The Global, Regional, and National Burden of Lower Respiratory Infections Caused by Streptococcus pneumoniae Between 1990 and 2021
Abstract
1. Introduction
2. Methods
2.1. Data Source
2.2. Data Stratification
2.3. Autoregressive Integrated Moving Average Model
2.4. Statistical Analysis
3. Results
3.1. Global Trends
3.2. Trends Based on Age and Sex
3.3. Trends Based on Socio-Demographic Index (SDI)
3.4. Decomposition Analysis of Mortality Reduction Factors
3.5. Geographic Distribution of Mortality
3.6. Forecasted Trends
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LRIs | Lower respiratory infections |
SP | Streptococcus pneumoniae |
GBD | Global Burden of Disease |
DALYs | Disability-adjusted life years |
SDI | Socio-demographic index |
ASMRs | Age-standardized mortality rates |
AAPC | Annual average percent change |
References
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- GBD 2019 LRI Collaborators. Age-sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: Results from the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2022, 22, 1626–1647. [Google Scholar] [CrossRef]
- Murray, C.J.L. Findings from the Global Burden of Disease Study 2021. Lancet 2024, 403, 2259–2262. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Lower Respiratory Infections and Antimicrobial Resistance Collaborators. Global, regional, and national incidence and mortality burden of non-COVID-19 lower respiratory infections and aetiologies, 1990–2021: A systematic analysis from the Global Burden of Disease Study 2021. Lancet Infect. Dis. 2024, 24, 974–1002. [Google Scholar] [CrossRef] [PubMed]
- Sepúlveda-Pachón, I.T.; Dunne, E.M.; Hanquet, G.; Baay, M.; Menon, S.; Jodar, L.; Gessner, B.D.; Theilacker, C. Effect of Pneumococcal Conjugate Vaccines on Viral Respiratory Infections: A Systematic Literature Review. J. Infect. Dis. 2024, 230, e657–e667. [Google Scholar] [CrossRef]
- Wahl, B.; O’Brien, K.L.; Greenbaum, A.; Majumder, A.; Liu, L.; Chu, Y.; Lukšić, I.; Nair, H.; McAllister, D.A.; Campbell, H.; et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: Global, regional, and national estimates for 2000-15. Lancet Glob. Health 2018, 6, e744–e757. [Google Scholar] [CrossRef]
- Ali, H.A.; Hartner, A.-M.; Echeverria-Londono, S.; Roth, J.; Li, X.; Abbas, K.; Portnoy, A.; Vynnycky, E.; Woodruff, K.; Ferguson, N.M.; et al. Vaccine equity in low and middle income countries: A systematic review and meta-analysis. Int. J. Equity Health 2022, 21, 82. [Google Scholar] [CrossRef]
- Wu, M.; Wu, Q.; Liu, D.; Zu, W.; Zhang, D.; Chen, L. The global burden of lower respiratory infections attributable to respiratory syncytial virus in 204 countries and territories, 1990–2019: Findings from the Global Burden of Disease Study 2019. Intern Emerg Med. 2024, 19, 59–70. [Google Scholar] [CrossRef]
- GBD 2019 Demographics Collaborators. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1160–1203. [Google Scholar] [CrossRef]
- Cunha, A.R.D.; Compton, K.; Xu, R.; Mishra, R.; Drangsholt, M.T.; Antunes, J.L.F.; Kerr, A.R.; Acheson, A.R.; Lu, D.; Wallace, L.E.; et al. The Global, Regional, and National Burden of Adult Lip, Oral, and Pharyngeal Cancer in 204 Countries and Territories: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2023, 9, 1401–1416. [Google Scholar]
