Technical Skill Acquisition in Pediatric Minimally Invasive Surgery: Evaluation of a 3D-Printed Simulator for Thoracoscopic Esophageal Atresia Repair
Abstract
1. Introduction
2. Methods
2.1. Simulator
- Thoracic cage: Modeled from a CT scan of a neonatal chest and scaled to 1:1.10.
- Silicone skin: A 3D-printed mold was used to produce a silicone layer that fits over the thoracic cage, with three access ports for thoracoscopic instruments and optics. The lateral ports allowed insertion of laparoscopic instruments (needle holders and scissors), while the central port was dedicated to the optical system.
2.2. Surgical Instruments
- 4 Vicryl 5-0 sutures with a 17 mm needle
- 2 laparoscopic needle holders
- 1 laparoscopic scissors
2.3. Study Participants
- 1 specialist pediatric surgeon with <5 years of experience
- 2 senior trainees (fourth-year residents in pediatric surgery)
- 3 junior trainees (third-year residents in pediatric surgery)
2.4. Training Protocol
- Closure of the tracheoesophageal fistula with a through-and-through suture
- Division of the fistula
- Opening of the proximal esophageal stump
- Esophageal anastomosis using interrupted sutures
2.5. Assessment and Data Collection
- Operative time: From the beginning of the procedure to the final suture.
- SMaRT score (Stanford Microsurgery and Resident Training Scale): A validated tool assessing nine categories (instrument handling, tissue respect, efficiency, suture management, suturing technique, knot quality, final product, workflow, and overall performance), each scored from 1 to 5, for a maximum of 45 points (Table 1) [21].
2.6. Study Duration and Objective
2.7. Statistics
3. Results
3.1. Time Efficiency Improvement
- Specialist surgeon: 92 min
- Senior trainees: 100.5 ± 3.55 min
- Junior trainees: 115.6 ± 3.51 min
- Specialist surgeon: 61 min
- Senior trainees: 77.5 ± 4.94 min
- Junior trainees: 90 ± 6.55 min
3.2. Technical Skill Assessment
- Simulation 1: 23.8 ± 3.18
- Simulation 8: 38.3 ± 3.93
4. Discussion
- Increased familiarity with thoracoscopic instruments and port placement
- Improved hand–eye coordination and two-dimensional spatial interpretation
- Adaptation to the absence of tactile feedback, typical of MIS procedures
- Standardization of technique through visual and procedural benchmarking
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIS | Minimally Invasive Surgery |
EA | esophageal atresia |
TEF | Tracheoesophageal fistula |
FDM | Fused Deposition Modeling |
References
- Kempker, T.; Peuterbaugh, J. Esophageal Atresia and Tracheoesophageal Fistula: Diagnosis, Management, and Outcomes. NeoReviews 2025, 26, e307–e315. [Google Scholar] [CrossRef] [PubMed]
- Kovačević, T.; Polić, B.; Markić, J.; Ardalić Čatipović, T.; Bucat, M.; Mikulić, S.; Žuvan, L.; Pogorelić, Z.; Despot, R.; Žitko, V.; et al. Epidemiology and Treatment Outcomes in Neonates with Esophageal Atresia: A 30-Year Population-Based Study. Healthcare 2025, 13, 418. [Google Scholar] [CrossRef]
- Markel, M.; Lacher, M.; Hall, N.J.; Martynov, I.; Siles Hinojosa, A.; de Augustin Asensio, J.C.; Fortmann, C.; Hukkinen, M.; Mutanen, A.; Ford, K.; et al. Training in minimally invasive surgery: Experience of paediatric surgery trainees in Europe. Br. J. Surg. 2023, 110, 1397–1399. [Google Scholar] [CrossRef]
- St John, A.; Caturegli, I.; Kubicki, N.S.; Kavic, S.M. The Rise of Minimally Invasive Surgery: 16 Year Analysis of the Progressive Replacement of Open Surgery with Laparoscopy. JSLS J. Soc. Laparosc. Robot. Surg. 2020, 24, e2020.00076. [Google Scholar] [CrossRef]
- Blinman, T.; Ponsky, T. Pediatric minimally invasive surgery: Laparoscopy and thoracoscopy in infants and children. Pediatrics 2012, 130, 539–549. [Google Scholar] [CrossRef]
