Impact of Biomechanical, Anthropometric, and Temporal Factors on the Return-to-Sport Rate in Recreational Athletes with ACL Reconstruction: A Cross-Sectional Observational Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- Unilateral ACL reconstruction with clearance to return to sport from a licensed physiotherapist.
- Postoperative duration ≥ 9 months (to align with typical rehabilitation timelines for sport-specific readiness [26]).
- No concurrent lower limb injuries, spinal/pelvic pathologies, or cardiovascular/neurological conditions limiting physical activity.
2.2. Sample Size Calculation
2.3. Procedures
2.3.1. Psychological Readiness Assessment
2.3.2. Functional Performance Testing
- (a)
- Single-Leg Hop Tests
- Anterior Hop: Participants hopped forward maximally from a marked line; distance (meters) was measured from the line to the heel.
- Medial/Lateral Hop: Participants hopped sideways (medially or laterally) from a parallel stance; distance was measured from the line to the foot’s lateral/medial edge.
- Symmetry Calculation: the Limb Symmetry Index (LSI) was computed as (Involved limb distance/Uninvolved limb distance) × 100 (Involved limb distance/Uninvolved limb distance) × 100. Three trials per leg were averaged.
- (b)
- Single-Leg Sit-to-Stand Test (SLSS):
- (c)
- Single-Leg Wall-Sit Hold Test (SLWS):
2.3.3. Data Collection
2.3.4. Statistical Procedures
3. Results
3.1. Demographic Data
3.2. Multiple Linear Regression Analysis
4. Discussion
- Weight Stratification: Embed body composition analytics into rehabilitation, particularly for athletes with BMI > 25 kg/m2.
- Squat-Centric Protocols: Prioritize bilateral squats over isolated hop tests to fortify multiplanar stability.
- Multiplanar Focus: Integrate lateral/medial hop tests into assessments, but pair them with strength interventions.
- Observational design of this study precludes causal inference.
- Sample Homogeneity: Male cohort limits generalizability to female athletes, who face 2–8 times higher ACL injury risk [45].
- Quadriceps strength was assessed using functional performance tests rather than a standardized clinical grading tool such as the Medical Research Council (MRC) scale. While these tests reflect dynamic strength and sport-specific function, the absence of formal muscle grading may limit the clinical generalizability of strength outcomes. Future studies should consider incorporating both functional and standardized strength assessments.
- Longitudinal Mixed Models: Track neuromuscular adaptation trajectories across postoperative phases.
- Psychosocial Integration: Explore interactions between biomechanical readiness and psychological resilience.
- Biomechanical Profiling: Use 3D motion capture to quantify joint loading asymmetries during squats and hops.
- Genetic Markers: Investigate collagen gene polymorphisms as moderators of recovery efficiency.
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaeding, C.C.; Léger-St-Jean, B.; Magnussen, R.A. Epidemiology and Diagnosis of Anterior Cruciate Ligament Injuries. Clin. Sports Med. 2017, 36, 1–8. [Google Scholar] [CrossRef]
- Dafalla, S.; Bokhari, Y.; Yazbik, R.; Ali, A.; Sheikh, K.; Alnaggar, A. Prevalence of Anterior Cru-Ciate Ligament Injury and Other Ligament Injuries among the Saudi Community in Jeddah City, Saudi Arabia. Int. J. Radiol. Imaging Technol. 2020, 6, 62. [Google Scholar]
- Bram, J.T.; Magee, L.C.; Mehta, N.N.; Patel, N.M.; Ganley, T.J. Anterior Cruciate Ligament Injury Incidence in Adolescent Athletes: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2021, 49, 1962–1972. [Google Scholar] [CrossRef] [PubMed]
