An Association Between Possible Sarcopenia as an Early Marker and Mild Cognitive Impairment: A Cross-Sectional Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Measurements
2.2. Statistical Analysis
3. Results
Association Between Possible Sarcopenia and Mild Cognitive Impairment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth Around the World. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.; Mosler, H. The Oldest Societies in Asia: The Politics of Ageing in South Korea and Japan; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta- analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Lopez, O.; Armstrong, M.J.; Getchius, T.S.D.; Ganguli, M.; Gloss, D.; Gronseth, G.S.; Marson, D.; Pringsheim, T.; Day, G.S.; et al. Practice guideline update summary: Mild cognitive impairment: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2018, 90, 126–135. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 601. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Fukunishi, S.; Asai, A.; Yokohama, K.; Nishiguchi, S.; Higuchi, K. Pathophysiology and mechanisms of primary sarcopenia (Review). Int. J. Mol. Med. 2021, 48, 601. [Google Scholar] [CrossRef]
- Narici, M.V.; Maffulli, N. Sarcopenia: Characteristics, mechanisms and functional significance. Br. Med. Bull. 2010, 95, 139–159. [Google Scholar] [CrossRef]
- Tan, K.T.; Ang, S.J.; Tsai, S.Y. Sarcopenia: Tilting the Balance of Protein Homeostasis. Proteomics 2020, 20, e1800411. [Google Scholar] [CrossRef]
- Rygiel, K.A.; Picard, M.; Turnbull, D.M. The ageing neuromuscular system and sarcopenia: A mitochondrial perspective. J. Physiol. 2016, 594, 4499–4512. [Google Scholar] [CrossRef]
- Yoo, J.S.; Chin, J.H.; Kim, M.J.; Jang, K.J. College Students’ Dietary Behavior, Health-Related Lifestyles and Nutrient Intake Status by Physical Activity Levels using International Physical Activity Questionnaire (IPAQ) in Incheon Area. J. Nutr. Health 2008, 41, 818–831. [Google Scholar]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Abellan van Kan, G.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef]
- Mufson, E.J.; Binder, L.; Counts, S.E.; DeKosky, S.T.; de Toledo-Morrell, L.; Ginsberg, S.D.; Ikonomovic, M.D.; Perez, S.E.; Scheff, S.W. Mild cognitive impairment: Pathology and mechanisms. Acta Neuropathol. 2012, 123, 13–30. [Google Scholar] [CrossRef]
- Tabatabaei-Jafari, H.; Shaw, M.E.; Cherbuin, N. Cerebral atrophy in mild cognitive impairment: A systematic review with meta-analysis. Alzheimers Dement 2015, 1, 487–504. [Google Scholar] [CrossRef]
- Anderson, N.D. State of the science on mild cognitive impairment (MCI). CNS Spectr. 2019, 24, 78–87. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bedirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Wolf, H.; Jelic, V.; Gertz, H.J.; Nordberg, A.; Julin, P.; Wahlund, L.O. A critical discussion of the role of neuroimaging in mild cognitive impairment. Acta Neurol. Scand. Suppl. 2003, 179, 52–76. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.X.; Liang, N.; Li, X.L.; Yang, S.H.; Wang, Y.P.; Shi, N.N. Diagnosis and Treatment for Mild Cognitive Impairment: A Systematic Review of Clinical Practice Guidelines and Consensus Statements. Front. Neurol. 2021, 12, 719849. [Google Scholar] [CrossRef]
- Vemuri, P.; Wiste, H.J.; Weigand, S.D.; Shaw, L.M.; Trojanowski, J.Q.; Weiner, M.W.; Knopman, D.S.; Petersen, R.C.; Jack, C.R., Jr. Alzheimer’s Disease Neuroimaging, I. MRI and CSF biomarkers in normal, MCI, and AD subjects: Predicting future clinical change. Neurology 2009, 73, 294–301. [Google Scholar] [CrossRef]
