The Immediate Hypoalgesic Effects of Mobilization and Manipulation in Patients with Non-Specific Chronic Low Back Pain: A Cross-Over Randomized Controlled Trial
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Eligibility Criteria
2.3. Randomization and Masking
2.4. Interventions
2.5. Outcome Measures
2.6. Sample Size
2.7. Statistical Analysis
3. Results
3.1. Between-Group Differences
3.2. Within-Group Differences
4. Discussion
Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoy, D.; Bain, C.; Williams, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012, 64, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Sanchis-Sánchez, E.; Lluch-Girbés, E.; Guillart-Castells, P.; Georgieva, S.; García-Molina, P.; Blasco, J.M. Effectiveness of mechanical diagnosis and therapy in patients with non-specific chronic low back pain: A literature review with meta-analysis. Braz. J. Phys. Ther. 2021, 25, 117–134. [Google Scholar] [CrossRef] [PubMed]
- Dal Farra, F.; Risio, R.G.; Vismara, L.; Bergna, A. Effectiveness of osteopathic interventions in chronic non-specific low back pain: A systematic review and meta-analysis. Complement. Ther. Med. 2021, 56, 102616. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.B.; Maher, C.G.; Pinto, R.Z.; Traeger, A.C.; Lin, C.W.C.; Chenot, J.F.; Van Tulder, M.; Koes, B.W. Clinical practice guidelines for the management of non-specific low back pain in primary care: An updated overview. Eur. Spine J. 2018, 27, 2791–2803. [Google Scholar] [CrossRef] [PubMed]
- George, S.Z.; Fritz, J.M.; Silfies, S.P.; Schneider, M.J.; Beneciuk, J.M.; Lentz, T.A.; Gilliam, J.R.; Hendren, S.; Norman, K.S.; Beattie, P.F.; et al. Interventions for the Management of Acute and Chronic Low Back Pain: Revision 2021: Clinical Practice Guidelines Linked to the International Classification of Functioning, Disability and Health from the Academy of Orthopaedic Physical Therapy of the American Physical Therapy Association. J. Orthop. Sports Phys. Ther. 2021, 51, CPG1–60. [Google Scholar] [PubMed]
- Cleland, J.A.; Flynn, T.W.; Childs, J.D.; Eberhart, S. The Audible Pop from Thoracic Spine Thrust Manipulation and Its Relation to Short-Term Outcomes in Patients with Neck Pain. J. Man. Manip. Ther. 2007, 15, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Bialosky, J.E.; Bishop, M.D.; Price, D.D.; Robinson, M.E.; George, S.Z. The mechanisms of manual therapy in the treatment of musculoskeletal pain: A comprehensive model. Man. Ther. 2009, 14, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Fryer, G. Integrating osteopathic approaches based on biopsychosocial therapeutic mechanisms. Part 1: The mechanisms. Int. J. Osteopath. Med. 2017, 25, 30–41. [Google Scholar] [CrossRef]
- Bialosky, J.E.; George, S.Z.; Horn, M.E.; Price, D.D.; Staud, R.; Robinson, M.E. Spinal Manipulative Therapy–Specific Changes in Pain Sensitivity in Individuals with Low Back Pain (NCT01168999). J. Pain 2014, 15, 136–148. [Google Scholar] [CrossRef] [PubMed]
- Coronado, R.A.; Gay, C.W.; Bialosky, J.E.; Carnaby, G.D.; Bishop, M.D.; George, S.Z. Changes in pain sensitivity following spinal manipulation: A systematic review and meta-analysis. J. Electromyogr. Kinesiol. 2012, 22, 752–767. [Google Scholar] [CrossRef] [PubMed]
