Psychopathological Symptomatology and Sleep Quality in Chronic Primary Musculoskeletal Pain: A Comparison with Healthy Controls
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
- 1.
- Sociodemographic data: Basic participant information was collected using a structured questionnaire. Specifically, this instrument gathered data on age, sex, and civil status for all participants. Additionally, for the CPMP group, information was recorded on pain location, pain duration (in years), and the use of prescribed medication for pain management.
- 2.
- The Numeric Pain Rating Scale (NPRS) [23]: This is a self-reporting tool for assessing pain intensity. This scale has been widely used in research into chronic pain, including CMP [24,25]. Participants were instructed to rate their pain intensity over the last 24 h using an 11-point numerical scale, where 0 represents “no pain” and 10 represents “the worst pain imaginable”. The commonly used ranges for pain intensity classification are 0 (no pain), 1–3 (mild pain), 4–6 (moderate pain), and 7 or higher (severe pain) [23,25]. The NPRS has demonstrated strong test–retest reliability, with intraclass correlation coefficients (ICC) ranging from 0.58 to 0.96 in patients with a diagnosis compatible with CPMP [26,27,28].
- 3.
- The Symptom Checklist-90-R (SCL-90-R) [29]: This is a self-report instrument that assesses psychological distress. It consists of 90 items with a Likert-type response scale ranging from 0 (not at all) to 4 (extremely). The items are grouped into nine symptom dimensions: somatisation, obsessive–compulsive, interpersonal sensitivity, depression, anxiety, hostility, phobic anxiety, paranoid ideation, and psychoticism. Additionally, the scale includes three global distress indices: the Global Severity Index (GSI), which reflects overall psychological distress; the Positive Symptom Total (PST), which indicates the number of reported symptoms regardless of intensity; and the Positive Symptom Distress Index (PSDI), which assesses the average intensity of the reported symptoms. According to Derogatis [29], T-scores between 40 and 60 fall within the normative range, while scores ≥60 indicate clinically significant psychological distress. Regarding reliability, Cronbach’s alpha for this instrument is approximately α = 0.80 in general and clinical populations. In this study, internal consistency was α = 0.79.
- 4.
- The Pittsburgh Sleep Quality Index (PSQI) [30]: This is a self-report instrument that assesses overall sleep quality. The scale consists of 19 questions with a Likert-type response scale ranging from 0 to 3, answered by the participant. Additionally, five optional questions for a roommate provide qualitative insights but do not contribute to the final score. The self-reported items are grouped into seven components: subjective sleep quality, sleep latency, sleep duration, sleep efficiency, sleep disturbances, the use of sleep medication, and daytime dysfunction. The total score ranges from 0 to 21, with higher scores indicating worse sleep quality. According to Buysse et al. [30], a total score below 5 indicates “good sleep quality”, while scores ≥5 suggest “poor sleep quality”. Regarding reliability, studies report Cronbach’s alpha between α = 0.64 and α = 0.83 in general and clinical populations [30,31]. In this study, internal consistency was α = 0.75.
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CMP | Chronic Musculoskeletal Pain |
CPMP | Chronic Primary Musculoskeletal Pain |
HC | Healthy Controls |
ICD-11 | International Classification of Diseases, 11th Revision |
NPRS | Numeric Pain Rating Scale |
SCL-90-R | Symptom Checklist-90-Revised |
PSQI | Pittsburgh Sleep Quality Index |
GSI | Global Severity Index |
PST | Positive Symptom Total |
PSDI | Positive Symptom Distress Index |
References
- El-Tallawy, S.N.; Nalamasu, R.; Salem, G.I.; LeQuang, J.A.K.; Pergolizzi, J.V.; Christo, P.J. Management of Musculoskeletal Pain: An Update with Emphasis on Chronic Musculoskeletal Pain. Pain Ther. 2021, 10, 181–209. [Google Scholar] [CrossRef]
- Martínez-Borba, V.; Ripoll-Server, P.; Yakobov, E.; Suso-Ribera, C. Predicting the Physical and Mental Health Status of Individuals with Chronic Musculoskeletal Pain from a Biopsychosocial Perspective: A Multivariate Approach. Clin. J. Pain 2021, 37, 211. [Google Scholar] [CrossRef]
- World Health Organization. Musculoskeletal Health. Available online: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions (accessed on 25 February 2024).