- Chang, K.V.; Hsu, T.H.; Wu, W.T.; Huang, K.C.; Han, D.S. Association Between Sarcopenia and Cognitive Impairment: A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2016, 17, 1164.e7–1164.e15. [Google Scholar] [CrossRef]
- Hu, Y.; Peng, W.; Ren, R.; Wang, Y.; Wang, G. Sarcopenia and mild cognitive impairment among elderly adults: The first longitudinal evidence from CHARLS. J. Cachexia Sarcopenia Muscle 2022, 13, 2944–2952. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xiao, M.; Leng, L.; Jiang, S.; Feng, L.; Pan, G.; Li, Z.; Wang, Y.; Wang, J.; Wen, Y.; et al. A systematic review and meta-analysis of the prevalence and correlation of mild cognitive impairment in sarcopenia. J. Cachexia Sarcopenia Muscle 2023, 14, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Beeri, M.S.; Leugrans, S.E.; Delbono, O.; Bennett, D.A.; Buchman, A.S. Sarcopenia is associated with incident Alzheimer’s dementia, mild cognitive impairment, and cognitive decline. J. Am. Geriatr. Soc. 2021, 69, 1826–1835. [Google Scholar] [CrossRef]
- Salinas-Rodriguez, A.; Palazuelos-Gonzalez, R.; Gonzalez-Bautista, E.; Manrique-Espinoza, B. Editorial: Sarcopenia, Cognitive Function, and the Heterogeneity in Aging. J. Nutr. Health Aging 2023, 27, 240–242. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Han, P.; Yu, X.; Zhang, Y.; Song, P.; Liu, Y.; Jiang, Z.; Tao, Z.; Shen, S.; Wu, Y.; et al. Relationships between sarcopenia, depressive symptoms, and mild cognitive impairment in Chinese community-dwelling older adults. J. Affect. Disord. 2021, 286, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, M.; Luo, Q.; Li, J. The association of sarcopenia, possible sarcopenia and cognitive impairment: A systematic review and meta-analysis. PLoS ONE 2025, 20, e0324258. [Google Scholar] [CrossRef]
- Ulger, Z.; Aycicek, G.S.; Kara, O.; Kara, M. Ultrasonographic/regional muscle measurements for diagnosing sarcopenia in older adults with and without dementia. Turk. J. Med. Sci. 2022, 52, 1926–1932. [Google Scholar] [CrossRef] [PubMed]
- Salis, F.; Costaggiu, D.; Mandas, A. Mini-Mental State Examination: Optimal Cut-Off Levels for Mild and Severe Cognitive Impairment. Geriatrics 2023, 8, 12. [Google Scholar] [CrossRef]
- O’Bryant, S.E.; Humphreys, J.D.; Smith, G.E.; Ivnik, R.J.; Graff-Radford, N.R.; Petersen, R.C.; Lucas, J.A. Detecting dementia with the mini-mental state examination in highly educated individuals. Arch. Neurol. 2008, 65, 963–967. [Google Scholar] [CrossRef]
- Peng, T.C.; Chen, W.L.; Wu, L.W.; Chang, Y.W.; Kao, T.W. Sarcopenia and cognitive impairment: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 2695–2701. [Google Scholar] [CrossRef]
- Cavalcante, B.R.; Falck, R.S.; Liu-Ambrose, T. Editorial: “May the Force (and Size) Be with You”: Muscle Mass and Function Are Important Risk Factors for Cognitive Decline and Dementia. J. Nutr. Health Aging 2023, 27, 926–928. [Google Scholar] [CrossRef]
- Dong, X.; Yu, Y.; Li, J.; Chai, X.; Shan, W.; Yan, H.; Lu, Y. A study of the correlation between sarcopenia and cognitive impairment in older individuals over 60 years: Cross-sectional and longitudinal validation. Front. Aging Neurosci. 2024, 16, 1489185. [Google Scholar] [CrossRef]
- Patterson, S.L. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1beta, BDNF and synaptic plasticity. Neuropharmacology 2015, 96, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Penninx, B.W.; Volpato, S.; Harris, T.B.; Bandeen-Roche, K.; Balfour, J.; Leveille, S.G.; Fried, L.P.; Md, J.M. Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels. J. Am. Geriatr. Soc. 2002, 50, 1947–1954. [Google Scholar] [CrossRef]
