Acute Neurochemical, Psychophysiological, and Cognitive Responses to Small-Sided Games vs. Running-Based HIIT in Young, Male Soccer Players
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Procedures
2.3.1. Small-Sided Game
2.3.2. Running-Based High-Intensity Interval Training
2.4. Measurements
2.4.1. Anthropometric Measurements
2.4.2. Yo-Yo Intermittent Recovery Level 1 Test
2.4.3. Measure of Exercise Intensity
2.4.4. Assessment of Cognitive Function Performance
2.4.5. Psychophysiological Responses
2.4.6. Biochemical Analysis
2.5. Statistical Analyses
3. Results
4. Discussion
4.1. Serum BDNF Levels
4.2. Cognitive Functions Performance
4.3. Enjoyment Level
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BDNF | Brain-derived neurotrophic factor |
CSE | Closed-skill exercise |
EES | Exercise enjoyment scale |
HIIT | High-intensity interval training |
HIITrb | Running-based high-intensity interval training |
IGF-1 | Insulin-like growth factor-1 |
IL-6 | Interleukin-6 |
MAS | Maximal aerobic speed |
TMT | Trail making test |
OSE | Open-skill exercise |
RPE | Ratings of perceived exertion |
SSG | Small-sided game |
VEGF | Vascular endothelial growth factor |
VO2max | Maximal oxygen uptake |
YYIRT-1 | Yo-Yo Intermittent Recovery Test Level 1 |
References
- Gualtieri, A.; Rampinini, E.; Dello Iacono, A.; Beato, M. High-speed running and sprinting in professional adult soccer: Current thresholds definition, match demands and training strategies. A systematic review. Front. Sports Act. Living 2023, 5, 1116293. [Google Scholar] [CrossRef] [PubMed]
- Coutts, A.J. Fatigue in football: It’s not a brainless task. J. Sports Sci. 2016, 34, 1296. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.R.; Thompson, C.; Marcora, S.M.; Skorski, S.; Meyer, T.; Coutts, A.J. Mental fatigue and soccer: Current knowledge and future directions. Sports Med. 2018, 48, 1525–1532. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M.; Ramirez-Campillo, R.; Nakamura, F.Y.; Sarmento, H. Effects of high-intensity interval training in men soccer player’s physical fitness: A systematic review with meta-analysis of randomized-controlled and non-controlled trials. J. Sports Sci. 2021, 39, 1202–1222. [Google Scholar] [CrossRef] [PubMed]
- Kunz, P.; Engel, F.A.; Holmberg, H.C.; Sperlich, B. A meta-comparison of the effects of high-intensity interval training to those of small-sided games and other training protocols on parameters related to the physiology and performance of youth soccer players. Sports Med.-Open 2019, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Vilar, L.; Araújo, D.; Davids, K.; Button, C. The role of ecological dynamics in analysing performance in team sports. Sports Med. 2012, 42, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bujalance-Moreno, P.; Latorre-Román, P.Á.; García-Pinillos, F. A systematic review on small-sided games in football players: Acute and chronic adaptations. J. Sports Sci. 2019, 37, 921–949. [Google Scholar] [CrossRef] [PubMed]
- Ouertatani, Z.; Selmi, O.; Marsigliante, S.; Aydi, B.; Hammami, N.; Muscella, A. Comparison of the physical, physiological, and psychological responses of the high-intensity interval (HIIT) and small-sided games (SSG) training programs in young elite soccer players. Int. J. Environ. Res. Public. Health 2022, 19, 13807. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.C.J.; Figueiredo, L.S.; Lira, C.A.; Laporta, L.; Costa, G.C. Cognitive processes in small-sided games. Retos Nuevas Tend. Educ. Física Deporte Recreación 2022, 44, 897–906. [Google Scholar]
- Erickson, K.I.; Voss, M.W.; Prakash, R.S.; Basak, C.; Szabo, A.; Chaddock, L.; Kim, J.S.; Heo, S.; Alves, H.; White, S.M.; et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 2011, 108, 3017–3022. [Google Scholar] [CrossRef] [PubMed]