- Garnaes, K.K.; Mørkved, S.; Salvesen, Ø.; Tønne, T.; Furan, L.; Grønhaug, G.; Vasseljen, O.; Johannessen, H.H. What Factors Are Associated with Health-related Quality of Life among Patients with Chronic Musculoskeletal Pain? A Cross-sectional Study in Primary Health Care. BMC Musculoskelet. Disord. 2021, 22, 102. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Diseases, 11th ed.; World Health Organization: Geneva, Switzerland, 2018; Available online: https://icd.who.int/en (accessed on 22 March 2024).
- Reis, F.; Guimarães, F.; Nogueira, L.C.; Meziat-Filho, N.; Sanchez, T.A.; Wideman, T. Association between Pain Drawing and Psychological Factors in Musculoskeletal Chronic Pain: A Systematic Review. Physiother. Theory Pract. 2019, 35, 533–542. [Google Scholar] [CrossRef]
- de la Vega, R.; Racine, M.; Sánchez-Rodríguez, E.; Tomé-Pires, C.; Castarlenas, E.; Jensen, M.P.; Miró, J. Pain Extent, Pain Intensity, and Sleep Quality in Adolescents and Young Adults. Pain Med. 2016, 17, 1971–1977. [Google Scholar] [CrossRef]
- Sturgeon, J.A.; Langford, D.; Tauben, D.; Sullivan, M. Pain Intensity as a Lagging Indicator of Patient Improvement: Longitudinal Relationships with Sleep, Psychiatric Distress, and Function in Multidisciplinary Care. J. Pain 2021, 22, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.P.; Sánchez, A.I.; Cáliz, R.; Miró, E. Psychopathology as a Moderator of the Relationship Between Physical Symptoms and Impairment in Fibromyalgia Patients. Psicothema 2021, 2, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Calderon, J.; Meeus, M.; Struyf, F.; Morales-Asencio, J.M.; Gijon-Nogueron, G.; Luque-Suarez, A. The Role of Psychological Factors in the Perpetuation of Pain Intensity and Disability in People with Chronic Shoulder Pain: A Systematic Review. BMJ Open 2018, 8, e020703. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.N.; Kohberg, M.; Juul-Kristensen, B.; Herborg, L.G.; Søgaard, K.; Roessler, K.K. Psychosocial Aspects of Everyday Life with Chronic Musculoskeletal Pain: A Systematic Review. Scand. J. Pain 2014, 5, 131–148. [Google Scholar] [CrossRef]
- Meints, S.M.; Edwards, R.R. Evaluating Psychosocial Contributions to Chronic Pain Outcomes. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 87, 168–182. [Google Scholar] [CrossRef]
- Martinez-Calderon, J.; Flores-Cortes, M.; Morales-Asencio, J.M.; Luque-Suarez, A. Which Psychological Factors Are Involved in the Onset and/or Persistence of Musculoskeletal Pain? An Umbrella Review of Systematic Reviews and Meta-Analyses of Prospective Cohort Studies. Clin. J. Pain 2020, 36, 626. [Google Scholar] [CrossRef]
- Whibley, D.; AlKandari, N.; Kristensen, K.; Barnish, M.; Rzewuska, M.; Druce, K.L.; Tang, N.K.Y. Sleep and Pain: A Systematic Review of Studies of Mediation. Clin. J. Pain 2019, 35, 544. [Google Scholar] [CrossRef]