- Kuang, Z.; Wang, J.; Liu, K.; Wu, J.; Ge, Y.; Zhu, G.; Cao, L.; Ma, X.; Li, J. Global, regional, and national burden of tracheal, bronchus, and lung cancer and its risk factors from 1990 to 2021: Findings from the global burden of disease study 2021. EClinicalMedicine 2024, 75, 102804. [Google Scholar] [CrossRef] [PubMed]
- Bénet, T.; Picot, V.S.; Awasthi, S.; Pandey, N.; Bavdekar, A.; Kawade, A.; Robinson, A.; Rakoto-Andrianarivelo, M.; Sylla, M.; Diallo, S.; et al. Severity of Pneumonia in Under 5-Year-Old Children from Developing Countries: A Multicenter, Prospective, Observational Study. Am. J. Trop. Med. Hyg. 2017, 97, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Chaguza, C.; Senghore, M.; Bojang, E.; Gladstone, R.A.; Lo, S.W.; Tientcheu, P.-E.; Bancroft, R.E.; Worwui, A.; Foster-Nyarko, E.; Ceesay, F.; et al. Within-host microevolution of Streptococcus pneumoniae is rapid and adaptive during natural colonisation. Nat. Commun. 2020, 11, 3442. [Google Scholar] [CrossRef] [PubMed]
- Cilloniz, C.; Martin-Loeches, I.; Garcia-Vidal, C.; San Jose, A.; Torres, A. Microbial Etiology of Pneumonia: Epidemiology, Diagnosis and Resistance Patterns. Int. J. Mol. Sci. 2016, 17, 2120. [Google Scholar] [CrossRef]
- Lorente, M.L.; Falguera, M.; Nogués, A.; González, A.R.; Merino, M.T.; Caballero, M.R. Diagnosis of pneumococcal pneumonia by polymerase chain reaction (PCR) in whole blood: A prospective clinical study. Thorax 2000, 55, 133–137. [Google Scholar] [CrossRef]
- Abelenda-Alonso, G.; Calatayud, L.; Rombauts, A.; Meije, Y.; Oriol, I.; Sopena, N.; Padullés, A.; Niubó, J.; Duarte, A.; Llaberia, J.; et al. Multiplex real-time PCR in non-invasive respiratory samples to reduce antibiotic use in community-acquired pneumonia: A randomised trial. Nat. Commun. 2024, 15, 7098. [Google Scholar] [CrossRef]
- Amber, H.; Hansen, J.; Timbol, J.; Lewis, N.; Isturiz, R.; Alexander-Parrish, R.; McLaughlin, J.M.; Gessner, B.D.; Klein, N.P. Incidence and Estimated Vaccine Effectiveness Against Hospitalizations for All-Cause Pneumonia Among Older US Adults Who Were Vaccinated and Not Vaccinated with 13-Valent Pneumococcal Conjugate Vaccine. JAMA Netw. Open 2022, 5, e221111. [Google Scholar] [CrossRef]
- Takeuchi, N.; Naito, S.; Ohkusu, M.; Abe, K.; Shizuno, K.; Takahashi, Y.; Omata, Y.; Nakazawa, T.; Takeshita, K.; Hishiki, H.; et al. Epidemiology of hospitalised paediatric community-acquired pneumonia and bacterial pneumonia following the introduction of 13-valent pneumococcal conjugate vaccine in the national immunisation programme in Japan. Epidemiol. Infect. 2020, 148, e91. [Google Scholar] [CrossRef]
- Mpabalwani, E.M.; Lukwesa-Musyani, C.; Imamba, A.; Nakazwe, R.; Matapo, B.; Muzongwe, C.M.; Mufune, T.; Soda, E.; Mwenda, J.M.; Lutz, C.S.; et al. Declines in Pneumonia and Meningitis Hospitalizations in Children Under 5 Years of Age After Introduction of 10-Valent Pneumococcal Conjugate Vaccine in Zambia, 2010–2016. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2019, 69, S58–S65. [Google Scholar] [CrossRef]
- Podolsky, S.H. The changing fate of pneumonia as a public health concern in 20th-century America and beyond. Am. J. Public Health 2005, 95, 2144–2154. [Google Scholar] [CrossRef]