- Dinoff, A.; Herrmann, N.; Swardfager, W.; Liu, C.S.; Sherman, C.; Chan, S.; Lanctot, K.L. The effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PLoS ONE 2016, 11, e0163037. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Maldonado, A.; Rentería, I.; García-Suárez, P.C.; Moncada-Jiménez, J.; Freire-Royes, L.F. The impact of high-intensity interval training on brain derived neurotrophic factor in brain: A mini-review. Front. Neurosci. 2018, 12, 839. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Paciello, F.; Del Vecchio, V.; Malesci, R.; De Corso, E.; Cantone, E.; Fetoni, A.R. The role of BDNF as a biomarker in cognitive and sensory neurodegeneration. J. Pers. Med. 2023, 13, 652. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewski, M.; Konefał, M.; Podgórski, T.; Pluta, B.; Chmura, P.; Chmura, J.; Marynowicz, J.; Melka, K.; Brazaitis, M.; Kryściak, J. How training loads in the preparation and competitive period affect the biochemical indicators of training stress in youth soccer players? PeerJ 2022, 10, e13367. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Vargas, R.; Ugalde-Ramirez, A.; Rico-Gonzalez, M.; Pino-Ortega, J.; Gonzalez-Hernandez, J.; Rojas-Valverde, D. A systematic review of the effects of football playing on changes in serum brain-derived neurotrophic factor level. Appl. Sci. 2021, 11, 11828. [Google Scholar] [CrossRef]
- Birinci, Y.Z. The Potential Role of Exercise-Induced Neurotrophic Factors for Mental Health. In Mental Health-Preventive Strategies; Marques, A., de Matos, M.G., Sarmento, H., Eds.; IntechOpen: Rijeka, Croatia, 2022; pp. 35–57. [Google Scholar] [CrossRef]
- Terpstra, A.R.; Vasquez, B.P.; Colella, B.; Tartaglia, M.C.; Tator, C.H.; Mikulis, D.; Davis, K.D.; Wennberg, K.; Green, R.E. Comprehensive neuropsychiatric and cognitive characterization of former professional football players: Implications for neurorehabilitation. Front. Neurol. 2019, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- Máderová, D.; Krumpolec, P.; Slobodová, L.; Schön, M.; Tirpáková, V.; Kovaničová, Z.; Klepochová, R.; Vajda, M.; Šutovský, S.; Cvečka, J.; et al. Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides 2019, 78, 101961. [Google Scholar] [CrossRef] [PubMed]
- Bekkos, C.H.; Sujan, M.A.J.; Stunes, A.K.; Tari, A.R.; Aagård, N.; Brobakken, C.L.; Brevig, M.S.; Syversen, U.; Wang, E.; Mosti, M.P. Acute effects of a single bout of high-intensity strength and endurance exercise on cognitive biomarkers in young adults and elderly men: A within-subjects crossover study. J. Transl. Med. 2025, 23, 685. [Google Scholar] [CrossRef] [PubMed]
- Canton-Martínez, E.; Rentería, I.; García-Suárez, P.C.; Moncada-Jiménez, J.; Machado-Parra, J.P.; Lira, F.S.; Johnson, D.K.; Jiménez-Maldonado, A. Concurrent training increases serum brain-derived neurotrophic factor in older adults regardless of the exercise frequency. Front. Aging Neurosci. 2022, 14, 791698. [Google Scholar] [CrossRef] [PubMed]
- Mielniczek, M.; Aune, T.K. The Effect of High-Intensity Interval Training (HIIT) on Brain-Derived Neurotrophic Factor Levels (BNDF): A Systematic Review. Brain Sci. 2024, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.L.; Tseng, J.W.; Chao, H.H.; Hung, T.M.; Wang, H.S. Effect of acute exercise mode on serum brain-derived neurotrophic factor (BDNF) and task switching performance. J. Clin. Med. 2018, 7, 301. [Google Scholar] [CrossRef] [PubMed]
- Rehfeld, K.; Lüders, A.; Hökelmann, A.; Lessmann, V.; Kaufmann, J.; Brigadski, T.; Müller, P.; Müller, N.G. Dance training is superior to repetitive physical exercise in inducing brain plasticity in the elderly. PLoS ONE 2018, 13, e0196636. [Google Scholar] [CrossRef] [PubMed]
