barriers in Practice | Lack of employer awareness, rehabilitation capacity, regional disparities | Return-to-work pathways not standardized; rural areas face serious limitations. |
Suggestions for Improvement | National RTW framework, incentivizing employers, linking clinical and economic data, better follow-up | Experts support integrated data systems and more flexible, evidence-based policies. |
Parameter | Rehabilitation (RTW) | Usual Care (Non-Rehabilitated) |
---|---|---|
Functional Independence | High (Barthel Index, FIM) | Low |
Cognitive and Psychological | Addressed (Self-Efficacy Scale) | Persistent impairments |
Physical Health | Improved (NIHSS) | Prolonged impairments |
Social and Occupational Factors | Considered (Employment status, job type) | Neglected, leading to isolation |
mRS Score | Description | Rehabilitation Potential | Sources |
---|---|---|---|
0 | No symptoms | No rehabilitation needed | [39,40,41] |
1 | No significant disability | High potential for full recovery | [39,40,41] |
2 | Slight disability | High potential for significant improvement | [39,40,41] |
3 | Moderate disability | Moderate to high potential for improvement | [41] |
4 | Moderately severe disability | Moderate potential for improvement | [40,42,43] |
5 | Severe disability | Low to moderate potential for improvement | [39,40,41,43] |
Type of Cost | Amount | Source |
---|---|---|
Acute Care (first 12 months) | HUF 254,000–370,100 | [44] |
Chronic Care (second 12 months) | HUF 36,200–50,600 | [44] |
Inpatient Rehabilitation | EUR 10,530 ± 9120 | [45] |
Outpatient Rehabilitation | USD 17,081 | [46] |
Home-Based Rehabilitation | USD 2306 | [47] |
Societal Costs (one year) | EUR 19,953 per patient | [48] |
Predictor Category | Category/Subgroup | Patients with Intense Rehabilitation (%) |
---|---|---|
Age group | 19–30 years old | 18.75 |
31–40 years old | 16.67 | |
41–50 years old | 26.09 | |
51–60 years old | 30.84 | |
61–65 years old | 34.48 | |
66–70 years old | 28.12 | |
Gender | Male | 30.61 |
Female | 28.77 | |
Rehabilitation Type | Medical Rehabilitation | 31.74 |
Vocational/Occupational Rehabilitation | 26.41 | |
Psychosocial/Psychological Rehabilitation | 21.46 | |
Compensation Type | 1—free care provided under Hungarian insurance | 29.89 |
E—provision based on an international agreement based on settlement, provision based on Community rules | 10 | |
D—refugee, asylum seeker | 0 | |
T—care provided to an EU patient by a Hungarian healthcare provider within the framework of cross-border healthcare | 0 | |
Other—reimbursed care for persons who do not have Hungarian insurance or who receive care that cannot be charged to health insurance based on other provisions in force | 40 | |
Financial Type | Central budgetary body | 31.89 |
Non-profit business organization | 60.00 | |
Ecclesiastical legal persons | 6.91 | |
Other business | 21.05 | |
Other NGOs | 6.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurnianto, A.A.; Kovács, S.; Ágnes, N. Predictors of Return to Work After Stroke in Hungary: A Mixed-Methods Economic and Clinical Data Analysis. Healthcare 2025, 13, 2198. https://doi.org/10.3390/healthcare13172198
Kurnianto AA, Kovács S, Ágnes N. Predictors of Return to Work After Stroke in Hungary: A Mixed-Methods Economic and Clinical Data Analysis. Healthcare. 2025; 13(17):2198. https://doi.org/10.3390/healthcare13172198
Chicago/Turabian StyleKurnianto, Arie Arizandi, Sándor Kovács, and Nagy Ágnes. 2025. "Predictors of Return to Work After Stroke in Hungary: A Mixed-Methods Economic and Clinical Data Analysis" Healthcare 13, no. 17: 2198. https://doi.org/10.3390/healthcare13172198
APA StyleKurnianto, A. A., Kovács, S., & Ágnes, N. (2025). Predictors of Return to Work After Stroke in Hungary: A Mixed-Methods Economic and Clinical Data Analysis. Healthcare, 13(17), 2198. https://doi.org/10.3390/healthcare13172198