- Goossens, Z.; Van Stallen, A.; Vermuyten, J.; De deyne, M.; Rice, D.; Runge, N.; Huysmans, E.; Vantilborgh, T.; Nijs, J.; Mairesse, O.; et al. Day-to-Day Associations between Pain Intensity and Sleep Outcomes in an Adult Chronic Musculoskeletal Pain Population: A Systematic Review. Sleep. Med. Rev. 2025, 79, 102013. [Google Scholar] [CrossRef]
- Jain, S.V.; Panjeton, G.D.; Martins, Y.C. Relationship Between Sleep Disturbances and Chronic Pain: A Narrative Review. Clin. Pract. 2024, 14, 2650–2660. [Google Scholar] [CrossRef]
- Finan, P.H.; Goodin, B.R.; Smith, M.T. The Association of Sleep and Pain: An Update and a Path Forward. J. Pain 2013, 14, 1539–1552. [Google Scholar] [CrossRef]
- Seiger, A.N.; Penzel, T.; Fietze, I. Chronic Pain Management and Sleep Disorders. Cell Rep. Med. 2024, 5, 101761. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, M.; Vlaeyen, J.W.S.; Rief, W.; Barke, A.; Aziz, Q.; Benoliel, R.; Cohen, M.; Evers, S.; Giamberardino, M.A.; Goebel, A.; et al. The IASP Classification of Chronic Pain for ICD-11: Chronic Primary Pain. Pain 2019, 160, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic Pain: An Update on Burden, Best Practices, and New Advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef]
- de Souza, I.M.B.; Sakaguchi, T.F.; Yuan, S.L.K.; Matsutani, L.A.; do Espírito-Santo, A.D.S.; Pereira, C.A.D.B.; Marques, A.P. Prevalence of Low Back Pain in the Elderly Population: A Systematic Review. Clinics 2019, 74, e789. [Google Scholar] [CrossRef]
- Wong, C.K.; Mak, R.Y.; Kwok, T.S.; Tsang, J.S.; Leung, M.Y.; Funabashi, M.; Macedo, L.G.; Dennett, L.; Wong, A.Y. Prevalence, Incidence, and Factors Associated with Non-Specific Chronic Low Back Pain in Community-Dwelling Older Adults Aged 60 Years and Older: A Systematic Review and Meta-Analysis. J. Pain 2022, 23, 509–534. [Google Scholar] [CrossRef]
- Breivik, H.; Borchgrevink, P.C.; Allen, S.M.; Rosseland, L.A.; Romundstad, L.; Hals, E.K.B.; Kvarstein, G.; Stubhaug, A. Assessment of Pain. Br. J. Anaesth. 2008, 101, 17–24. [Google Scholar] [CrossRef]
- Day, M.A.; Matthews, N.; Newman, A.; Mattingley, J.B.; Jensen, M.P. An Evaluation of the Behavioral Inhibition and Behavioral Activation System (BIS-BAS) Model of Pain. Rehabil. Psychol. 2019, 64, 279–287. [Google Scholar] [CrossRef]
- Modarresi, S.; MacDermid, J.C.; Suh, N.; Elliott, J.M.; Walton, D.M. How Is the Probability of Reporting Various Levels of Pain 12 Months After Noncatastrophic Injuries Associated with the Level of Peritraumatic Distress? Clin. Orthop. Relat. Res. 2022, 480, 226. [Google Scholar] [CrossRef]
- Childs, J.D.; Piva, S.R.; Fritz, J.M. Responsiveness of the Numeric Pain Rating Scale in Patients with Low Back Pain. Spine 2005, 30, 1331. [Google Scholar] [CrossRef]