- Orwoll, E.; Lambert, L.C.; Marshall, L.M.; Phipps, K.; Blank, J.; Barrett-Connor, E.; Cauley, J.; Ensrud, K.; Cummings, S. Testosterone and estradiol among older men. J. Clin. Endocrinol. Metab. 2006, 91, 1336–1344. [Google Scholar] [CrossRef]
- Visser, M.; Deeg, D.J.; Lips, P.; Harris, T.B.; Bouter, L.M. Skeletal muscle mass and muscle strength in relation to lower-extremity performance in older men and women. J. Am. Geriatr. Soc. 2000, 48, 381–386. [Google Scholar] [CrossRef]
- Sui, S.X.; Williams, L.J.; Holloway-Kew, K.L.; Hyde, N.K.; Pasco, J.A. Skeletal Muscle Health and Cognitive Function: A Narrative Review. Int. J. Mol. Sci. 2020, 22, 255. [Google Scholar] [CrossRef]
- de Lima, E.P.; Tanaka, M.; Lamas, C.B.; Quesada, K.; Detregiachi, C.R.P.; Araujo, A.C.; Guiguer, E.L.; Catharin, V.; de Castro, M.V.M.; Junior, E.B.; et al. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024, 12, 2096. [Google Scholar] [CrossRef]
- Gurholt, T.P.; Borda, M.G.; Parker, N.; Fominykh, V.; Kjelkenes, R.; Linge, J.; van der Meer, D.; Sonderby, I.E.; Duque, G.; Westlye, L.T.; et al. Linking sarcopenia, brain structure and cognitive performance: A large-scale UK Biobank study. Brain Commun. 2024, 6, fcae083. [Google Scholar] [CrossRef] [PubMed]
- Rolland, Y.; Czerwinski, S.; Abellan Van Kan, G.; Morley, J.E.; Cesari, M.; Onder, G.; Woo, J.; Baumgartner, R.; Pillard, F.; Boirie, Y.; et al. Sarcopenia: Its assessment, etiology, pathogenesis, consequences and future perspectives. J. Nutr. Health Aging 2008, 12, 433–450. [Google Scholar] [CrossRef]
- Phillips, S.M.; Tang, J.E.; Moore, D.R. The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J. Am. Coll. Nutr. 2009, 28, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Colcombe, S.J.; Erickson, K.I.; Scalf, P.E.; Kim, J.S.; Prakash, R.; McAuley, E.; Elavsky, S.; Marquez, D.X.; Hu, L.; Kramer, A.F. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1166–1170. [Google Scholar] [CrossRef] [PubMed]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef]
- Landi, F.; Calvani, R.; Cesari, M.; Tosato, M.; Martone, A.M.; Bernabei, R.; Onder, G.; Marzetti, E. Sarcopenia as the Biological Substrate of Physical Frailty. Clin. Geriatr. Med. 2015, 31, 367–374. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, X.; Li, Y.; Li, H.; Yang, Q. The longitudinal bidirectional association between sarcopenia and cognitive function in community-dwelling older adults: Findings from the China Health and Retirement Longitudinal Study. J. Glob. Health 2023, 13, 4182. [Google Scholar] [CrossRef]
- Liu, H.; Fan, Y.; Liang, J.; Hu, A.; Chen, W.; Wang, H.; Fan, Y.; Li, M.; Duan, J.; Wang, Q. A causal relationship between sarcopenia and cognitive impairment: A Mendelian randomization study. PLoS ONE 2024, 19, e0309124. [Google Scholar] [CrossRef]
- Fragala, M.S.; Alley, D.E.; Shardell, M.D.; Harris, T.B.; McLean, R.R.; Kiel, D.P.; Cawthon, P.M.; Dam, T.T.; Ferrucci, L.; Guralnik, J.M.; et al. Comparison of Handgrip and Leg Extension Strength in Predicting Slow Gait Speed in Older Adults. J. Am. Geriatr. Soc. 2016, 64, 144–150. [Google Scholar] [CrossRef]
- Landrigan, J.F.; Bell, T.; Crowe, M.; Clay, O.J.; Mirman, D. Lifting cognition: A meta-analysis of effects of resistance exercise on cognition. Psychol. Res. 2020, 84, 1167–1183. [Google Scholar] [CrossRef] [PubMed]