- Palmieri-Smith, R.M.; Mack, C.D.; Brophy, R.H.; Owens, B.D.; Herzog, M.M.; Beynnon, B.D.; Spindler, K.P.; Wojtys, E.M. Epidemiology of Anterior Cruciate Ligament Tears in the National Football League. Am. J. Sports Med. 2021, 49, 1786–1793. [Google Scholar] [CrossRef] [PubMed]
- Werner, D.M.; Golightly, Y.M.; Tao, M.; Post, A.; Wellsandt, E. Environmental Risk Factors for Osteoarthritis: The Impact on Individuals with Knee Joint Injury. Rheum. Dis. Clin. 2022, 48, 907–930. [Google Scholar] [CrossRef]
- Zaffagnini, S.; Vannini, F.; Di Martino, A.; Andriolo, L.; Sessa, A.; Perdisa, F.; Balboni, F.; Filardo, G.; The ESSKA U45 Committee. Low Rate of Return to Pre-Injury Sport Level in Athletes after Cartilage Surgery: A 10-Year Follow-up Study. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2502–2510. [Google Scholar] [CrossRef]
- Vacek, P.M.; Slauterbeck, J.R.; Tourville, T.W.; Sturnick, D.R.; Holterman, L.-A.; Smith, H.C.; Shultz, S.J.; Johnson, R.J.; Tourville, K.J.; Beynnon, B.D. Multivariate Analysis of the Risk Factors for First-Time Noncontact ACL Injury in High School and College Athletes: A Prospective Cohort Study with a Nested, Matched Case-Control Analysis. Am. J. Sports Med. 2016, 44, 1492–1501. [Google Scholar] [CrossRef]
- Pfeifer, C.E.; Beattie, P.F.; Sacko, R.S.; Hand, A. Risk Factors Associated with Non-Contact Anterior Cruciate Ligament Injury: A Systematic Review. Int. J. Sports Phys. Ther. 2018, 13, 575. [Google Scholar] [CrossRef]
- Webster, K.E.; Feller, J.A.; Lambros, C. Development and Preliminary Validation of a Scale to Measure the Psychological Impact of Returning to Sport Following Anterior Cruciate Ligament Reconstruction Surgery. Phys. Ther. Sport 2008, 9, 9–15. [Google Scholar] [CrossRef]
- Manske, R.; Reiman, M. Functional Performance Testing for Power and Return to Sports. Sports Health 2013, 5, 244–250. [Google Scholar] [CrossRef]
- Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Bdeir, A.; Fares, J.; Baydoun, H. Physical Testing in Sports Rehabilitation: Implications on a Potential Return to Sport. Arthrosc. Sports Med. Rehabil. 2022, 4, e189–e198. [Google Scholar] [CrossRef]
- Klemm, H.J.; Feller, J.A.; Webster, K.E. Comparison of Return-to-Sports Rates between Male and Female Australian Athletes after ACL Reconstruction. Orthop. J. Sports Med. 2023, 11, 23259671231169200. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, D.; Figueroa, M.L.; Figueroa, F. Return to Sports in Female Athletes after Anterior Cruciate Ligament Reconstruction: A Systematic Review and Metanalysis. J. ISAKOS 2024, 9, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, L.C.; Paterno, M.V.; Hewett, T.E. The Impact of Quadriceps Femoris Strength Asymmetry on Functional Performance at Return to Sport Following Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2012, 42, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.J.; Bishop, C. Testing Limb Symmetry and Asymmetry after Anterior Cruciate Ligament Injury: 4 Considerations to Increase Its Utility. Strength Cond. J. 2024, 46, 406–414. [Google Scholar] [CrossRef]
- Wellsandt, E.; Failla, M.J.; Snyder-Mackler, L. Limb Symmetry Indexes Can Overestimate Knee Function after Anterior Cruciate Ligament Injury. J. Orthop. Sports Phys. Ther. 2017, 47, 334–338. [Google Scholar] [CrossRef]
- Qiu, L.; Sheng, B.; Li, J.; Xiao, Z.; Yuan, M.; Yang, H.; Lv, F.; Lv, F. Mechanisms of Non-Contact Anterior Cruciate Ligament Injury as Determined by Bone Contusion Location and Severity. Quant. Imaging Med. Surg. 2021, 11, 3263. [Google Scholar] [CrossRef]
- Padaki, A.S.; Noticewala, M.S.; Levine, W.N.; Ahmad, C.S.; Popkin, M.K.; Popkin, C.A. Prevalence of Posttraumatic Stress Disorder Symptoms among Young Athletes after Anterior Cruciate Ligament Rupture. Orthop. J. Sports Med. 2018, 6, 2325967118787159. [Google Scholar] [CrossRef]