- Kahl, C.; Cleland, J.A. Visual Analogue Scale, Numeric Pain Rating Scale and the McGill Pain Questionnaire: An Overview of Psychometric Properties. Phys. Ther. Rev. 2005, 10, 123–128. [Google Scholar] [CrossRef]
- Modarresi, S.; Lukacs, M.J.; Ghodrati, M.; Salim, S.; MacDermid, J.C.; Walton, D.M. A Systematic Review and Synthesis of Psychometric Properties of the Numeric Pain Rating Scale and the Visual Analog Scale for Use in People with Neck Pain. Clin. J. Pain 2021, 38, 132. [Google Scholar] [CrossRef]
- Derogatis, L.R. SCL-90-R. Administration, Scoring and Procedures Manual, 3rd ed.; National Computer Systems: Minneapolis, MN, USA, 1994. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Mollayeva, T.; Thurairajah, P.; Burton, K.; Mollayeva, S.; Shapiro, C.M.; Colantonio, A. The Pittsburgh Sleep Quality Index as a Screening Tool for Sleep Dysfunction in Clinical and Non-Clinical Samples: A Systematic Review and Meta-Analysis. Sleep. Med. Rev. 2016, 25, 52–73. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, X.; Qiu, Q.; Zhan, H.; Wu, W. Changes in Empathy in Patients with Chronic Low Back Pain: A Structural-Functional Magnetic Resonance Imaging Study. Front. Hum. Neurosci. 2020, 14, 326. [Google Scholar] [CrossRef] [PubMed]
- Moreira, L.P.C.; Mendoza, C.; Barone, M.; Rocha, R.S.; Dias Dos Santos, R.; Hazime, F.A. Reduction in Pain Inhibitory Modulation and Cognitive-Behavioral Changes in Patients with Chronic Low Back Pain: A Case-Control Study. Pain Manag. Nurs. 2021, 22, 599–604. [Google Scholar] [CrossRef]
- Richards, G.C.; Lluka, L.J.; Smith, M.T.; Haslam, C.; Moore, B.; O’Callaghan, J.; Strong, J. Effects of Long-Term Opioid Analgesics on Cognitive Performance and Plasma Cytokine Concentrations in Patients with Chronic Low Back Pain: A Cross-Sectional Pilot Study. Pain Rep. 2018, 3, e669. [Google Scholar] [CrossRef]
- Clark, J.R.; Nijs, J.; Yeowell, G.; Holmes, P.; Goodwin, P.C. Trait Sensitivity, Anxiety, and Personality Are Predictive of Central Sensitization Symptoms in Patients with Chronic Low Back Pain. Pain Pract. 2019, 19, 800–810. [Google Scholar] [CrossRef]
- Pakpour, A.H.; Yaghoubidoust, M.; Campbell, P. Persistent and Developing Sleep Problems: A Prospective Cohort Study on the Relationship to Poor Outcome in Patients Attending a Pain Clinic with Chronic Low Back Pain. Pain Pract. 2018, 18, 79–86. [Google Scholar] [CrossRef]
- Skarpsno, E.S.; Mork, P.J.; Nilsen, T.I.L.; Nordstoga, A.L. Influence of Sleep Problems and Co-Occurring Musculoskeletal Pain on Long-Term Prognosis of Chronic Low Back Pain: The HUNT Study. J. Epidemiol. Community Health 2020, 74, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.K.; Gentili, A.; Coffey-Vega, K.; Morone, N.; Rossi, M.; Perera, S. Biopsychosocial Profiles and Functional Correlates in Older Adults with Chronic Low Back Pain: A Preliminary Study. Pain Med. 2019, 20, 1300–1310. [Google Scholar] [CrossRef]