- Di Fabrizio, D.; Mastroberti, F.; Cruccetti, A.; Bindi, E.; Cobellis, G. Thoracotomy vs. Thoracoscopy for Esophageal Atresia with Tracheoesophageal Fistula Repair: Is There a Difference in Quality of Life? Child. Basel Switz. 2024, 11, 1340. [Google Scholar] [CrossRef]
- Borselle, D.; Davidson, J.; Loukogeorgakis, S.; De Coppi, P.; Patkowski, D. Thoracoscopic Stage Internal Traction Repair Reduces Time to Achieve Esophageal Continuity in Long Gap Esophageal Atresia. Eur. J. Pediatr. Surg. Off. J. Austrian Assoc. Pediatr. Surg. Al Z. Kinderchir. 2024, 34, 36–43. [Google Scholar] [CrossRef]
- Di Mitri, M.; Thomas, E.; Di Carmine, A.; Manghi, I.; Cravano, S.M.; Bisanti, C.; Collautti, E.; Ruspi, F.; Cordola, C.; Vastano, M.; et al. Intraoperative Ultrasound in Minimally Invasive Laparoscopic and Robotic Pediatric Surgery: Our Experiences and Literature Review. Children 2023, 10, 1153. [Google Scholar] [CrossRef]
- Lerwick, J.L. Minimizing pediatric healthcare-induced anxiety and trauma. World J. Clin. Pediatr. 2016, 5, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Rebello, L.; Livergant, R.; Khanbadr, P.; Bednarek, O.; Joharifard, S. Simulation Models for Training in Pediatric General, Thoracic, Plastic, and Urologic Surgery in Low-resource Settings: A Scoping Review. J. Pediatr. Surg. 2025, 60, 162183. [Google Scholar] [CrossRef] [PubMed]
- Parente, G.; Thomas, E.; Cravano, S.; Di Mitri, M.; Vastano, M.; Gargano, T.; Cerasoli, T.; Ruspi, F.; Libri, M.; Lima, M. ArtiSential® Articulated Wrist-Like Instruments and Their First Application in Pediatric Minimally Invasive Surgery: Case Reports and Literature Review of the Most Commonly Available Robot-Inspired Devices. Child. Basel Switz. 2021, 8, 603. [Google Scholar] [CrossRef] [PubMed]
- Di Mitri, M.; Di Carmine, A.; D’Antonio, S.; Capobianco, B.M.; Bisanti, C.; Collautti, E.; Cravano, S.M.; Ruspi, F.; Libri, M.; Gargano, T.; et al. Advancing Pediatric Surgery: The Use of HoloLens 2 for 3D Anatomical Reconstructions in Preoperative Planning. Children 2025, 12, 32. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, A.L.; Haddad, M.; Clarke, S.A. Learning Curves in Pediatric Minimally Invasive Surgery: A Systematic Review of the Literature and a Framework for Reporting. J. Laparoendosc. Adv. Surg. Tech. A 2016, 26, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Shahrezaei, A.; Sohani, M.; Taherkhani, S.; Zarghami, S.Y. The impact of surgical simulation and training technologies on general surgery education. BMC Med. Educ. 2024, 24, 1297. [Google Scholar] [CrossRef]
- Sadideen, H.; Hamaoui, K.; Saadeddin, M.; Kneebone, R. Simulators and the simulation environment: Getting the balance right in simulation-based surgical education. Int. J. Surg. Lond. Engl. 2012, 10, 458–462. [Google Scholar] [CrossRef]
- Badash, I.; Burtt, K.; Solorzano, C.A.; Carey, J.N. Innovations in surgery simulation: A review of past, current and future techniques. Ann. Transl. Med. 2016, 4, 453. [Google Scholar] [CrossRef]
- Parente, G.; Di Mitri, M.; Gargano, T.; Lima, M. Training in Pediatric Gastrointestinal Endoscopy during Surgery Residency: Can Training Programs Currently Educate Proficient Pediatric Endoscopists? A Nationwide Assessment. Gastrointest. Disord. 2023, 5, 356–366. [Google Scholar] [CrossRef]
- Spruit, E.N.; Band, G.P.H.; Hamming, J.F.; Ridderinkhof, K.R. Optimal training design for procedural motor skills: A review and application to laparoscopic surgery. Psychol. Res. 2014, 78, 878–891. [Google Scholar] [CrossRef]
- Moorhead, A.A.; Nair, D.; Morison, C.; Cook, N.J.; Beasley, S.W.; Wells, J.M. Development of an instrumented thoracoscopic surgical trainer for objective evaluation of esophageal atresia/tracheoesophageal fistula repair. Med. Biol. Eng. Comput. 2020, 58, 601–609. [Google Scholar] [CrossRef]
- Ali, F.; Kalva, S.N.; Koc, M. Advancements in 3D printing techniques for biomedical applications: A comprehensive review of materials consideration, post processing, applications, and challenges. Discov. Mater. 2024, 4, 53. [Google Scholar] [CrossRef]