- Anderson-Hanley, C.; Arciero, P.J.; Brickman, A.M.; Nimon, J.P.; Okuma, N.; Westen, S.C.; Merz, M.E.; Pence, B.D.; Woods, J.A.; Kramer, A.F.; et al. Exergaming and older adult cognition: A cluster randomized clinical trial. Am. J. Prev. Med. 2012, 42, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Birinci, Y.Z.; Sağdilek, E.; Taymur, İ.; Budak, E.; Beyaz, A.; Vatansever, Ş.; Pancar, S.; Topçu, H.; Sarandöl, E.; Şahin, Ş. Acute effects of different types of exercises on peripheral neurotrophic factors and cognitive functions in veteran athletes. Sport. Sci. Health 2024, 20, 347–357. [Google Scholar] [CrossRef]
- Voelcker-Rehage, C.; Niemann, C. Structural and functional brain changes related to different types of physical activity across the life span. Neurosci. Biobehav. Rev. 2013, 37, 2268–2295. [Google Scholar] [CrossRef] [PubMed]
- Netz, Y. Is there a preferred mode of exercise for cognition enhancement in older age?—A narrative review. Front. Med. 2019, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Torrents Martín, C.; Ric Diez, Á.; Hristovski, R.; Torres-Ronda, L.; Vicente Vives, E.; Sampaio, J. Emergence of exploratory, technical and tactical behavior in small-sided soccer games when manipulating the number of teammates and opponents. PLoS ONE 2016, 11, e0168866. [Google Scholar] [CrossRef] [PubMed]
- Ueda, L.S.C.; Milistetd, M.; Praca, G.M.; da Maia, G.S.G.; da Silva, J.F.; Borges, P.H. Impact of the number of players on the emergence of creative movements in small-sided soccer games: A systematic review emphasizing deliberate practice. Front. Psychol. 2023, 14, 1253654. [Google Scholar] [CrossRef] [PubMed]
- Selmi, O.; Ouergui, I.; Levitt, D.E.; Nikolaidis, P.T.; Knechtle, B.; Bouassida, A. Small-sided games are more enjoyable than high-intensity interval training of similar exercise intensity in soccer. Open Access J. Sports Med. 2020, 2020, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Birinci, Y.Z.; Pancar, S.; Soylu, Y. Comparison of the Acute Effects of Carbohydrate Mouth Rinse and Coach Encouragement on Kinematic Profiles During Small-Sided Games in Young Male Soccer Players. Nutrients 2025, 17, 546. [Google Scholar] [CrossRef] [PubMed]
- Hill-Haas, S.; Rowsell, G.; Coutts, A.; Dawson, B. The reproducibility of physiological responses and performance profiles of youth soccer players in small-sided games. Int. J. Sports Physiol. Perform. 2008, 3, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.; Kinugasa, T.; Gill, N.; Kilding, A. Aerobic fitness for young athletes: Combining game-based and high-intensity interval training. Int. J. Sports Med. 2015, 94, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Iaia, F.M.; Krustrup, P. The Yo-Yo intermittent recovery test: A useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008, 38, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Türkeş, N.; Can, H.; Kurt, M.; Dikeç, B.E. A Study to Determine the Norms for The Trail Making Test for the Age Range of 20–49 in Turkey. Turk. Psikiyatri Derg. 2015, 26, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. What cognitive abilities are involved in trail-making performance? Intelligence 2011, 39, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Raedeke, T.D. The relationship between enjoyment and affective responses to exercise. J. Appl. Sport Psychol. 2007, 19, 105–115. [Google Scholar] [CrossRef]
- Soylu, Y.; Arslan, E.; Kilit, B. Exercise and enjoyment: A scale adaptation study for adolescents and adults athletes. Spormetre 2023, 21, 93–104. [Google Scholar]
- Arney, B.E.; Glover, R.; Fusco, A.; Cortis, C.; de Koning, J.J.; van Erp, T.; Jaime, S.; Mikat, R.P.; Porcari, J.P.; Foster, C. Comparison of RPE (Rating of Perceived Exertion) Scales for Session RPE. Int. J. Sports Physiol. Perform. 2019, 14, 994–996. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 2013; pp. 1–567. [Google Scholar] [CrossRef]