- Fujii, T.; Oka, H.; Katsuhira, J.; Tonosu, J.; Kasahara, S.; Tanaka, S.; Matsudaira, K. Association between Somatic Symptom Burden and Health-Related Quality of Life in People with Chronic Low Back Pain. PLoS ONE 2018, 13, e0193208. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.H.; Garey, L.; Raines, A.M.; Allan, N.P.; Schmidt, N.B.; Zvolensky, M.J. Anxiety Sensitivity and Opioid Use Motives among Adults with Chronic Low Back Pain. Exp. Clin. Psychopharmacol. 2022, 30, 23–30. [Google Scholar] [CrossRef]
- Ho, K.K.N.; Simic, M.; Cvancarova Småstuen, M.; de Barros Pinheiro, M.; Ferreira, P.H.; Bakke Johnsen, M.; Heuch, I.; Grotle, M.; Zwart, J.A.; Nilsen, K.B. The Association between Insomnia, c-Reactive Protein, and Chronic Low Back Pain: Cross-Sectional Analysis of the HUNT Study, Norway. Scand. J. Pain 2019, 19, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Mawla, I.; Kong, J.; Lee, J.; Gerber, J.; Ortiz, A.; Kim, H.; Chan, S.-T.; Loggia, M.L.; Wasan, A.D.; et al. Somatotopically Specific Primary Somatosensory Connectivity to Salience and Default Mode Networks Encodes Clinical Pain. Pain 2019, 160, 1594–1605. [Google Scholar] [CrossRef]
- Rumble, D.D.; O’Neal, K.; Overstreet, D.S.; Penn, T.M.; Jackson, P.; Aroke, E.N.; Sims, A.M.; King, A.L.; Hasan, F.N.; Quinn, T.L.; et al. Sleep and Neighborhood Socioeconomic Status: A Micro Longitudinal Study of Chronic Low-Back Pain and Pain-Free Individuals. J. Behav. Med. 2021, 44, 811–821. [Google Scholar] [CrossRef]
- Hu, Y.; Yang, Z.; Li, Y.; Xu, Y.; Tian, M.; Jiang, N.; Guo, N. Prevalence and Associated Factors of Depressive Symptoms Among Patients with Chronic Low Back Pain: A Cross-Sectional Study. Front. Psychiatry 2022, 12, 820782. [Google Scholar] [CrossRef]
- Neumann, A.; Hampel, P. Long-Term Effects of Rehabilitation and Prevention of Further Chronification of Pain among Patients with Non-Specific Low Back Pain. J. Back. Musculoskelet. Rehabil. 2022, 35, 1257–1268. [Google Scholar] [CrossRef]
- Montgomery, W.; Vietri, J.; Shi, J.; Ogawa, K.; Kariyasu, S.; Alev, L.; Nakamura, M. The Relationship between Pain Severity and Patient-Reported Outcomes among Patients with Chronic Low Back Pain in Japan. J. Pain Res. 2016, 9, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Epping-Jordan, J.E.; Wahlgren, D.R.; Williams, R.A.; Pruitt, S.D.; Slater, M.A.; Patterson, T.L.; Grant, I.; Webster, J.S.; Atkinson, J.H. Transition to Chronic Pain in Men with Low Back Pain: Predictive Relationships among Pain Intensity, Disability, and Depressive Symptoms. Health Psychol. 