- Bojicic, K.M.; Beaulieu, M.L.; Imaizumi Krieger, D.Y.; Ashton-Miller, J.A.; Wojtys, E.M. Association between Lateral Posterior Tibial Slope, Body Mass Index, and ACL Injury Risk. Orthop. J. Sports Med. 2017, 5, 2325967116688664. [Google Scholar] [CrossRef]
- de Oliveira, F.C.L.; Roy, J.-S.; Pappas, E. ACL Injury, Physical Activity, and Overweight/Obesity: A Vicious Cycle? Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 667–669. [Google Scholar] [CrossRef]
- MacAlpine, E.M.; Talwar, D.; Storey, E.P.; Doroshow, S.M.; Lawrence, J.T.R. Weight Gain after ACL Reconstruction in Pediatric and Adolescent Patients. Sports Health 2020, 12, 29–35. [Google Scholar] [CrossRef]
- Walker, A.; Hing, W.; Gough, S.; Lorimer, A. ‘Such a Massive Part of Rehab Is between the Ears’; Barriers to and Facilitators of Anterior Cruciate Ligament Reconstruction Rehabilitation: A Qualitative Focus Group Analysis. BMC Sports Sci. Med. Rehabil. 2022, 14, 106. [Google Scholar] [CrossRef]
- Jenkins, S.M.; Guzman, A.; Gardner, B.B.; Bryant, S.A.; Del Sol, S.R.; McGahan, P.; Chen, J. Rehabilitation after Anterior Cruciate Ligament Injury: Review of Current Literature and Recommendations. Curr. Rev. Musculoskelet. Med. 2022, 15, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Herrington, L.; Ghulam, H.; Comfort, P. Quadriceps Strength and Functional Performance after Anterior Cruciate Ligament Reconstruction in Professional Soccer Players at Time of Return to Sport. J. Strength Cond. Res. 2021, 35, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Girdwood, M.A.; Crossley, K.M.; Rio, E.K.; Patterson, B.E.; Haberfield, M.J.; Couch, J.L.; Mentiplay, B.F.; Hedger, M.; Culvenor, A.G. Hop to It! A Systematic Review and Longitudinal Meta-Analysis of Hop Performance after ACL Reconstruction. Sports Med. 2025, 55, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Brinlee, A.W.; Dickenson, S.B.; Hunter-Giordano, A.; Snyder-Mackler, L. ACL Reconstruction Rehabilitation: Clinical Data, Biologic Healing, and Criterion-Based Milestones to Inform a Return-to-Sport Guideline. Sports Health 2022, 14, 770–779. [Google Scholar] [CrossRef]
- D’Astous, E.; Podlog, L.; Burns, R.; Newton, M.; Fawver, B. Perceived Competence, Achievement Goals, and Return-to-Sport Outcomes: A Mediation Analysis. Int. J. Environ. Res. Public Health 2020, 17, 2980. [Google Scholar] [CrossRef]
- Almalki, H.; Herrington, L.; Jones, R. Arabic Version of the Anterior Cruciate Ligament Return to Sport Index: Translation and Cross-Cultural Adaptation. Saudi J. Sports Med. 2022, 22, 9–15. [Google Scholar] [CrossRef]
- Dingenen, B.; Truijen, J.; Bellemans, J.; Gokeler, A. Test–Retest Reliability and Discriminative Ability of Forward, Medial and Rotational Single-Leg Hop Tests. Knee 2019, 26, 978–987. [Google Scholar] [CrossRef]
- Ebert, J.R.; Du Preez, L.; Furzer, B.; Edwards, P.; Joss, B. Which Hop Tests Can Best Identify Functional Limb Asymmetry in Patients 9–12 Months after Anterior Cruciate Ligament Reconstruction Employing a Hamstrings Tendon Autograft? Int. J. Sports Phys. Ther. 2021, 16, 393. [Google Scholar] [CrossRef]
- Woon, E.-L.; Low, J.; Sng, Y.-L.; Hor, A.B.; Pua, Y.-H. Feasibility, Correlates, and Validity of the One-Leg Sit-to-Stand Test in Individuals Following Anterior Cruciate Ligament Reconstruction. Phys. Ther. Sport 2021, 52, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Ressman, J.; Grooten, W.J.A.; Barr, E.R. Visual Assessment of Movement Quality in the Single Leg Squat Test: A Review and Meta-Analysis of Inter-Rater and Intrarater Reliability. BMJ Open Sport Exerc. Med. 2019, 5, e000541. [Google Scholar] [CrossRef] [PubMed]