- Choi, S.-H.; Cesar, A.; Snow, T.A.C.; Saleem, N.; Arulkumaran, N.; Singer, M. Respiratory fluoroquinolone monotherapy vs. β-lactam plus macrolide combination therapy for hospitalized adults with community-acquired pneumonia: A systematic review and meta-analysis of randomized controlled trials. Int. J. Antimicrob. Agents. 2023, 62, 106905. [Google Scholar] [CrossRef] [PubMed]
- Grief, S.N.; Loza, J.K. Guidelines for the Evaluation and Treatment of Pneumonia. Prim. Care 2018, 45, 485–503. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liang, Q.; Ren, Y.; Guo, C.; Ge, X.; Wang, L.; Cheng, Q.; Luo, P.; Zhang, Y.; Han, X. Immunosenescence: Molecular mechanisms and diseases. Signal Transduct. Target. Ther. 2023, 8, 200. [Google Scholar] [CrossRef] [PubMed]
- Bailey, M.D.; Farge, G.; Mohanty, S.; Breau-Brunel, M.; Roy, G.; de Pouvourville, G.; de Wazieres, B.; Janssen, C.; Tauty, S.; Bugnard, F.; et al. Clinical burden of pneumococcal disease among adults in France: A retrospective cohort study. Hum. Vaccines Immunother. 2025, 21, 2515760. [Google Scholar] [CrossRef]
- Qu, J.; Zhang, J.; Chen, Y.; Huang, Y.; Xie, Y.; Zhou, M.; Li, Y.; Shi, D.; Xu, J.; Wang, Q.; et al. Aetiology of severe community acquired pneumonia in adults identified by combined detection methods: A multi-centre prospective study in China. Emerg. Microbes Infect. 2022, 11, 556–566. [Google Scholar] [CrossRef]
- Haruka, M.; Konosuke, M.J.H.V.I. Global distribution and characteristics of pneumococcal serotypes in adults. Hum. Vaccines Immunother. 2025, 21, 2469424. [Google Scholar] [CrossRef]
- Bernice, R.; Nirma, K.V.; Crystal, H.; Manish, S. Future immunisation strategies to prevent Streptococcus pneumoniae infections in children and adults. Lancet Infect. Dis. 2025, 25, e330–e344. [Google Scholar] [CrossRef]
- Kang, L.; Jing, W.; Liu, Q.; Liu, J.; Liu, M. The trends of mortality, aetiologies and risk factors of lower respiratory infections in China from 1990 to 2019: Findings from the Global Burden of Disease Study 2019. J. Infect. Public Health 2022, 15, 870–876. [Google Scholar] [CrossRef]
- Ursache, S.A.; Gabor, V.-R.; Muntele, I.; Maftei, M. Mortality Trends by Causes of Death and Healthcare during a Period of Global Uncertainty (1990–2017). Healthcare 2021, 9, 748. [Google Scholar] [CrossRef]
- Marangu, D.; Zar, H.J. Childhood pneumonia in low-and-middle-income countries: An update. Paediatr. Respir. Rev. 2019, 32, 3–9. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
Measure | 1990 | 2021 | 1990–2021 AAPC, n (95% UI) | ||
---|---|---|---|---|---|
Death Count, n (95% UI) | Mortality Rate per 100,000 People, n (95% UI) | Death Count, n (95% UI) | Mortality Rate per 100,000 People, n (95% UI) | ||
Global | |||||
All ages | 1,028,083 (923,782–1,146,074) | 19.28 (17.32–21.49) | 505,268 (454,335–552,539) | 6.40 (5.76–7.00) | −3.50 (−3.56–−3.43) |
<5 years | 720,784 (617,218–838,466) | 116.27 (99.56–135.25) | 139,267 (109,208–168,510) | 21.16 (16.59–25.60) | −5.40 (−5.49–−5.30) |
5–14 years | 36,176 (30,292–40,642) | 3.23 (2.71–3.63) | 14,651 (12,468–16,556) | 1.08 (0.92–1.22) | −3.52 (−3.89–−3.14) |
15–49 years | 56,991 (52,591–60,815) | 2.10 (1.94–2.24) | 52,629 (48,293–58,005) | 1.33 (1.22–1.47) | −1.44 (−1.73–−1.15) |
50–69 years | 65,075 (60,073–69,845) | 9.54 (8.81–10.24) | 80,180 (72,586–86,471) | 5.58 (5.05–6.02) | –1.68 (–1.93–−1.43) |