- Chow, Z.S.; Moreland, A.T.; Macpherson, H.; Teo, W.P. The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function. Sports Med. 2021, 51, 2483–2506. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Zhao, Z.; Liu, H.; Yang, J.; Luo, J. The physiological mechanism and effect of resistance exercise on cognitive function in the elderly people. Front. Public. Health 2022, 10, 1013734. [Google Scholar] [CrossRef] [PubMed]
- Marzolini, S.; Oh, P.I.; Brooks, D. Effect of combined aerobic and resistance training versus aerobic training alone in individuals with coronary artery disease: A meta-analysis. Eur. J. Prev. Cardiol. 2012, 19, 81–94. [Google Scholar] [CrossRef]
- Bunout, D.; Barrera, G.; Hirsch, S.; Jimenez, T.; de la Maza, M.P. Association between activity energy expenditure and peak oxygen consumption with sarcopenia. BMC Geriatr. 2018, 18, 298. [Google Scholar] [CrossRef]
- Sugie, M.; Harada, K.; Takahashi, T.; Nara, M.; Fujimoto, H.; Kyo, S.; Ito, H. Peak oxygen uptake correlates with indices of sarcopenia, frailty, and cachexia in older Japanese outpatients. JCSM Rapid Commun. 2021, 4, 141–149. [Google Scholar] [CrossRef]
- Wendell, C.R.; Gunstad, J.; Waldstein, S.R.; Wright, J.G.; Ferrucci, L.; Zonderman, A.B. Cardiorespiratory fitness and accelerated cognitive decline with aging. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 455–462. [Google Scholar] [CrossRef]
- Hayes, S.M.; Hayes, J.P.; Cadden, M.; Verfaellie, M. A review of cardiorespiratory fitness-related neuroplasticity in the aging brain. Front. Aging Neurosci. 2013, 5, 31. [Google Scholar] [CrossRef]
- Speakman, J.R.; Selman, C. Physical activity and resting metabolic rate. Proc. Nutr. Soc. 2003, 62, 621–634. [Google Scholar] [CrossRef]
- Miller, W.M.; Spring, T.J.; Zalesin, K.C.; Kaeding, K.R.; Janosz, K.E.N.; McCullough, P.A.; Franklin, B.A. Lower than predicted resting metabolic rate is associated with severely impaired cardiorespiratory fitness in obese individuals. Obesity 2012, 20, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.Q.; Xiao, G.L.; Hu, P.W.; He, Y.Q.; Lv, S.; Xiao, W.F. Possible sarcopenia: Early screening and intervention-narrative review. Ann. Palliat. Med. 2020, 9, 4283–4293. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, T.; Ono, R.; Murata, S.; Saji, N.; Matsui, Y.; Niida, S.; Toba, K.; Sakurai, T. Prevalence and associated factors of sarcopenia in elderly subjects with amnestic mild cognitive impairment or Alzheimer disease. Curr. Alzheimer Res. 2016, 13, 718–726. [Google Scholar] [CrossRef] [PubMed]
Total (n = 60) | Total Male (n = 30) | Total Female (n = 30) | Male 40–49 (n = 10) | Female 40–49 (n = 10) | Male 50–59 (n = 10) | Female 50–59 (n = 10) | Male 60–69 (n = 10) | Female 60–69 (n = 10) | |
---|---|---|---|---|---|---|---|---|---|
Age (year) | 54.23 ± 7.33 | 54.40 ± 6.99 | 54.07 ± 7.79 | 47.10 ± 1.59 | 45.20 ± 3.26 | 53.10 ± 2.38 | 54.20 ± 2.90 | 63.00 ± 2.40 | 62.80 ± 2.04 |
Body weight (kg) | 66.44 ± 14.27 | 74.56 ± 13.02 | 58.31 ± 10.40 | 76.12 ± 14.77 | 61.30 ± 13.85 | 76.15 ± 16.28 | 58.55 ± 10.03 | 71.42 ± 6.84 | 55.07 ± 5.89 |
Height (cm) | 1.66 ± 0.08 | 1.73 ± 0.06 | 1.60 ± 0.05 | 1.74 ± 0.06 | 1.61 ± 0.03 | 1.73 ± 0.06 | 1.60 ± 0.05 | 1.71 ± 0.06 | 1.59 ± 0.04 |
Body mass index (kg/m2) | 23.86 ± 3.99 | 24.98 ± 3.79 | 22.75 ± 3.94 | 25.18 ± 3.99 | 23.75 ± 5.43 | 25.29 ± 5.06 | 22.77 ± 3.31 | 24.45 ± 2.07 | 21.72 ± 2.69 |