- Pappas, E.; Carpes, F.P. Lower Extremity Kinematic Asymmetry in Male and Female Athletes Performing Jump-Landing Tasks. J. Sci. Med. Sport 2012, 15, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Adouni, M.; Alkhatib, F.; Hajji, R.; Faisal, T.R. Effects of Overweight and Obesity on Lower Limb Walking Characteristics from Joint Kinematics to Muscle Activations. Gait Posture 2024, 113, 337–344. [Google Scholar] [CrossRef]
- DiSilvestro, K.J.; Jauregui, J.J.; Glazier, E.; Cherkalin, D.; Bennett, C.H.; Packer, J.D.; Henn, R.F., III. Outcomes of Anterior Cruciate Ligament Reconstruction in Obese and Overweight Patients: A Systematic Review. Clin. J. Sport Med. 2019, 29, 257–261. [Google Scholar] [CrossRef]
- Harput, G.; Guney-Deniz, H.; Ozer, H.; Baltaci, G.; Mattacola, C. Higher Body Mass Index Adversely Affects Knee Function after Anterior Cruciate Ligament Reconstruction in Individuals Who Are Recreationally Active. Clin. J. Sport Med. 2020, 30, e194–e200. [Google Scholar] [CrossRef]
- Grooms, D.R.; Page, S.J.; Nichols-Larsen, D.S.; Chaudhari, A.M.W.; White, S.E.; Onate, J.A. Neuroplasticity Associated with Anterior Cruciate Ligament Reconstruction. J. Orthop. Sports Phys. Ther. 2017, 47, 180–189. [Google Scholar] [CrossRef]
- Stensdotter, A.-K.; Schelin, L.; Häger, C.K. Whole-Body Kinematics of Squats Two Decades Following Anterior Cruciate Ligament Injury. J. Electromyogr. Kinesiol. 2024, 76, 102870. [Google Scholar] [CrossRef]
- Ebert, J.R.; Edwards, P.; Du Preez, L.; Furzer, B.; Joss, B. Knee Extensor Strength, Hop Performance, Patient-Reported Outcome and Inter-Test Correlation in Patients 9–12 Months after Anterior Cruciate Ligament Reconstruction. Knee 2021, 30, 176–184. [Google Scholar] [CrossRef]
- Almansoof, H.S.; Nuhmani, S.; Muaidi, Q. Role of Kinetic Chain in Sports Performance and Injury Risk: A Narrative Review. J. Med. Life 2023, 16, 1591. [Google Scholar] [CrossRef]
- Peebles, A.T.; Williams, B., III.; Queen, R.M. Bilateral Squatting Mechanics Are Associated with Landing Mechanics in Anterior Cruciate Ligament Reconstruction Patients. Am. J. Sports Med. 2021, 49, 2638–2644. [Google Scholar] [CrossRef]
- Vutescu, E.S.; Orman, S.; Garcia-Lopez, E.; Lau, J.; Gage, A.; Cruz, A.I., Jr. Psychological and Social Components of Recovery Following Anterior Cruciate Ligament Reconstruction in Young Athletes: A Narrative Review. Int. J. Environ. Res. Public. Health 2021, 18, 9267. [Google Scholar] [CrossRef]
- Bullock, G.S.; Sell, T.C.; Zarega, R.; Reiter, C.; King, V.; Wrona, H.; Mills, N.; Ganderton, C.; Duhig, S.; Räisäsen, A.; et al. Kinesiophobia, Knee Self-Efficacy, and Fear Avoidance Beliefs in People with ACL Injury: A Systematic Review and Meta-Analysis. Sports Med. 2022, 52, 3001–3019. [Google Scholar] [CrossRef]
- Perini, J.A.; Lopes, L.R.; Guimarães, J.A.M.; Goes, R.A.; Pereira, L.F.A.; Pereira, C.G.; Mandarino, M.; Villardi, A.M.; de Sousa, E.B.; Cossich, V.R.A. Influence of Type I Collagen Polymorphisms and Risk of Anterior Cruciate Ligament Rupture in Athletes: A Case-Control Study. BMC Musculoskelet. Disord. 2022, 23, 154. [Google Scholar] [CrossRef]
- Mancino, F.; Kayani, B.; Gabr, A.; Fontalis, A.; Plastow, R.; Haddad, F.S. Anterior Cruciate Ligament Injuries in Female Athletes: Risk Factors and Strategies for Prevention. Bone Jt. Open 2024, 5, 94. [Google Scholar] [CrossRef]
Variable | Category | Type/Scale | Measurement Description |
---|---|---|---|
Age | Demographic | Continuous (years) | Self-reported and verified from records |
Height | Demographic | Continuous (cm) | Measured using standard stadiometer |
Weight | Demographic | Continuous (kg) | Measured using calibrated digital scale |
Body Mass Index (BMI) | Derived Demographic | Continuous (kg/m2) | Calculated as weight (kg)/height2 (m2) |
