Psychotropic Medications for Non-Psychiatric Conditions: A Narrative Review
Abstract
1. Introduction
Psychotropic Medication Use by Specialty
2. Methods
3. Results
3.1. Neurology
3.2. Neurologic Conditions
3.2.1. Headache
3.2.2. Parkinson’s Disease
3.2.3. Vestibular Disorders
3.3. Gastroenterology
3.3.1. Functional Gastrointestinal Disorders (FGIDs)
3.3.2. Antiemetics
3.4. Dermatologic
3.5. Pain Medicine
3.5.1. Chronic Pain
3.5.2. Neuropathic Pain
4. Discussion
4.1. Medication Classification and Labeling
4.2. Safety Considerations
4.3. Patient Communication and Shared Decision Making
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GABA | Gamma-Aminobutyric Acid |
CGRP | Calcitonin gene-related peptide |
CNS | Central nervous system |
ENS | Enteric nervous system |
FDA | Food and Drug Administration |
FGID | Functional gastrointestinal disorder |
IBS | Irritable bowel syndrome |
MAOI | Monoamine oxidase inhibitors |
MG | Milligrams |
PD | Parkinson’s disease |
PMs | Psychotropic medications |
SNRI | Serotonin and norepinephrine reuptake inhibitor |
SSRI | Selective serotonin reuptake inhibitor |
TCA | Tricyclic antidepressant |
References
- Colman, D.R. The three princes of Serendip: Notes on a mysterious phenomenon. McGill J. Med. 2006, 9, 161–163. [Google Scholar] [CrossRef]
- Ban, T.A. Fifty years chlorpromazine: A historical perspective. Neuropsychiatr. Dis. Treat. 2007, 3, 495–500. [Google Scholar] [PubMed]
- Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015, 23, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Raskind, M.A.; Dobie, D.J.; Kanter, E.D.; Petrie, E.C.; Thompson, C.E.; Peskind, E.R. The alpha1-adrenergic antagonist prazosin ameliorates combat trauma nightmares in veterans with posttraumatic stress disorder: A report of 4 cases. J. Clin. Psychiatry 2000, 61, 129–133. [Google Scholar] [CrossRef]
- Greenblatt, D.J.; Harmatz, J.S.; Shader, R.I. Update on Psychotropic Drug Prescribing in the United States: 2014–2015. J. Clin. Psychopharmacol. 2018, 38, 1–4. [Google Scholar] [CrossRef]
- Pratt, L.A.; Brody, D.J.; Gu, Q. Antidepressant Use Among Persons Aged 12 and Over:United States, 2011–2014. NCHS Data Briefs 2017, 283, 1–8. [Google Scholar]
- Richardson, E. Off-Label Drug Promotion. In Health Affairs Health Policy Brief; Project HOPE: Washington, DC, USA, 2016. [Google Scholar]
- Strain, J.J.; Karim, A.; Caliendo, G.; Brodsky, M.; Lowe, R.S.; Himelein, C., 3rd. Neurologic drug-psychotropic drug update. Gen. Hosp. Psychiatry 2002, 24, 290–310. [Google Scholar] [CrossRef]
- Tajti, J.; Szok, D.; Csati, A.; Vecsei, L. Prophylactic Drug Treatment of Migraine in Children and Adolescents: An Update. Curr. Pain Headache Rep. 2016, 20, 1. [Google Scholar] [CrossRef]
- Sprenger, T.; Viana, M.; Tassorelli, C. Current Prophylactic Medications for Migraine and Their Potential Mechanisms of Action. Neurotherapeutics 2018, 15, 313–323. [Google Scholar] [CrossRef]
- Jackson, J.L.; Cogbill, E.; Santana-Davila, R.; Eldredge, C.; Collier, W.; Gradall, A.; Sehgal, N.; Kuester, J.; Arias-Carrion, O. A Comparative Effectiveness Meta-Analysis of Drugs for the Prophylaxis of Migraine Headache. PLoS ONE 2015, 10, e0130733. [Google Scholar] [CrossRef]
- Ozyalcin, S.N.; Talu, G.K.; Kiziltan, E.; Yucel, B.; Ertas, M.; Disci, R. The efficacy and safety of venlafaxine in the prophylaxis of migraine. Headache 2005, 45, 144–152. [Google Scholar] [CrossRef]