- Satterwhite, T.; Son, J.; Carey, J.; Echo, A.; Spurling, T.; Paro, J.; Gurtner, G.; Chang, J.; Lee, G.K. The Stanford Microsurgery and Resident Training (SMaRT) Scale: Validation of an on-line global rating scale for technical assessment. Ann. Plast. Surg. 2014, 72, S84–S88. [Google Scholar] [CrossRef]
- Borselle, D.; Więckowski, A.; Patkowski, D. Evaluating suturing skill improvement for pediatric minimally invasive esophageal anastomosis model: An observational cohort study based on simulator training. Sci. Rep. 2025, 15, 7692. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Kim, H.; Kim, T.; Kim, Y.-H.; Kim, N. Development of patient specific, realistic, and reusable video assisted thoracoscopic surgery simulator using 3D printing and pediatric computed tomography images. Sci. Rep. 2021, 11, 6191. [Google Scholar] [CrossRef] [PubMed]
- Servi, M.; Lo Piccolo, R.; Dalle Mura, F.; Mencarelli, M.; Puggelli, L.; Facchini, F.; Severi, E.; Martin, A.; Volpe, Y. Advanced physical simulator for pediatric minimally invasive thoracoscopy training in the treatment of pulmonary sequestration. Comput. Biol. Med. 2025, 188, 109847. [Google Scholar] [CrossRef] [PubMed]
- Deie, K.; Nakagawa, Y.; Uchida, H.; Hinoki, A.; Shirota, C.; Tainaka, T.; Sumida, W.; Yokota, K.; Makita, S.; Fujiogi, M.; et al. Evaluation of minimally invasive surgical skills training: Comparing a neonatal esophageal atresia/tracheoesophageal fistula model with a dry box. Surg. Endosc. 2022, 36, 6035–6048. [Google Scholar] [CrossRef]
- Youn, J.K.; Ko, D.; Yang, H.-B.; Kim, H.-Y. A 3D printed esophageal atresia–tracheoesophageal fistula thorascopy simulator for young surgeons. Sci. Rep. 2024, 14, 11489. [Google Scholar] [CrossRef]
- Zahradniková, P.; Babala, J.; Pechanová, R.; Smrek, M.; Vitovič, P.; Laurovičová, M.; Bernát, T.; Nedomová, B. Inanimate 3D printed model for thoracoscopic repair of esophageal atresia with tracheoesophageal fistula. Front. Pediatr. 2023, 11, 1286946. [Google Scholar] [CrossRef]
- Williams, A.; McWilliam, M.; Ahlin, J.; Davidson, J.; Quantz, M.A.; Bütter, A. A simulated training model for laparoscopic pyloromyotomy: Is 3D printing the way of the future? J. Pediatr. Surg. 2018, 53, 937–941. [Google Scholar] [CrossRef]
- Cabarcas Maciá, L.; Marmolejo Franco, F.; Siu Uribe, A.; Palomares Garzón, C.; Rojo Díez, R. Pilot study for low-cost model validation in laparoscopic pediatric pyeloplasty simulation. Cirugia Pediatr. Organo Of. Soc. Espanola Cirugia Pediatr. 2022, 35, 141–145. [Google Scholar] [CrossRef]
- Heo, K.; Greaney, E.; Haehl, J.; Stunden, C.; Lindner, A.; Malik, P.R.A.; Rosenbaum, D.G.; Muensterer, O.; Zakani, S.; Jacob, J.; et al. Iterative Design and Manufacturing of a 3D-Printed Pediatric Open and Laparoscopic Integrated Simulator for Hernia Repair (POLISHeR). J. Pediatr. Surg. 2025, 60, 162232. [Google Scholar] [CrossRef]
- Petra, Z.; Silvia, H.; Martin, L.; Rebeka, P.; Dominika, Š.; Pavol, V.; Miroslava, L.; František, H.; Tomáš, T.; Jozef, B. Validation study of synthetic models for esophageal atresia with tracheoesophageal fistula (EA/TEF): A simulation-based training in pediatric surgery. J. Pediatr. Surg. Open 2025, 9, 100180. [Google Scholar] [CrossRef]
- Nair, D.; Wells, J.M.; Cook, N.; Yi, M.; Scott, V.; Beasley, S.W. Construct validation of a 3D printed neonatal thoracoscopic simulator: Can it measure expertise? J. Pediatr. Surg. 2021, 56, 1962–1965. [Google Scholar] [CrossRef]
- Radhakrishnan, U.; Kuang, L.; Koumaditis, K.; Chinello, F.; Pacchierotti, C. Haptic Feedback, Performance and Arousal: A Comparison Study in an Immersive VR Motor Skill Training Task. IEEE Trans. Haptics 2024, 17, 249–262. [Google Scholar] [CrossRef]