- Saucedo Marquez, C.M.; Vanaudenaerde, B.; Troosters, T.; Wenderoth, N. High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. J. Appl. Physiol. 2015, 119, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gutiérrez, E.; Torres-Costoso, A.; Saz-Lara, A.; Bizzozero-Peroni, B.; Guzmán-Pavón, M.J.; Sánchez-López, M.; Martínez-Vizcaíno, V. Effectiveness of high-intensity interval training on peripheral brain-derived neurotrophic factor in adults: A systematic review and network meta-analysis. Scand. J. Med. Sci. Sports 2024, 34, e14496. [Google Scholar] [CrossRef] [PubMed]
- García-Suárez, P.C.; Rentería, I.; Plaisance, E.P.; Moncada-Jiménez, J.; Jiménez-Maldonado, A. The effects of interval training on peripheral brain derived neurotrophic factor (BDNF) in young adults: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 8937. [Google Scholar] [CrossRef] [PubMed]
- Afzalpour, M.E.; Chadorneshin, H.T.; Foadoddini, M.; Eivari, H.A. Comparing interval and continuous exercise training regimens on neurotrophic factors in rat brain. Physiol. Behav. 2015, 147, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; McGee, S.L.; Garnham, A.P.; Howlett, K.F.; Snow, R.J.; Hargreaves, M. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J. Appl. Physiol. 2009, 106, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ruchti, E.; Petit, J.M.; Jourdain, P.; Grenningloh, G.; Allaman, I.; Magistretti, P.J. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. USA 2014, 111, 12228–12233. [Google Scholar] [CrossRef] [PubMed]
- Aktitiz, S.; Atakan, M.M.; Turnagöl, H.H.; Koşar, Ş.N. Interleukin-6, undercarboxylated osteocalcin, and brain-derived neurotrophic factor responses to single and repeated sessions of high-intensity interval exercise. Peptides 2022, 157, 170864. [Google Scholar] [CrossRef] [PubMed]
- Buzdagli, Y.; Ozan, M.; Baygutalp, N.; Oget, F.; Karayigit, R.; Yuce, N.; Kan, E.; Baygutalp, F.; Uçar, H.; Buzdağlı, Y. The effect of high-intensity intermittent and moderate-intensity continuous exercises on neurobiological markers and cognitive performance. BMC Sports Sci. Med. Rehabil. 2024, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Küçük, H.; Soyler, M.; Ceylan, T.; Ceylan, L.; Şahin, F. Effects of acute and chronic high-intensity interval training on serum irisin, BDNF and apelin levels in male soccer referees. J. Mens Health 2024, 20, 120–125. [Google Scholar] [CrossRef]
- Michailidis, Y. Stress hormonal analysis in elite soccer players during a season. J. Sport Health Sci. 2014, 3, 279–283. [Google Scholar] [CrossRef]
- Herhaus, B.; Heni, M.; Bloch, W.; Petrowski, K. Dynamic interplay of cortisol and BDNF in males under acute and chronic psychosocial stress—A randomized controlled study. Psychoneuroendocrinology 2024, 170, 107192. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.S.; Yoo, S.H.; Cho, S.Y.; Roh, H.T. Effects of acute soccer game on serum levels of neurotrophins and neurocognitive functions in male adolescents. J. Life Sci. 2012, 22, 1444–1450. [Google Scholar] [CrossRef]
- Williams, R.A.; Cooper, S.B.; Dring, K.J.; Hatch, L.; Morris, J.G.; Sunderland, C.; Nevill, M.E. Effect of football activity and physical fitness on information processing, inhibitory control and working memory in adolescents. BMC Public. Health 2020, 20, 1398. [Google Scholar] [CrossRef] [PubMed]
- Behrendt, T.; Kirschnick, F.; Kröger, L.; Beileke, P.; Rezepin, M.; Brigadski, T.; Lebmann, V.; Schega, L. Comparison of the effects of open vs. closed skill exercise on the acute and chronic BDNF, IGF-1 and IL-6 response in older healthy adults. BMC Neurosci. 2021, 22, 71. [Google Scholar] [CrossRef] [PubMed]