1998, 17, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsson, H.; Safipour, J.; Elmqvist, C.; Lindqvist, G. Different Pain Variables Could Independently Predict Anxiety and Depression in Subjects with Chronic Musculoskeletal Pain. Scand. J. Pain 2021, 21, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Alsaadi, S.M.; McAuley, J.H.; Hush, J.M.; Lo, S.; Bartlett, D.J.; Grunstein, R.R.; Maher, C.G. The Bidirectional Relationship Between Pain Intensity and Sleep Disturbance/Quality in Patients with Low Back Pain. Clin. J. Pain 2014, 30, 755. [Google Scholar] [CrossRef]
- Bahouq, H.; Allali, F.; Rkain, H.; Hmamouchi, I.; Hajjaj-Hassouni, N. Prevalence and Severity of Insomnia in Chronic Low Back Pain Patients. Rheumatol. Int. 2013, 33, 1277–1281. [Google Scholar] [CrossRef]
- Morelhão, P.K.; Gobbi, C.; Christofaro, D.G.D.; Damato, T.M.; Grande, G.D.; Frange, C.; Andersen, M.L.; Tufik, S.; Franco, M.R.; Pinto, R.Z. Bidirectional Association Between Sleep Quality and Low Back Pain in Older Adults: A Longitudinal Observational Study. Arch. Phys. Med. Rehabil. 2022, 103, 1558–1564. [Google Scholar] [CrossRef]
- Smith, M.T.; McCrae, C.S.; Cheung, J.; Martin, J.L.; Harrod, C.G.; Heald, J.L.; Carden, K.A. Use of Actigraphy for the Evaluation of Sleep Disorders and Circadian Rhythm Sleep-Wake Disorders: An American Academy of Sleep Medicine Systematic Review, Meta-Analysis, and GRADE Assessment. J. Clin. Sleep. Med. 2018, 14, 1209–1230. [Google Scholar] [CrossRef]
CPMP (n = 30) | HC (n = 30) | p | |
---|---|---|---|
Age (average in years ± SD) | 57.60 ± 8.51 | 54.13 ± 5.82 | 0.087 1 |
Range (years) | 41–75 | 44–69 | |
Sex, n (%) | |||
Male | 8 (26.7) | 18 (60) | 0.019 2 |
Female | 22 (73.3) | 12 (40) | |
Civil status, n (%) | |||
Single | 2 (6.7) | 3 (10) | 1 3 |
Married | 24 (80) | 24 (80) | |
Divorced | 2 (6.7) | 2 (6.7) | |
Widowed | 2 (6.7) | 1 (3.3) | |
Occupational status, n (%) | |||
Employed | 20 (66.7) | 24 (80) | 0.164 3 |
Unemployed | 4 (13.3) | 5 (16.7) | |
Retired | 6 (20) | 1 (3.3) | |
Site of pain, n (%) | |||
Lumbar | 30 (100) | NA | NA |
Cervical | 0 | NA | NA |
Thorax | 0 | NA | NA |
Other | 0 | NA | NA |
Duration of pain (average in years ± SD) | 11.95 ± 1.85 | NA | NA |
Range (years) | 1–40 | NA | NA |
NPRS (mean ± SD) | 5.23 ± 1.63 | NA | NA |
Medication for pain, n (%) | |||
Yes | 26 (86.7) | NA | NA |
No | 4 (13.3) | NA | NA |
CPMP (n = 30) | HC (n = 30) | Z | Adjusted p-Value (Benjamini–Hochberg) | |
---|---|---|---|---|
SCL-90-R T scores | ||||
1. SOM | 60.93 ± 6.50 | 45.93 ± 8.79 | −5.56 | 0.001 1 |
2. O-C | 56.83 ± 10.21 | 43.20 ± 8.22 | −4.89 | 0.001 1 |
3. I-S | 51.23 ± 10.30 | 41.43 ± 7.30 | −3.82 | 0.001 1 |
4. DEP | 54.40 ± 10.05 | 39.53 ± 5.94 | −5.33 | 0.001 1 |
5. ANX | 50.53 ± 7.92 | 41.20 ± 8.47 | −4.67 | 0.001 1 |
6. HOS | 51.10 ± 8.30 | 41.80 ± 8.50 | −3.76 | 0.001 1 |