- Xu, X.M.; Yang, C.; Liu, Y.; Dong, M.X.; Zou, D.Z.; Wei, Y.D. Efficacy and feasibility of antidepressants for the prevention of migraine in adults: A meta-analysis. Eur. J. Neurol. 2017, 24, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Gomersall, J.D.; Stuart, A. Amitriptyline in migraine prophylaxis. Changes in pattern of attacks during a controlled clinical trial. J. Neurol. Neurosurg. Psychiatry 1973, 36, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.M.; Mueller, L.L.; Freitag, F.G. Divalproex sodium in the treatment of migraine and cluster headaches. J. Am. Osteopath. Assoc. 2002, 102, 92–94. [Google Scholar]
- Bussone, G.; Leone, M.; Peccarisi, C.; Micieli, G.; Granella, F.; Magri, M.; Manzoni, G.; Nappi, G. Double blind comparison of lithium and verapamil in cluster headache prophylaxis. Headache 1990, 30, 411–417. [Google Scholar] [CrossRef]
- Honkaniemi, J.; Liimatainen, S.; Rainesalo, S.; Sulavuori, S. Haloperidol in the acute treatment of migraine: A randomized, double-blind, placebo-controlled study. Headache 2006, 46, 781–787. [Google Scholar] [CrossRef]
- VanderPluym, J.H.; Halker Singh, R.B.; Urtecho, M.; Morrow, A.S.; Nayfeh, T.; Torres Roldan, V.D.; Farah, M.H.; Hasan, B.; Saadi, S.; Shah, S.; et al. Acute Treatments for Episodic Migraine in Adults: A Systematic Review and Meta-analysis. JAMA 2021, 325, 2357–2369. [Google Scholar] [CrossRef]
- Peretz, C.; Segev, H.; Rozani, V.; Gurevich, T.; El-Ad, B.; Tsamir, J.; Giladi, N. Comparison of Selegiline and Rasagiline Therapies in Parkinson Disease: A Real-life Study. Clin. Neuropharmacol. 2016, 39, 227–231. [Google Scholar] [CrossRef]
- Rossano, F.; Caiazza, C.; Sobrino, A.; Solini, N.; Vellucci, A.; Zotti, N.; Fornaro, M.; Gillman, K.; Cattaneo, C.I.; Eynde, V.V.D.; et al. Efficacy and safety of selegiline across different psychiatric disorders: A systematic review and meta-analysis of oral and transdermal formulations. Eur. Neuropsychopharmacol. 2023, 72, 60–78. [Google Scholar] [CrossRef]
- Label: Rasagiline Mesulate Tablet. Available online: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=7d070521-ea04-4483-bdb9-54a8859700df (accessed on 3 June 2025).
- Nayak, L.; Henchcliffe, C. Rasagiline in treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008, 4, 23–32. [Google Scholar] [CrossRef]
- Webster, K.E.; Harrington-Benton, N.A.; Judd, O.; Kaski, D.; Maarsingh, O.R.; MacKeith, S.; Ray, J.; Van Vugt, V.A.; Burton, M.J. Pharmacological interventions for persistent postural-perceptual dizziness (PPPD). Cochrane Database Syst. Rev. 2023, 3, CD015188. [Google Scholar] [CrossRef]
- Cha, Y.H.; Cui, Y.Y.; Baloh, R.W. Comprehensive Clinical Profile of Mal De Debarquement Syndrome. Front. Neurol. 2018, 9, 261. [Google Scholar] [CrossRef]
- Terry, N.; Margolis, K.G. Serotonergic Mechanisms Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb. Exp. Pharmacol. 2017, 239, 319–342. [Google Scholar]
- Mayer, E.A. Gut feelings: The emerging biology of gut-brain communication. Nat. Rev. Neurosci. 2011, 12, 453–466. [Google Scholar] [CrossRef]
- Lillestøl, K. ‘Neurasthenia gastrica’ revisited: Perceptions of nerve-gut interactions in nervous exhaustion, 1880–1920. Microb. Ecol. Health Dis. 2018, 29, 1553438. [Google Scholar] [CrossRef]
- Schmulson, M.J.; Drossman, D.A. What Is New in Rome IV. J. Neurogastroenterol. Motil. 2017, 23, 151–163. [Google Scholar] [CrossRef]
- Sobin, W.H.; Heinrich, T.W.; Drossman, D.A. Central Neuromodulators for Treating Functional GI Disorders: A Primer. Am. J. Gastroenterol. 2017, 112, 693–702. [Google Scholar] [CrossRef]
- Drossman, D.A.; Tack, J.; Ford, A.C.; Szigethy, E.; Tornblom, H.; Van Oudenhove, L. Neuromodulators for Functional Gastrointestinal Disorders (Disorders of Gut-Brain Interaction): A Rome Foundation Working Team Report. Gastroenterology 2018, 154, 1140–1171.e1. [Google Scholar] [CrossRef]
- Ford, A.C.; Lacy, B.E.; Harris, L.A.; Quigley, E.M.M.; Moayyedi, P. Effect of Antidepressants and Psychological Therapies in Irritable Bowel Syndrome: An Updated Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2019, 114, 21–39. [Google Scholar] [CrossRef]