70+ years | 149,057 (135,227–160,992) | 73.79 (66.94–79.70) | 218,540 (192,403–238,383) | 44.21 (38.92–48.22) | −1.62 (–1.97–−1.28) |
China | |||||
All ages | 165,798 (143,691–189,099) | 14.09 (12.21–16.07) | 51,180 (42,055–62,158) | 3.60 (2.96–4.37) | −4.39 (–4.70–−4.08) |
<5 years | 118,818 (100,464–140,162) | 106.27 (89.86–125.36) | 3406 (2674–4283) | 4.39 (3.44–5.51) | −9.80 (–10.44–−9.15) |
5–14 years | 5191 (4118–5917) | 2.51 (1.99–2.86) | 574 (484–692) | 0.32 (0.27–0.38) | −6.63 (–7.07–−6.19) |
15–49 years | 8318 (6790–9523) | 1.25 (1.02–1.43) | 2444 (1983–3025) | 0.37 (0.30–0.46) | −3.93 (–4.35–−3.50) |
50–69 years | 9202 (7595–10,630) | 5.99 (4.94–6.92) | 5676 (4482–7118) | 1.49 (1.18–1.87) | –4.45 (−4.75–−4.15) |
70+ years | 24,269 (19,549–27,249) | 64.67 (52.09–72.61) | 39,080 (31,162–48,040) | 32.76 (26.12–40.27) | −2.25 (−2.68–−1.82) |
High SDI | |||||
All ages | 69,715 (63,660–73,102) | 7.93 (7.24–8.31) | 45,236 (38,317–49,203) | 4.13 (3.50–4.50) | −2.04 (−2.67–−1.40) |
<5 years | 2944 (2671–3328) | 4.77 (4.33–5.39) | 184 (163–203) | 0.34 (0.30–0.38) | −8.14 (−8.42–−7.86) |
5–14 years | 536 (501–575) | 0.43 (0.40–0.46) | 82 (77–89) | 0.07 (0.06–0.07) | –5.78 (–6.52––5.04) |
15–49 years | 4047 (3940–4160) | 0.88 (0.86–0.90) | 1662 (1558–1788) | 0.33 (0.31–0.36) | −3.19 (−3.76–−2.61) |
50–69 years | 8247 (7977–8452) | 5.03 (4.87–5.16) | 4725 (4513–4901) | 1.71 (1.64–1.78) | −3.41 (−3.88–−2.93) |
70+ years | 53,941 (48,126–57,144) | 78.11 (69.69–82.75) | 38,584 (31,866–42,384) | 26.89 (22.21–29.54) | −3.52 (–4.10–−2.95) |
High–middle SDI | |||||
All ages | 80,557 (74,119–88,368) | 7.57 (6.97–8.31) | 51,642 (46,242–57,229) | 3.96 (3.55–4.39) | −2.14 (–2.61–−1.67) |
<5 years | 42,282 (37,158–49,371) | 45.51 (40.00–53.14) | 1738 (1442–2086) | 2.48 (2.06–2.98) | −9.01 (–9.31–−8.70) |
5–14 years | 2404 (2194–2628) | 1.33 (1.21–1.45) | 400 (365–458) | 0.25 (0.23–0.28) | −5.42 (−5.94–−4.90) |
15–49 years | 6905 (6455–7316) | 1.22 (1.14–1.30) | 5893 (5489–6303) | 0.94 (0.87–1.00) | −0.94 (−2.08–0.21) |
50–69 years | 8153 (7612–8685) | 4.68 (4.37–4.99) | 9240 (8572–9930) | 2.83 (2.63–3.04) | −0.65 (−2.53–−0.77) |
70+ years | 20,813 (18,612–22,452) | 40.44 (36.17–43.63) | 34,372 (29,394–39,045) | 29.28 (25.04–33.26) | −1.09 (−1.39–−0.79) |
Middle SDI | |||||
All ages | 269,994 (246,668–294,963) | 15.67 (14.32–17.12) | 129,690 (117,334–140,965) | 5.30 (4.79–5.76) | −3.47 (−3.60–−3.34) |
<5 years | 189,460 (169,317–214,221) | 94.48 (84.43–106.82) | 17,638 (14,720–20,934) | 9.99 (8.33–11.85) | −7.11 (−7.36–−6.86) |
5–14 years | 10,738 (9029–11,704) | 2.85 (2.40–3.11) | 2690 (2442–2966) | 0.69 (0.63–0.76) | −4.55 (−4.83–−4.27) |
15–49 years | 18,830 (17,417–19,984) | 2.07 (1.91–2.19) | 14,271 (13,292–15,356) | 1.14 (1.06–1.22) | −1.99 (−2.42–−1.54) |
50–69 years | 16,513 (15,045–17,894) | 8.72 (7.94–9.45) | 24,093 (22,076–25,955) | 4.96 (4.55–5.34) | −1.81 (–2.00–−1.62) |
70+ years | 34,452 (30,871–37,898) | 75.40 (67.56–82.94) | 70,998 (61,361–78,348) | 50.36 (43.52–55.57) | −1.29 (–1.60–−0.98) |
Low–middle SDI | |||||
All ages | 32,8670 (289,275–372,053) | 28.30 (24.91–32.03) | 149,827 (132,279–165,722) | 7.80 (6.89–8.63) | −4.08 (−4.24–−3.93) |
<5 years | 258,180 (220,990–30,0934) | 148.82 (127.38–173.47) | 49,278 (40,015–59,051) | 25.72 (20.89–30.82) | −5.56 (−5.75–−5.37) |