Waist circumference (cm) | 88.75 ± 10.84 | 92.09 ± 9.91 | 85.41 ± 10.85 | 92.39 ± 12.21 | 87.05 ± 13.98 | 93.22 ± 12.34 | 85.75 ± 11.07 | 90.66 ± 3.38 | 83.43 ± 7.33 |
Hip circumference (cm) | 98.33 ± 7.21 | 100.18 ± 6.08 | 96.47 ± 7.85 | 100.63 ± 6.60 | 98.53 ± 9.97 | 101.70 ± 7.59 | 97.10 ± 8.04 | 98.20 ± 3.26 | 93.79 ± 4.59 |
Waist-to-hip ratio | 0.90 ± 0.06 | 0.92 ± 0.05 | 0.88 ± 0.05 | 0.91 ± 0.06 | 0.88 ± 0.07 | 0.91 ± 0.07 | 0.88 ± 0.05 | 0.92 ± 0.03 | 0.89 ± 0.04 |
Muscle mass (kg) | 26.79 ± 6.22 | 32.00 ± 4.08 | 21.59 ± 2.48 | 32.80 ± 4.07 | 22.43 ± 3.01 | 32.14 ± 5.39 | 21.66 ± 2.23 | 31.05 ± 2.49 | 20.68 ± 2.04 |
Fat mass (kg) | 18.10 ± 7.48 | 17.73 ± 7.39 | 18.47 ± 7.67 | 17.86 ± 8.53 | 20.06 ± 10.67 | 19.15 ± 9.24 | 18.61 ± 7.12 | 16.19 ± 3.59 | 16.73 ± 4.34 |
Body fat percentage (%) | 26.82 ± 7.63 | 22.93 ± 6.30 | 30.71 ± 6.88 | 22.35 ± 7.33 | 31.17 ± 8.80 | 23.96 ± 7.95 | 30.87 ± 6.76 | 22.48 ± 3.02 | 30.10 ± 5.36 |
Resting heart rate (bpm) | 70.70 ± 9.23 | 70.80 ± 8.88 | 70.60 ± 9.71 | 67.60 ± 7.28 | 72.40 ± 12.17 | 74.10 ± 7.33 | 72.10 ± 9.12 | 70.70 ± 11.15 | 67.30 ± 7.39 |
Systolic blood pressure (mmHg) | 126.55 ± 16.45 | 130.40 ± 13.93 | 122.70 ± 18.06 | 134.00 ± 7.23 | 116.50 ± 18.99 | 123.80 ± 14.09 | 125.70 ± 18.57 | 133.40 ± 17.35 | 125.90 ± 16.77 |
Diastolic blood pressure (mmHg) | 81.12 ± 10.69 | 85.37 ± 8.70 | 76.87 ± 10.92 | 87.60 ± 4.74 | 75.40 ± 14.10 | 82.40 ± 11.46 | 77.10 ± 11.51 | 85.70 ± 8.00 | 78.10 ± 6.98 |
Maximal oxygen consumption (ml/min/kg) | 23.80 ± 5.50 | 27.80 ± 4.20 | 19.79 ± 3.27 | 29.45 ± 4.81 | 20.06 ± 4.01 | 27.72 ± 4.79 | 19.86 ± 3.67 | 26.23 ± 2.20 | 19.46 ± 2.16 |
Resting metabolic rate (kcal/day) | 1980.38 ± 394.38 | 2188.73 ± 353.36 | 1772.03 ± 319.00 | 2274.00 ± 367.60 | 1931.00 ± 361.87 | 2121.60 ± 373.16 | 1640.60 ± 297.54 | 2170.60 ± 338.39 | 1744.50 ± 245.55 |
Predicted resting metabolic rate (kcal/day) | 1421.90 ± 238.43 | 1587.70 ± 212.29 | 1256.10 ± 117.09 | 1662.80 ± 228.96 | 1327.70 ± 136.62 | 1622.10 ± 245.01 | 1257.70 ± 100.37 | 1478.20 ± 108.91 | 1182.90 ± 61.54 |
Physical activity (minutes/week) | 593.75 ± 752.01 | 592.67 ± 643.17 | 594.83 ± 858.743 | 322.00 ± 240.04 | 529.00 ± 551.98 | 600.00 ± 879.56 | 708.00 ± 1251.96 | 856.00 ± 585.80 | 547.50 ± 693.43 |
Sedentary time (minutes/week) | 315.50 ± 181.64 | 340.00 ± 169.77 | 291.00 ± 192.52 | 504.00 ± 165.41 | 336.00 ± 165.41 | 291.00 ± 103.97 | 336.00 ± 273.06 | 225.00 ± 86.31 | 201.00 ± 63.33 |
Modal 1 | Modal 2 | |
---|---|---|
Reference | 1 | 1 |
Odds ratio (95% CI) | 12.250 (1.692, 88.711) | 10.266 (1.355, 77.172) |
p | 0.013 | 0.024 |
VIF | 1.000 | 1.090 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Zhang, G.-L. An Association Between Possible Sarcopenia as an Early Marker and Mild Cognitive Impairment: A Cross-Sectional Study. Healthcare 2025, 13, 1963. https://doi.org/10.3390/healthcare13161963
Lee J, Zhang G-L. An Association Between Possible Sarcopenia as an Early Marker and Mild Cognitive Impairment: A Cross-Sectional Study. Healthcare. 2025; 13(16):1963. https://doi.org/10.3390/healthcare13161963
Chicago/Turabian StyleLee, Junga, and Guang-Lei Zhang. 2025. "An Association Between Possible Sarcopenia as an Early Marker and Mild Cognitive Impairment: A Cross-Sectional Study" Healthcare 13, no. 16: 1963. https://doi.org/10.3390/healthcare13161963
APA StyleLee, J., & Zhang, G.-L. (2025). An Association Between Possible Sarcopenia as an Early Marker and Mild Cognitive Impairment: A Cross-Sectional Study. Healthcare, 13(16), 1963. https://doi.org/10.3390/healthcare13161963