- Gund, M.P.; Strähle, U.T.; Naim, J.; Waldmeyer, M.; Hannig, M.; Rupf, S. Comparison of 3D-Printed Patient Model Versus Animal Cadaveric Model in Periodontal Surgery Block Course-What Is More Feasible for Beginners? A Pilot Study. Eur. J. Dent. Educ. Off. J. Assoc. Dent. Educ. Eur. 2025. [Google Scholar] [CrossRef] [PubMed]
Category | Score 1 | Score 2 | Score 3 | Score 4 | Score 5 |
---|---|---|---|---|---|
Instrument Handling | Unable to control instruments | Frequent errors in handling | Basic control with frequent corrections | Good control with minor errors | Excellent and smooth handling |
Tissue Respect | Excessive tissue damage | Moderate damage | Occasional trauma | Minimal trauma | No trauma |
Efficiency | Disorganized, inefficient | Frequently slow and unsure | Average performance with delays | Mostly smooth | Highly efficient and smooth |
Suture Management | Unable to manage suture | Frequent tangling or misplacement | Some control but inconsistent | Good suture control | Excellent and consistent control |
Suturing Technique | Incorrect technique | Frequent technical errors | Correct technique with inconsistencies | Mostly correct technique | Perfect suturing technique |
Knot Quality | Knots frequently fail | Loose or insecure knots | Acceptable but inconsistent knots | Secure knots with minor variation | Strong, secure, and consistent knots |
Final Product | Unacceptable outcome | Marginal quality | Adequate but needs improvement | Good quality | Excellent surgical result |
Workflow | No clear plan, frequent interruptions | Inconsistent flow | Some planning, occasional hesitations | Organized and smooth flow | Fluent and anticipatory workflow |
Overall Performance | Unable to complete task | Requires significant assistance | Completes with some guidance | Completes independently with minor issues | Outstanding independent performance |
Population | Attempt 1 | Attempt 2 | Attempt 3 | Attempt 4 | Attempt 5 | Attempt 6 | Attempt 7 | Attempt 8 |
---|---|---|---|---|---|---|---|---|
Pediatric Surgeon | 92 | 87 | 84 | 90 | 81 | 76 | 71 | 61 |
Senior resident 1 | 103 | 102 | 98 | 95 | 94 | 91 | 89 | 81 |
Senior resident 2 | 98 | 94 | 95 | 89 | 86 | 81 | 78 | 74 |
Junior resident 1 | 112 | 109 | 104 | 103 | 99 | 97 | 93 | 89 |
Junior resident 2 | 116 | 111 | 115 | 101 | 94 | 91 | 87 | 84 |
Junior resident 3 | 119 | 116 | 109 | 103 | 104 | 99 | 94 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cravano, S.M.; Carmine, A.D.; De Maio, C.; Di Mitri, M.; Bisanti, C.; Collautti, E.; Libri, M.; D’Antonio, S.; Gargano, T.; Ciardini, E.; et al. Technical Skill Acquisition in Pediatric Minimally Invasive Surgery: Evaluation of a 3D-Printed Simulator for Thoracoscopic Esophageal Atresia Repair. Healthcare 2025, 13, 1720. https://doi.org/10.3390/healthcare13141720
Cravano SM, Carmine AD, De Maio C, Di Mitri M, Bisanti C, Collautti E, Libri M, D’Antonio S, Gargano T, Ciardini E, et al. Technical Skill Acquisition in Pediatric Minimally Invasive Surgery: Evaluation of a 3D-Printed Simulator for Thoracoscopic Esophageal Atresia Repair. Healthcare. 2025; 13(14):1720. https://doi.org/10.3390/healthcare13141720
Chicago/Turabian StyleCravano, Sara Maria, Annalisa Di Carmine, Chiara De Maio, Marco Di Mitri, Cristian Bisanti, Edoardo Collautti, Michele Libri, Simone D’Antonio, Tommaso Gargano, Enrico Ciardini, and et al. 2025. "Technical Skill Acquisition in Pediatric Minimally Invasive Surgery: Evaluation of a 3D-Printed Simulator for Thoracoscopic Esophageal Atresia Repair" Healthcare 13, no. 14: 1720. https://doi.org/10.3390/healthcare13141720
APA StyleCravano, S. M., Carmine, A. D., De Maio, C., Di Mitri, M., Bisanti, C., Collautti, E., Libri, M., D’Antonio, S., Gargano, T., Ciardini, E., & Lima, M. (2025). Technical Skill Acquisition in Pediatric Minimally Invasive Surgery: Evaluation of a 3D-Printed Simulator for Thoracoscopic Esophageal Atresia Repair. Healthcare, 13(14), 1720. https://doi.org/10.3390/healthcare13141720