- Dorron, S.L.; Losco, B.E.; Drummond, P.D.; Walker, B.F. Effect of lumbar spinal manipulation on local and remote pressure pain threshold and pinprick sensitivity in asymptomatic individuals: A randomised trial. Chiropr. Man. Ther. 2016, 24, 47. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.F.; Liebano, R.E.; Costa Lda, C.M.; Rissato, L.L.; Costa, L.O.P. Immediate Effects of Region-Specific and Non–Region-Specific Spinal Manipulative Therapy in Patients with Chronic Low Back Pain: A Randomized Controlled Trial. Phys. Ther. 2013, 93, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Thomson, O.; Haig, L.; Mansfield, H. The effects of high-velocity low-amplitude thrust manipulation and mobilisation techniques on pressure pain threshold in the lumbar spine. Int. J. Osteopath. Med. 2009, 12, 56–62. [Google Scholar] [CrossRef]
- Yu, X.; Wang, X.; Zhang, J.; Wang, Y. Changes in Pressure Pain Thresholds and Basal Electromyographic Activity After Instrument-Assisted Spinal Manipulative Therapy in Asymptomatic Participants: A Randomized, Controlled Trial. J. Manip. Physiol. Ther. 2012, 35, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Coulter, I.D.; Crawford, C.; Hurwitz, E.L.; Vernon, H.; Khorsan, R.; Suttorp Booth, M.; Herman, P.M. Manipulation and mobilization for treating chronic low back pain: A systematic review and meta-analysis. Spine J. 2018, 18, 866–879. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, S.M.; de Zoete, A.; van Middelkoop, M.; Assendelft, W.J.J.; de Boer, M.R.; van Tulder, M.W. Benefits and harms of spinal manipulative therapy for the treatment of chronic low back pain: Systematic review and meta-analysis of randomised controlled trials. BMJ 2019, 13, l689. [Google Scholar] [CrossRef] [PubMed]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Guidelines on Basic Training and Safety in Chiropractic; World Health Organization: Geneva, Switzerland, 2005; 44p. [Google Scholar]
- Airaksinen, O.; Brox, J.I.; Cedraschi, C.; Hildebrandt, J.; Klaber-Moffett, J.; Kovacs, F.; Mannion, A.F.; Reis, S.; Staal, J.B.; Ursin, H.; et al. Chapter 4 European guidelines for the management of chronic nonspecific low back pain. Eur. Spine J. 2006, 15, s192–s300. [Google Scholar] [CrossRef] [PubMed]
- Koes, B.W.; van Tulder, M.W.; Thomas, S. Diagnosis and treatment of low back pain. BMJ 2006, 332, 1430–1434. [Google Scholar] [CrossRef] [PubMed]
- Childs, J.D.; Fritz, J.M.; Flynn, T.W.; Irrgang, J.J.; Johnson, K.K.; Majkowski, G.R. A Clinical Prediction Rule to Identify Patients with Low Back Pain Most Likely to Benefit from Spinal Manipulation: A Validation Study. Ann. Intern. Med. 2004, 141, 920. [Google Scholar] [CrossRef] [PubMed]
- Spring, F.; Gibbons, P.; Tehan, P. Intra-examiner and inter-examiner reliability of a positional diagnostic screen for the lumbar spine. J. Osteopath. Med. 2001, 4, 47–55. [Google Scholar] [CrossRef]
- van Trijffel, E.; Anderegg, Q.; Bossuyt, P.M.M.; Lucas, C. Inter-examiner reliability of passive assessment of intervertebral motion in the cervical and lumbar spine: A systematic review. Man. Ther. 2005, 10, 256–269. [Google Scholar] [CrossRef] [PubMed]
- Nim, C.G.; Downie, A.; O’Neill, S.; Kawchuk, G.N.; Perle, S.M.; Leboeuf-Yde, C. The importance of selecting the correct site to apply spinal manipulation when treating spinal pain: Myth or reality? A systematic review. Sci. Rep. 2021, 11, 23415. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.Y.L.; Parent, E.C.; Dhillon, S.S.; Prasad, N.; Kawchuk, G.N. Do Participants with Low Back Pain Who Respond to Spinal Manipulative Therapy Differ Biomechanically from Nonresponders, Untreated Controls or Asymptomatic Controls? Spine 2015, 40, 1329–1337. [Google Scholar] [CrossRef] [PubMed]