- Cassell, B.; Gyawali, C.P.; Kushnir, V.M.; Gott, B.M.; Nix, B.D.; Sayuk, G.S. Beliefs about GI medications and adherence to pharmacotherapy in functional GI disorder outpatients. Am. J. Gastroenterol. 2015, 110, 1382–1387. [Google Scholar] [CrossRef]
- Glare, P.; Miller, J.; Nikolova, T.; Tickoo, R. Treating nausea and vomiting in palliative care: A review. Clin. Interv. Aging 2011, 6, 243–259. [Google Scholar] [CrossRef]
- Fonte, C.; Fatigoni, S.; Roila, F. A review of olanzapine as an antiemetic in chemotherapy-induced nausea and vomiting and in palliative care patients. Crit. Rev. Oncol. Hematol. 2015, 95, 214–221. [Google Scholar] [CrossRef]
- Turk, T.; Liu, C.; Fujiwara, E.; Straube, S.; Hagtvedt, R.; Dennett, L.; Abba-Aji, A.; Dytoc, M. Pharmacological Interventions for Primary Psychodermatologic Disorders: An Evidence Mapping and Appraisal of Randomized Controlled Trials. J. Cutan. Med. Surg. 2023, 27, 140–149. [Google Scholar] [CrossRef]
- Gupta, M.A.; Gupta, A.K. Cutaneous sensory disorder. Semin. Cutan. Med. Surg. 2013, 32, 110–118. [Google Scholar] [CrossRef]
- Konstantinou, G.N.; Konstantinou, G.N. Psychiatric comorbidity in chronic urticaria patients: A systematic review and meta-analysis. Clin. Transl. Allergy 2019, 9, 42. [Google Scholar] [CrossRef]
- Wong, J.W.; Koo, J.Y. Psychopharmacological therapies in dermatology. Dermatol. Online J. 2013, 19, 18169. [Google Scholar] [CrossRef]
- Eskeland, S.; Halvorsen, J.A.; Tanum, L. Antidepressants have Anti-inflammatory Effects that may be Relevant to Dermatology: A Systematic Review. Acta Derm. Venereol. 2017, 97, 897–905. [Google Scholar] [CrossRef]
- Griffin, J.R.; Davis, M.D. Amitriptyline/Ketamine as therapy for neuropathic pruritus and pain secondary to herpes zoster. J. Drugs Dermatol. 2015, 14, 115–118. [Google Scholar]
- McPhie, M.L.; Kirchhof, M.G. A systematic review of antipsychotic agents for primary delusional infestation. J. Dermatol. Treat. 2022, 33, 709–721. [Google Scholar] [CrossRef]
- Kouwenhoven, T.A.; van de Kerkhof, P.C.M.; Kamsteeg, M. Use of oral antidepressants in patients with chronic pruritus: A systematic review. J. Am. Acad. Dermatol. 2017, 77, 1068–1073.e7. [Google Scholar] [CrossRef]
- Patel, A.; Jafferany, M. Multidisciplinary and Holistic Models of Care for Patients With Dermatologic Disease and Psychosocial Comorbidity: A Systematic Review. JAMA Dermatol. 2020, 156, 686–694. [Google Scholar] [CrossRef]
- Dahlhamer, J.; Lucas, J.; Zelaya, C.; Nahin, R.; Mackey, S.; DeBar, L.; Kerns, R.; Von Korff, M.; Porter, L.; Helmick, C. Prevalence of Chronic Pain and High-Impact Chronic Pain Among Adults—United States, 2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1001–1006. [Google Scholar] [CrossRef]
- Max, M.B.; Culnane, M.; Schafer, S.C.; Gracely, R.H.; Walther, D.J.; Smoller, B.; Dubner, R. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology 1987, 37, 589–596. [Google Scholar] [CrossRef]
- Fornasari, D. Pharmacotherapy for Neuropathic Pain: A Review. Pain Ther. 2017, 6 (Suppl. S1), 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sharp, J.; Keefe, B. Psychiatry in chronic pain: A review and update. Curr. Psychiatry Rep. 2005, 7, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Hameroff, S.R.; Weiss, J.L.; Lerman, J.C.; Cork, R.C.; Watts, K.S.; Crago, B.R.; Neuman, C.P.; Womble, J.R.; Davis, T.P. Doxepin’s effects on chronic pain and depression: A controlled study. J. Clin. Psychiatry 1984, 45 Pt 2, 47–53. [Google Scholar] [PubMed]
- Patetsos, E.; Horjales-Araujo, E. Treating Chronic Pain with SSRIs: What Do We Know? Pain Res. Manag. 2016, 2016, 2020915. [Google Scholar] [CrossRef]