- Gökçe, E.; Güneş, E.; Arı, F.; Hayme, S.; Nalçacı, E. Comparison of the effects of open-and closed-skill exercise on cognition and peripheral proteins: A cross-sectional study. PLoS ONE 2021, 16, e0251907. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Duderstadt, Y.; Lessmann, V.; Müller, N.G. Lactate and BDNF: Key mediators of exercise induced neuroplasticity? J. Clin. Med. 2020, 9, 1136. [Google Scholar] [CrossRef] [PubMed]
- Reycraft, J.T.; Islam, H.; Townsend, L.K.; Hayward, G.C.; Hazell, T.J.; MacPherson, R.E. Exercise intensity and recovery on circulating brain-derived neurotrophic factor. Med. Sci. Sports Exerc. 2020, 52, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Clow, C.; Jasmin, B.J. Brain-derived neurotrophic factor regulates satellite cell differentiation and skeltal muscle regeneration. Mol. Biol. Cell 2010, 21, 2182–2190. [Google Scholar] [CrossRef] [PubMed]
- McIlvain, G.; Magoon, E.M.; Clements, R.G.; Merritt, A.; Hiscox, L.V.; Schwarb, H.; Johnson, C.L. Acute effects of high-intensity exercise on brain mechanical properties and cognitive function. Brain Imaging Behav. 2024, 18, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Mekari, S.; Earle, M.; Martins, R.; Drisdelle, S.; Killen, M.; Bouffard-Levasseur, V.; Dupuy, O. Effect of high intensity interval training compared to continuous training on cognitive performance in young healthy adults: A pilot study. Brain Sci. 2020, 10, 81. [Google Scholar] [CrossRef] [PubMed]
- Lind, R.R.; Beck, M.M.; Wikman, J.; Malarski, K.; Krustrup, P.; Lundbye-Jensen, J.; Geertsen, S.S. Acute high-intensity football games can improve children’s inhibitory control and neurophysiological measures of attention. Scand. J. Med. Sci. Sports 2019, 29, 1546–1562. [Google Scholar] [CrossRef] [PubMed]
- Alesi, M.; Bianco, A.; Padulo, J.; Luppina, G.; Petrucci, M.; Paoli, A.; Palma, A.; Pepi, A. (2015). Motor and cognitive growth following a Football Training Program. Front. Psychol. 2015, 6, 1627. [Google Scholar] [CrossRef] [PubMed]
- Hammami, A.; Kasmi, S.; Ben Saad, H.; Bouhlel, E.; Krustrup, P.; Chamari, K. It Is Time to Play: Acute Effects of Soccer and Sprint Exercise on Attentional Performance, Mood, and Enjoyment in Untrained Male Adolescents. Am. J. Mens. Health 2023, 17, 15579883231209202. [Google Scholar] [CrossRef] [PubMed]
- Skala, F.; Zemková, E. Neuromuscular and perceptual-cognitive response to 4v4 small-sided game in youth soccer players. Front. Physiol. 2023, 9, 1260096. [Google Scholar] [CrossRef] [PubMed]
- Basso, J.C.; Suzuki, W.A. The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: A review. Brain Plast. 2017, 2, 127–152. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.K.; Labban, J.D.; Gapin, J.I.; Etnier, J.L. The effects of acute exercise on cognitive performance: A meta-analysis. Brain Res. 2012, 1453, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Magistretti, P.J.; Allaman, I. Lactate in the brain: From metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 2018, 19, 235–249. [Google Scholar] [CrossRef] [PubMed]
- Kao, S.C.; Westfall, D.R.; Soneson, J.; Gurd, B.; Hillman, C.H. Comparison of the acute effects of high-intensity interval training and continuous aerobic walking on inhibitory control. Psychophysiology 2017, 54, 1335–1345. [Google Scholar] [CrossRef] [PubMed]
- Lambrick, D.; Stoner, L.; Grigg, R.; Faulkner, J. Effects of continuous and intermittent exercise on executive function in children aged 8–10 years. Psychophysiology 2016, 53, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Farhani, Z.; Amara, S.; Aissa, M.B.; Guelmami, N.; Bouassida, A.; Dergaa, I. The variability of physical enjoyment, physiological responses, and technical-tactical performance according to the bout duration of small-sided games: A comparative study between female and male soccer players. BMC Sports Sci. Med. Rehabil. 2024, 16, 77. [Google Scholar] [CrossRef] [PubMed]