- Colloca, C.J.; Keller, T.S.; Gunzburg, R. Biomechanical and neurophysiological responses to spinal manipulation in patients with lumbar radiculopathy. J. Manip. Physiol. Ther. 2004, 27, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lystad, R.P.; Bell, G.; Bonnevie-Svendsen, M.; Carter, C.V. Manual therapy with and without vestibular rehabilitation for cervicogenic dizziness: A systematic review. Chiropract. Man. Ther. 2011, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Currie, S.J.; Myers, C.A.; Enebo, B.A.; Davidson, B.S. Treatment and Response Factors in Muscle Activation during Spinal Manipulation. J. Clin. Med. 2023, 12, 6377. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, J.B.; Costa, L.O.P.; de Oliveira, N.T.B.; Sluka, K.A.; Liebano, R.E. Central sensitization and changes in conditioned pain modulation in people with chronic nonspecific low back pain: A case–control study. Exp. Brain Res. 2015, 233, 2391–2399. [Google Scholar] [CrossRef] [PubMed]
- Dias, L.V.; Cordeiro, M.A.; Schmidt de Sales, R.; dos Santos, M.M.B.R.; Korelo, R.I.G.; Vojciechowski, A.S. Immediate analgesic effect of transcutaneous electrical nerve stimulation (TENS) and interferential current (IFC) on chronic low back pain: Randomised placebo-controlled trial. J. Bodyw. Mov. Ther. 2021, 27, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Neziri, A.Y.; Curatolo, M.; Limacher, A.; Nüesch, E.; Radanov, B.; Andersen, O.K.; Arendt-Nielsen, L.; Jüni, P. Ranking of parameters of pain hypersensitivity according to their discriminative ability in chronic low back pain. Pain 2012, 153, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.; Kjær, P.; Graven-Nielsen, T.; Manniche, C.; Arendt-Nielsen, L. Low pressure pain thresholds are associated with, but does not predispose for, low back pain. Eur. Spine J. 2011, 20, 2120–2125. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, J.B.; Costa, L.O.P.; Oliveira, N.T.B.; Lima, W.P.; Sluka, K.A.; Liebano, R.E. Effects of the carrier frequency of interferential current on pain modulation and central hypersensitivity in people with chronic nonspecific low back pain: A randomized placebo-controlled trial. Eur. J. Pain 2016, 20, 1653–1666. [Google Scholar] [CrossRef] [PubMed]
- Mailloux, C.; Beaulieu, L.D.; Wideman, T.H.; Massé-Alarie, H. Within-session test-retest reliability of pressure pain threshold and mechanical temporal summation in healthy subjects. Rushton A, editor. PLoS ONE 2021, 16, e0245278. [Google Scholar] [CrossRef] [PubMed]
- Childs, J.D.; Piva, S.R.; Fritz, J.M. Responsiveness of the Numeric Pain Rating Scale in Patients with Low Back Pain. Spine 2005, 30, 1331–1334. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Turner, J.A.; Romano, J.M.; Fisher, L.D. Comparative reliability and validity of chronic pain intensity measures. Pain 1999, 83, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Sly, E.; Coleman, C.; Quinn, D.; Armstrong, S.M.; Garvey, C.; O’Donoghue, C.; Wilson, F. The effect of two exercise protocols on lumbar spine sagittal range of motion. J. Back. Musculoskelet. Rehabil. 2014, 27, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, J.D.S.D.; Alburquerque-Sendín, F.; Vigolvino, L.P.; Oliveira, W.F.D.; Sousa, C.D.O. Absolute and Relative Reliability of Pressure Pain Threshold Assessments in the Shoulder Muscles of Participants with and Without Unilateral Subacromial Impingement Syndrome. J. Manip. Physiol. Ther. 2020, 43, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Fagundes Loss, J.; de Souza da Silva, L.; Ferreira Miranda, I.; Groisman, S.; Santiago Wagner Neto, E.; Souza, C.; Tarragô Candotti, C. Immediate effects of a lumbar spine manipulation on pain sensitivity and postural control in individuals with nonspecific low back pain: A randomized controlled trial. Chiropract. Man. Ther. 2020, 28, 25. [Google Scholar] [CrossRef] [PubMed]