- Lynch, M.E. Antidepressants as analgesics: A review of randomized controlled trials. J. Psychiatry Neurosci. 2001, 26, 30–36. [Google Scholar]
- Deng, Y.; Luo, L.; Hu, Y.; Fang, K.; Liu, J. Clinical practice guidelines for the management of neuropathic pain: A systematic review. BMC Anesthesiol. 2016, 16, 12. [Google Scholar] [CrossRef]
- Finnerup, N.B.; Attal, N.; Haroutounian, S.; McNicol, E.; Baron, R.; Dworkin, R.H.; Gilron, I.; Haanpää, M.; Hansson, P.; Jensen, T.S.; et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015, 14, 162–173. [Google Scholar] [CrossRef]
- Sansone, R.A.; Sansone, L.A. Serotonin norepinephrine reuptake inhibitors: A pharmacological comparison. Innov. Clin. Neurosci. 2014, 11, 37–42. [Google Scholar]
- Fishbain, D.A. Polypharmacy Treatment Approaches to the Psychiatric and Somatic Comorbidities Found in Patients with Chronic Pain. Am. J. Phys. Med. Rehabil. 2005, 84, S56–S63. [Google Scholar] [CrossRef]
- Schwan, J.; Sclafani, J.; Tawfik, V.L. Chronic Pain Management in the Elderly. Anesthesiol. Clin. 2019, 37, 547–560. [Google Scholar] [CrossRef]
- Uchida, H. Neuroscience-based Nomenclature: What is it, why is it needed, and what comes next? Psychiatry Clin. Neurosci. 2018, 72, 50–51. [Google Scholar] [CrossRef]
- Ghinea, N.; Kerridge, I.; Little, M.; Lipworth, W. Challenges to the validity of using medicine labels to categorize clinical behavior: An empirical and normative critique of “off-label” prescribing. J. Eval. Clin. Pract. 2017, 23, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Rusz, C.M.; Ősz, B.E.; Jîtcă, G.; Miklos, A.; Bătrînu, M.G.; Imre, S. Off-Label Medication: From a Simple Concept to Complex Practical Aspects. Int. J. Environ. Res. Public Health 2021, 18, 10447. [Google Scholar] [CrossRef]
- Gray, S.L.; Anderson, M.L.; Dublin, S.; Hanlon, J.T.; Hubbard, R.; Walker, R.; Yu, O.; Crane, P.K.; Larson, E.B. Cumulative use of strong anticholinergics and incident dementia: A prospective cohort study. JAMA Intern. Med. 2015, 175, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Salahudeen, M.S.; Duffull, S.B.; Nishtala, P.S. Anticholinergic burden quantified by anticholinergic risk scales and adverse outcomes in older people: A systematic review. BMC Geriatr. 2015, 15, 31. [Google Scholar] [CrossRef]
- Molina, K.C.; Fairman, K.A.; Sclar, D.A. Concomitant use of opioid medications with triptans or serotonergic antidepressants in US office-based physician visits. Drug Healthc. Patient Saf. 2018, 10, 37–43. [Google Scholar] [CrossRef]
- Volpi-Abadie, J.; Kaye, A.M.; Kaye, A.D. Serotonin syndrome. Ochsner J. 2013, 13, 533–540. [Google Scholar]
- Janowski, J.P.B.; Suarez, L.; Allen, N.D.; Sampson, S.M. A Case Series of 11 Patients With Subacute Serotonin Syndrome. J. Acad. Consult. Liaison Psychiatry 2024, 65, 33–38. [Google Scholar] [CrossRef] [PubMed]
- US Preventive Services Task Force; Davidson, K.W.; Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.D.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; et al. Collaboration and Shared Decision-Making Between Patients and Clinicians in Preventive Health Care Decisions and US Preventive Services Task Force Recommendations. JAMA 2022, 327, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Raleigh, M.F.; Nelson, M.D.; Nguyen, D.R. Shared Decision-Making: Guidelines From the National Institute for Health and Care Excellence. Am. Fam. Physician 2022, 106, 205–207. [Google Scholar]
- Kirsch, I. Placebo Effect in the Treatment of Depression and Anxiety. Front. Psychiatry 2019, 10, 407. [Google Scholar] [CrossRef]
|
|
|
|
|
|
Transporter or Receptor | Action * | Clinical Effects | Adverse Effects | Drug/Drug Class | Medical Uses |