Postoperative duration | Surgical | Continuous (months) | Time since ACL reconstruction, verified from surgical records |
ACL–Return to Sport Index (RSI) | Psychological | 0–100% (Likert-based scale) | Twelve-item Arabic-translated ACL-RSI scale (0–10 per item); total converted to percentage |
Single-Leg Anterior Hop Distance | Functional Performance | Continuous (m) | Maximal forward hop from a marked line; average of three trials per leg |
Single-Leg Medial/Lateral Hop | Functional Performance | Continuous (m) | Sideways hop distance (medial/lateral); average of three trials per direction per leg |
Hop Limb Symmetry Index (LSI) | Functional Symmetry Index | Percentage (%) | (Involved/Uninvolved) × 100; computed for each hop direction |
Single-Leg Sit-to-Stand (SLSS) | Functional Endurance | Continuous (s) | Time to complete five reps on each leg without arm support |
Single-Leg Wall-Sit Hold Test (SLWS) | Functional Endurance | Continuous (s) | Duration of maintaining 90° wall-sit with opposite leg lifted |
Mean | Std. Deviation | Skewness | Kurtosis | Minimum | Maximum | |
---|---|---|---|---|---|---|
Age | 29.94 | 5.84 | 0.15 | −0.91 | 18 | 41 |
Height | 173.44 | 5.8 | −0.63 | −0.17 | 159 | 184 |
Weight | 76.4 | 15.13 | 0.58 | −0.51 | 51 | 112 |
Surgery | 21.84 | 10.75 | 1.8 | 3.87 | 9 | 60 |
A-SLH | 90.38 | 8.77 | −1.83 | 4.15 | 53.6 | 99.66 |
L-SLH | 89.94 | 8.78 | −1.46 | 1.94 | 60.93 | 99.83 |
M-SLH | 88.63 | 10.77 | −1.42 | 1.78 | 53.88 | 99.78 |
SLSS | 84.13 | 13.52 | −1.28 | 0.98 | 45.88 | 100 |
SLWS | 83.53 | 15.34 | −1.5 | 2.38 | 22.03 | 100 |
RSI | 92.74 | 29.17 | −0.78 | −0.65 | 21 | 120 |
Variable | Age | Surgery | A-SLH | L-SLH | M-SLH | SLSS | SLWS |
---|---|---|---|---|---|---|---|
RSI | 0.231 * | 0.390 ** | 0.073 | 0.277 * | 0.300 ** | 0.441 ** | 0.341 ** |
Predictor | B (SE) | 95% CI | β | t | p | Tolerance | VIF |
---|---|---|---|---|---|---|---|
Constant | 2.766 (95.593) | [−187.796, 193.327] | — | 0.029 | 0.98 | — | — |
Age | 0.955 (0.526) | [−0.094, 2.004] | 0.191 | 1.814 | 0.07 | 0.841 | 1.19 |
Height | 0.157 (0.537) | [−0.914, 1.227] | 0.031 | 0.292 | 0.77 | 0.818 | 1.22 |
Weight | −0.450 (0.204) | [−0.856, −0.044] | −0.23 | −2.21 | 0.03 | 0.835 | 1.2 |
Surgery | 0.793 (0.280) | [0.235, 1.351] | 0.292 | 2.831 | 0.01 | 0.876 | 1.14 |
L-SLH | −0.255 (0.474) | [−1.200, 0.690] | −0.08 | −0.54 | 0.59 | 0.458 | 2.18 |
M-SLH | 0.075 (0.413) | [−0.748, 0.898] | 0.028 | 0.182 | 0.86 | 0.402 | 2.49 |
SLSS | 0.334 (0.247) | [−0.158, 0.826] | 0.155 | 1.355 | 0.18 | 0.714 | 1.4 |
SLWS | 0.472 (0.222) | [0.028, 0.915] | 0.248 | 2.122 | 0.04 | 0.682 | 1.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanazi, A. Impact of Biomechanical, Anthropometric, and Temporal Factors on the Return-to-Sport Rate in Recreational Athletes with ACL Reconstruction: A Cross-Sectional Observational Study. Healthcare 2025, 13, 1970. https://doi.org/10.3390/healthcare13161970
Alanazi A. Impact of Biomechanical, Anthropometric, and Temporal Factors on the Return-to-Sport Rate in Recreational Athletes with ACL Reconstruction: A Cross-Sectional Observational Study. Healthcare. 2025; 13(16):1970. https://doi.org/10.3390/healthcare13161970
Chicago/Turabian StyleAlanazi, Ahmad. 2025. "Impact of Biomechanical, Anthropometric, and Temporal Factors on the Return-to-Sport Rate in Recreational Athletes with ACL Reconstruction: A Cross-Sectional Observational Study" Healthcare 13, no. 16: 1970. https://doi.org/10.3390/healthcare13161970
APA StyleAlanazi, A. (2025). Impact of Biomechanical, Anthropometric, and Temporal Factors on the Return-to-Sport Rate in Recreational Athletes with ACL Reconstruction: A Cross-Sectional Observational Study. Healthcare, 13(16), 1970. https://doi.org/10.3390/healthcare13161970