- Almeida, V.C.; Pereira, L.C.D.; Waqqar, S.; Flores, A.E.; Silva Junior, W.M.D.; Maciel, L.Y.D.S.; de Farias Neto, J.P.; Zacca, R.; de Santana Filho, V.J. Pressure Pain Threshold Protocols with Pressure Algometer in Patients with Low Back Pain: A Systematic Review with Meta-Analysis. J. Manip. Physiol. Ther. 2023, 46, 327–345. [Google Scholar] [CrossRef] [PubMed]
- Koh, R.G.; Paul, T.M.; Nesovic, K.; West, D.; Kumbhare, D.; Wilson, R.D. Reliability and minimal detectable difference of pressure pain thresholds in a pain-free population. Br. J. Pain 2023, 17, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Walton, D.; MacDermid, J.; Nielson, W.; Teasell, R.; Chiasson, M.; Brown, L. Reliability, Standard Error, and Minimum Detectable Change of Clinical Pressure Pain Threshold Testing in People with and Without Acute Neck Pain. J. Orthop. Sports Phys. Ther. 2011, 41, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Fryer, G.; Carub, J.; McIver, S. The effect of manipulation and mobilisation on pressure pain thresholds in the thoracic spine. J. Osteopath. Med. 2004, 7, 8–14. [Google Scholar] [CrossRef]
- Valera-Calero, A.; Lluch Girbés, E.; Gallego-Izquierdo, T.; Malfliet, A.; Pecos-Martín, D. Endocrine response after cervical manipulation and mobilization in people with chronic mechanical neck pain: A randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2019, 55, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Jung, A.; Adamczyk, W.M.; Ahmed, A.; Van Der Schalk, L.; Poesl, M.; Luedtke, K.; Szikszay, T.M. No Sufficient Evidence for an Immediate Hypoalgesic Effect of Spinal Manual Therapy on Pressure Pain Thresholds in Asymptomatic and Chronic Pain Populations: A Systematic Review and Meta-Analysis. Phys. Ther. 2023, 103, pzad003. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.S.; Clark, B.C.; Russ, D.W.; France, C.R.; Ploutz-Snyder, R.; Corcos, D.M.; RELIEF Study Investigators. Effect of Spinal Manipulative and Mobilization Therapies in Young Adults with Mild to Moderate Chronic Low Back Pain: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e2012589. [Google Scholar] [CrossRef] [PubMed]
- Randoll, C.; Gagnon-Normandin, V.; Tessier, J.; Bois, S.; Rustamov, N.; O’Shaughnessy, J.; Descarreaux, M.; Piché, M. The mechanism of back pain relief by spinal manipulation relies on decreased temporal summation of pain. Neuroscience 2017, 349, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Rossettini, G.; Carlino, E.; Testa, M. Clinical relevance of contextual factors as triggers of placebo and nocebo effects in musculoskeletal pain. BMC Musculoskelet. Disord. 2018, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Setchell, J.; Costa, N.; Ferreira, M.; Hodges, P.W. What decreases low back pain? A qualitative study of patient perspectives. Scand. J. Pain 2019, 19, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.L.; Herbert, R.D.; Ferreira, P.H.; Latimer, J.; Ostelo, R.W.; Grotle, M.; Barett, B. The smallest worthwhile effect of nonsteroidal anti-inflammatory drugs and physiotherapy for chronic low back pain: A benefit–harm trade-off study. J. Clin. Epidemiol. 2013, 66, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
Characteristics | (Ν = 27) |
---|---|
Men (%) | 15 (60%) |
Women (%) | 12 (40%) |
Age (years) | 38.4 ± 11.2 |
Height (meters) | 1.74 ± 0.1 |
Weight (Kg) | 84.4 ± 17.0 |
BMI | 27.9 ± 5.4 |
Symptom duration (months) | 56.1 ± 47.7 |
Mobilization * | Manipulation * | Between-Group Differences † | p-Value | Cohen’s d | |
---|---|---|---|---|---|
L5 | |||||
Pre- | 9.85 (2.90) | 9.36 (2.90) | - | - | - |
Post- | 10.83 (2.97) | 10.68 (3.06) | 0.15 (−0.94 to 1.23) | 0.79 ¶ | 0.05 |
L5 Left paravertebral area | |||||