5–14 years | 12,833 (10,658–14,838) | 4.30 (3.57–4.97) | 4827 (4109–5478) | 1.24 (1.06–1.41) | −4.00 (−4.63–−3.37) |
15–49 years | 15,135 (13,615–17,100) | 2.75 (2.47–3.10) | 16,198 (14,400–18,419) | 1.59 (1.42–1.81) | −1.75 (−1.92–−1.57) |
50–69 years | 18,140 (16,119–20,134) | 16.20 (14.39–17.98) | 26,805 (23,433–29,939) | 10.51 (9.19–11.74) | −1.33 (−1.44–−1.22) |
70+ years | 24,383 (21,309–28,620) | 92.98 (81.26–109.13) | 52,718 (46,007–59,006) | 75.21 (65.64–84.18) | −0.71 (−1.14–−0.28) |
Low SDI | |||||
All ages | 278,423 (228,177–335,705) | 55.54 (45.52–66.97) | 128,394 (105,928–150,956) | 11.49 (9.48–13.51) | −4.96 (−5.06–−4.86) |
<5 years | 227,480 (176,711–284,306) | 250.54 (194.62–313.13) | 70,291 (51,377–89,236) | 42.45 (31.03–53.89) | −5.60 (−5.72–−5.48) |
5–14 years | 9644 (7322–11,670) | 6.98 (5.30–8.45) | 6643 (5330–7837) | 2.25 (1.81–2.66) | −3.58 (−4.11–−3.05) |
15–49 years | 12,019 (10,420–13,685) | 5.44 (4.71–6.19) | 14,557 (12,524–16,735) | 2.68 (2.31–3.09) | −2.26 (−2.42–−2.10) |
50–69 years | 13,960 (12,046–15,873) | 33.23 (28.67–37.78) | 15,245 (13,226–17,316) | 16.42 (14.24–18.65) | −2.24 (−2.36–−2.12) |
70+ years | 15,319 (13,320–17,666) | 164.16 (142.73–189.31) | 21,657 (19,072–25,252) | 98.74 (86.95–115.13) | −1.60 (−1.78–−1.41) |
Location | Overall Difference a | Change Due to Population-Level Determinants | ||
---|---|---|---|---|
(% Contribution to the Total Changes) | ||||
Aging b | Population c | Epidemiological Change d | ||
Global | −522,815.44 | 2671.32 (−0.51%) | 320,706.21 (−61.34%) | −846,192.97 (161.85%) |
SDI | ||||
High SDI | −24,479.11 | 40,074.30 (−163.71%) | 14,519.82 (−59.32%) | −79,073.23 (323.02%) |
High–middle SDI | −28,914.83 | 17,228.25 (−59.58%) | 13,702.65 (−47.39%) | −59,845.72 (206.97%) |
Middle SDI | −140,304.26 | 16,194.96 (−11.54%) | 73,470.84 (−52.37%) | −229,970.06 (163.91%) |
Low–middle SDI | −178,843.08 | −35,367.88 (19.78%) | 129,947.81 (−72.66%) | −273,423.00 (152.88%) |
Low SDI | −150,029.57 | −33,001.29 (22.00%) | 199,574.12 (−133.02%) | −316,602.39 (211.03%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Z.; Xiong, J.; Chen, L.; Peng, K.; Liu, H.; Li, Q.; Luo, Z. The Global, Regional, and National Burden of Lower Respiratory Infections Caused by Streptococcus pneumoniae Between 1990 and 2021. Healthcare 2025, 13, 1982. https://doi.org/10.3390/healthcare13161982
Kong Z, Xiong J, Chen L, Peng K, Liu H, Li Q, Luo Z. The Global, Regional, and National Burden of Lower Respiratory Infections Caused by Streptococcus pneumoniae Between 1990 and 2021. Healthcare. 2025; 13(16):1982. https://doi.org/10.3390/healthcare13161982
Chicago/Turabian StyleKong, Zhenxuan, Jin Xiong, Lin Chen, Kaicheng Peng, Hui Liu, Qinyuan Li, and Zhengxiu Luo. 2025. "The Global, Regional, and National Burden of Lower Respiratory Infections Caused by Streptococcus pneumoniae Between 1990 and 2021" Healthcare 13, no. 16: 1982. https://doi.org/10.3390/healthcare13161982
APA StyleKong, Z., Xiong, J., Chen, L., Peng, K., Liu, H., Li, Q., & Luo, Z. (2025). The Global, Regional, and National Burden of Lower Respiratory Infections Caused by Streptococcus pneumoniae Between 1990 and 2021. Healthcare, 13(16), 1982. https://doi.org/10.3390/healthcare13161982