- Selmi, O.; Haddad, M.; Majed, L.; Ben, W.K.; Hamza, M.; Chamari, K. Soccer training: High-intensity interval training is mood disturbing while small sided games ensure mood balance. J. Sports Med. Phys. Fitness 2017, 58, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Clemente, F.M. The enjoyment of small-sided games: A narrative review. Hum. Mov. 2025, 26, 1–14. [Google Scholar] [CrossRef]
- Hammami, A.; Kasmi, S.; Farinatti, P.; Fgiri, T.; Chamari, K.; Bouhlel, E. Blood pressure, heart rate and perceived enjoyment after small-sided soccer games and repeated sprint in untrained healthy adolescents. Biol. Sport. 2017, 34, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Cox, R.H. Sport Psychology: Concepts and Applications, 7th ed.; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Ferris, L.T.; Williams, J.S.; Shen, C.L. The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Med. Sci. Sports Exerc. 2007, 39, 728–734. [Google Scholar] [CrossRef] [PubMed]
SSG | Coach Encouragement | No. of GK | Pitch Size (Length × Width) | Rule | No. × Duration of Series | Inter-Series Recovery | Total Duration |
---|---|---|---|---|---|---|---|
4-a-side | Yes | None/Small Goals | 35 × 25 m | Free Play | 4 × 4 min | 3 min passive | ~25 min |
(No. × Duration of bout) | Work Velocity | No. × Duration of Series | Intra-Series Recovery | Inter-Series Recovery | Total Duration |
---|---|---|---|---|---|
8 × 15 s | 110% MAS | 4 × 4 min | 15 sec Passive | 3 min Passive | ~25 min |
(n = 24) | SSG | HIITrb | ||||
---|---|---|---|---|---|---|
Pre | Post | 95% CI | Pre | Post | 95% CI | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||
BDNF (pg/mL) | 421.07 ± 287.73 | 363.84 ± 275.75 | 304.14–480.77 | 416.16 ± 287.73 | 505.44 ± 315.26 | 372.49–549.11 |
Lactate (mmol/L) | 1.60 ± 0.25 | 7.90 ± 1.49 | 4.50–5.00 | 1.62 ± 0.28 | 7.90 ± 0.79 | 4.50–5.01 |
TMT-A (s) | 12.76 ± 3.49 | 11.40 ± 2.98 | 10.78–13.37 | 13.2 ± 3.30 | 14.46 ± 3.80 | 12.55–15.14 |
TMT-B (s) | 41.08 ± 21.36 | 21.14 ± 12.56 | 31.14–41.07 | 23.34 ± 7.41 | 18.97 ± 4.05 | 16.19–26.12 |
n = 24 | SSG | HIIT(rb) | Mean Differences | %95 CI for Mean Differences |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
HRmean (bpm) | 166. 59 ± 9.76 | 166.81 ± 7.51 | −0.219 | −3.843–3.406 |
RPE (6–20 A.U.) | 11.17 ± 2.60 | 11.92 ± 3.26 | −0.750 | −2.672–1.172 |
Enjoyment (8–56 A.U.) | 38.58 ± 12.32 | 38.46 ± 13.17 | 0.125 | −8.421–8.671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birinci, Y.Z.; Pancar, S.; Soylu, Y.; Topçu, H.; Koçyiğit, A.; Sarandöl, E.; Şimşek, H.; Şahin, Ş. Acute Neurochemical, Psychophysiological, and Cognitive Responses to Small-Sided Games vs. Running-Based HIIT in Young, Male Soccer Players. Healthcare 2025, 13, 1738. https://doi.org/10.3390/healthcare13141738
Birinci YZ, Pancar S, Soylu Y, Topçu H, Koçyiğit A, Sarandöl E, Şimşek H, Şahin Ş. Acute Neurochemical, Psychophysiological, and Cognitive Responses to Small-Sided Games vs. Running-Based HIIT in Young, Male Soccer Players. Healthcare. 2025; 13(14):1738. https://doi.org/10.3390/healthcare13141738
Chicago/Turabian StyleBirinci, Yakup Zühtü, Serkan Pancar, Yusuf Soylu, Hüseyin Topçu, Aygül Koçyiğit, Emre Sarandöl, Hasan Şimşek, and Şenay Şahin. 2025. "Acute Neurochemical, Psychophysiological, and Cognitive Responses to Small-Sided Games vs. Running-Based HIIT in Young, Male Soccer Players" Healthcare 13, no. 14: 1738. https://doi.org/10.3390/healthcare13141738
APA StyleBirinci, Y. Z., Pancar, S., Soylu, Y., Topçu, H., Koçyiğit, A., Sarandöl, E., Şimşek, H., & Şahin, Ş. (2025). Acute Neurochemical, Psychophysiological, and Cognitive Responses to Small-Sided Games vs. Running-Based HIIT in Young, Male Soccer Players. Healthcare, 13(14), 1738. https://doi.org/10.3390/healthcare13141738