---|---|---|---|---|---|
Serotonin reuptake inhibition | Increase serotonin | Antidepressant, Antianxiety, | Nausea, diarrhea, sexual dysfunction, serotonin syndrome (rare) | SSRIs, SNRIs, TCAs, | Premature ejaculation, IBS-C, limited usein migraine, refractory FM |
Norepinephrine reuptake inhibition | Increase norepinephrine | Antidepressant, pain inhibition | Dry mouth, constipation, sweats, blood pressure elevation | SNRIs, TCAs, bupropion | Pain (migraine, neuropathic), Fibromyalgia, IBS-D |
Dopamine reuptake inhibition | Increase dopamine | Antidepressant, CNS activation | Psychosis (rare), insomnia | Bupropion | Smoking cessation |
5HT1A receptor (partial) agonism | Activity via the subtype of serotonin receptor | Antianxiety, improved gastric compliance | Nausea | Buspirone | Functional bloating and dyspepsia, shivering due to therapeutic normo-/hypothermia |
5HT2A antagonism | Increased dopamine in striatum and pituitary | Antipsychotic, reduction in D2-mediated EPS) | Nausea, dizziness | Atypical antipsychotics, pimavanserin | Psychosis associated with Parkinson’s disease (pimavanserin) |
5HT3 antagonism | Activity via the subtype of serotonin receptor | Antidepressant, antianxiety, reduced nausea and bloating | Weight gain, sedation | Mirtazapine, olanzapine, ondansetron | Chronic N/V syndrome, functional dyspepsia |
Dopamine receptor antagonism | Decrease dopamine | Antipsychotic, antiemetic | EPS, weight gain | All antipsychotics, antiemetics (Compazine, promethazine, metoclopramide) | Nausea, hiccups |
Monoamine oxidase inhibition | Increased serotonin, norepinephrine and dopamine | Antidepressant, antianxiety, | Hypertensive Crisis, hypotension, insomnia, | MAOI’s | Parkinson’s disease (MAO-B **) |
Dopamine receptor agonist | Increase dopamine | Movement disorders | Nausea, sleepiness, impulse control behaviors, hallucinations | Ropinirole, pramipexole, bromocriptine | Parkinson’s disease, RLS, type II DM, NMS |
Voltage-gated sodium channels | Inhibits the release of excitatory neurotransmitters | Anticonvulsant, antianxiety, analgesic | Dizziness, drowsiness, peripheral edema | Gabapentin, valproic acid | Pain, migraine, paroxysmal sympathetic hyperactivity |
M1 antagonism | Blockade of muscarinic, type 1 receptor | Anticholinergic effects | Constipation, dry mouth, urinary retention, blurred visit | TCAs, paroxetine | Nocturnal enuresis, Parkinson’s disease, EPS |
H1 antagonism | Antihistaminic | Sedation, antihistamine | Sedation, weight gain | TCAs, many antipsychotics, mirtazapine, diphenhydramine, hydroxyzine, trazodone | Insomnia |
Alpha-1 adrenergic antagonism | Decreased adrenergic tone | Blood pressure lowered, decreased autonomic activity/arousal | Hypotension | TCAs, some antipsychotics, prazosin, trazodone | Various |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentry, M.T.; Leung, J.G.; Suarez, L.; Bostwick, J.M. Psychotropic Medications for Non-Psychiatric Conditions: A Narrative Review. Healthcare 2025, 13, 2122. https://doi.org/10.3390/healthcare13172122
Gentry MT, Leung JG, Suarez L, Bostwick JM. Psychotropic Medications for Non-Psychiatric Conditions: A Narrative Review. Healthcare. 2025; 13(17):2122. https://doi.org/10.3390/healthcare13172122
Chicago/Turabian StyleGentry, Melanie T., Jonathan G. Leung, Laura Suarez, and J. Michael Bostwick. 2025. "Psychotropic Medications for Non-Psychiatric Conditions: A Narrative Review" Healthcare 13, no. 17: 2122. https://doi.org/10.3390/healthcare13172122
APA StyleGentry, M. T., Leung, J. G., Suarez, L., & Bostwick, J. M. (2025). Psychotropic Medications for Non-Psychiatric Conditions: A Narrative Review. Healthcare, 13(17), 2122. https://doi.org/10.3390/healthcare13172122