7. PHOB | 47.23 ± 13.97 | 39.20 ± 8.32 | −2.50 | 0.013 1 |
8. PAR | 46.73 ± 11.59 | 42.23 ± 8.38 | −1.29 | 0.197 1 |
9. PSY | 51.40 ± 14.10 | 39.70 ± 10.56 | −3.09 | 0.002 1 |
GSI | 57.27 ± 9.53 | 40.97 ± 6.69 | −5.73 | 0.001 1 |
PST | 59.13 ± 10.06 | 43.83 ± 8.03 | −5.11 | 0.001 1 |
PSDI | 50.03 ± 10.52 | 38.23 ± 5.69 | −4.62 | 0.001 1 |
PSQI—Global score | 11.17 ± 3.90 | 5.80 ± 3.32 | −4.73 | 0.001 1 |
Good sleep quality | 2 (6.7) | 18 (60) | NA | 0.001 2 |
Bad sleep quality | 28 (93.3) | 12 (40) |
CPMP (n = 30) | |
---|---|
NPRS | |
Correlation Coefficient (r) | |
SCL-90-R T Scores | |
1. SOM | 0.753 ** |
2. O-C | 0.542 ** |
3. I-S | 0.678 ** |
4. DEP | 0.823 ** |
5. ANX | 0.800 ** |
6. HOS | 0.586 ** |
7. PHOB | 0.474 * |
8. PAR | 0.362 * |
9. PSY | 0.641 ** |
GSI | 0.838 ** |
PST | 0.735 ** |
PSDI | 0.574 ** |
PSQI—Global Score | 0.785 ** |
CPMP (n = 30) | ||||
---|---|---|---|---|
NPRS | ||||
Adjusted R2 | β | t | Adjusted p-Value (Benjamini–Hochberg) | |
SCL-90-R T Scores | ||||
1. SOM | 0.42 | 0.68 | 4.15 | 0.013 |
2. O-C | 0.35 | 0.61 | 3.51 | 0.003 |
3. I-S | 0.56 | 0.76 | 5.32 | 0.006 |
4. DEP | 0.59 | 0.75 | 5.44 | 0.004 |
5. ANX | 0.64 | 0.80 | 6.15 | 0.003 |
6. HOS | 0.56 | 0.74 | 5.19 | 0.003 |
7. PHOB | 0.22 | 0.48 | 2.52 | 0.019 |
8. PAR | 0.33 | 0.52 | 2.95 | 0.008 |
9. PSY | 0.53 | 0.69 | 4.63 | 0.002 |
GSI | 0.68 | 0.87 | 7.08 | 0.002 |
PST | 0.67 | 0.84 | 6.73 | 0.002 |
PSDI | 0.27 | 0.53 | 2.89 | 0.009 |
PSQI—Global Score | 0.55 | 0.74 | 5.10 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arévalo-Martínez, A.; Barbosa-Torres, C.; García-Baamonde, M.E.; Díaz-Muñoz, C.L.; Moreno-Manso, J.M. Psychopathological Symptomatology and Sleep Quality in Chronic Primary Musculoskeletal Pain: A Comparison with Healthy Controls. Healthcare 2025, 13, 1965. https://doi.org/10.3390/healthcare13161965
Arévalo-Martínez A, Barbosa-Torres C, García-Baamonde ME, Díaz-Muñoz CL, Moreno-Manso JM. Psychopathological Symptomatology and Sleep Quality in Chronic Primary Musculoskeletal Pain: A Comparison with Healthy Controls. Healthcare. 2025; 13(16):1965. https://doi.org/10.3390/healthcare13161965
Chicago/Turabian StyleArévalo-Martínez, Alejandro, Carlos Barbosa-Torres, María Elena García-Baamonde, César Luis Díaz-Muñoz, and Juan Manuel Moreno-Manso. 2025. "Psychopathological Symptomatology and Sleep Quality in Chronic Primary Musculoskeletal Pain: A Comparison with Healthy Controls" Healthcare 13, no. 16: 1965. https://doi.org/10.3390/healthcare13161965
APA StyleArévalo-Martínez, A., Barbosa-Torres, C., García-Baamonde, M. E., Díaz-Muñoz, C. L., & Moreno-Manso, J. M. (2025). Psychopathological Symptomatology and Sleep Quality in Chronic Primary Musculoskeletal Pain: A Comparison with Healthy Controls. Healthcare, 13(16), 1965. https://doi.org/10.3390/healthcare13161965