Pre- | 9.89 (2.70) | 9.55 (2.50) | - | - | - |
Post- | 11.09 (2.90) | 10.93 (2.70) | 0.16 (−0.76 to 1.07) | 0.73 ¶ | 0.09 |
L5 Right paravertebral area | |||||
Pre- | 9.64 (2.30) | 9.74 (2.40) | - | - | - |
Post- | 10.60 (2.70) | 10.98 (3.00) | −0.39 (−1.17 to 0.4) | 0.33 ¶ | 0.13 |
Left trapezius | |||||
Pre- | 7.62 (2.40) | 7.44 (2.60) | - | - | - |
Post- | 8.44 (2.40) | 8.34 (2.30) | 0.11 (−0.5 to 0.72) | 0.73 ¶ | 0.04 |
Right trapezius | |||||
Pre- | 7.57 (2.40) | 7.40 (2.40) | - | - | - |
Post- | 8.76 (2.50) | 8.40 (2.40) | 0.36 (−0.22 to 0.93) | 0.22 ¶ | 0.15 |
Left tibialis anterior | |||||
Pre- | 11.87 (3.60) | 11.83 (3.50) | - | - | - |
Post- | 12.50 (3.90) | 12.17 (3.70) | 0.33 (−0.66 to 1.32) | 0.51 ¶ | 0.09 |
Right tibialis anterior | |||||
Pre- | 12.63 (3.60) | 12.75 (3.90) | - | - | - |
Post- | 13.31 (3.90) | 13.39 (4.10) | −0.08 (−1.04 to 0.87) | 0.86 ¶ | 0.27 |
Mobilization * | Manipulation * | Between-Group Differences † | p-Value | Cohen’s d | |
---|---|---|---|---|---|
Pain intensity (0–10) | |||||
Pre- | 2.56 (2.0) | 2.59 (1.36) | - | - | - |
Post- | 0.63 (1.36) | 0.44 (0.93) | 0.19 (−0.48 to 0.85) | 0.58 ¶ | 0.16 |
ROM (°) | |||||
Flexion | |||||
Pre- | 68.16 (8.40) | 69.57 (9.20) | - | - | - |
Post- | 70.67 (8.70) | 72.27 (8.50) | −1.59 (−4.26 to 1.08) | 0.24 ¶ | 0.19 |
Extension | |||||
Pre- | 14.98 (8.20) | 14.29 (7.80) | - | - | - |
Post- | 16.01 (8.60) | 15.86 (6.70) | 0.15 (−1.82 to 2.11) | 0.88 ¶ | 0.02 |
Right side flexion | |||||
Pre- | 20.54 (5.20) | 20.22 (5.80) | - | - | - |
Post- | 21.09 (5.20) | 21.23 (6.40) | −0.13 (−1.95 to 1.68) | 0.88 ¶ | 0.02 |
Left side flexion | |||||
Pre- | 22.12 (5.20) | 22.62 (5.10) | - | - | - |
Post- | 23.18 (5.60) | 23.52 (6.00) | −0.34 (−2.3 to 1.61) | 0.73 ¶ | 0.06 |
Mobilization Mean (95%CI), p-Value | Manipulation Mean (95%CI), p-Value | |
---|---|---|
PPTs (kg/cm2) | ||
L5 | −0.98 (−2.57 to 0.62), p = 0.23, d = 0.33 | −1.33 (−2.92 to 0.27), p = 0.1, d = 0.54 |
L5 Left paravertebral area | −1.19 (−2.11 to −0.27), p = 0.01, d = 0.43 | −1.38 (−2.29 to −0.46), p = 0.004, d = 0.53 |
L5 Right paravertebral area | −0.95 (−1.74 to −0.17), p = 0.018, d = 0.38 | −1.24 (−2.03 to −0.46), p = 0.002, d = 0.46 |
Left trapezius | −0.83 (−1.43 to −0.22), p = 0.009, d = 0.34 | −0.9 (−1.51 to −0.29), p = 0.004, d = 0.37 |
Right trapezius | −1.18 (−1.76 to −0.61), p = 0.001, d = 0.49 | −0.99 (−1.58 to −0.42), p = 0.001, d = 0.42 |
Left tibialis anterior | −0.63 (−1.62 to 0.36), p = 0.21,, d = 0.17 | −0.34 (−1.33 to 0.65), p = 0.49, d = 0.1 |
Right tibialis anterior | −0.67 (−1.63 to 0.28), p = 0.16, d = 0.19 | −0.64 (−1.59 to 0.31), p = 0.18, d = 0.16 |
Pain intensity | ||
NPRS | 1.93 (1.26 to 2.6), p < 0.0001, d= 0.97 | 2.15 (1.48 to 2.81), p < 0.0001, d = 1.1 |
ROM (°) | ||
Flexion | −2.51 (−5.19 to 0.16), p = 0.07, d = 0.3 | −2.7 (−5.37 to −0.03), p = 0.05, d = 0.31 |
Extension | −1.03 (−3 to 0.93), p = 0.3, d = 0.12 | −1.58 (−3.54 to 0.38), p = 0.11, d = 0.22 |
Right side flexion | −0.56 (−2.37 to 1.26), p = 0.54, d = 0.11 | −1.01 (−2.82 to 0.81), p = 0.27, d = 0.17 |
Left side flexion | −1.06 (−3.01 to 0.9), p= 0.28, d = 0.2 | −0.9 (−2.85 to 1.06), p = 0.36, d = 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampsonis, T.; Karanasios, S.; Gioftsos, G. The Immediate Hypoalgesic Effects of Mobilization and Manipulation in Patients with Non-Specific Chronic Low Back Pain: A Cross-Over Randomized Controlled Trial. Healthcare 2025, 13, 1719. https://doi.org/10.3390/healthcare13141719
Sampsonis T, Karanasios S, Gioftsos G. The Immediate Hypoalgesic Effects of Mobilization and Manipulation in Patients with Non-Specific Chronic Low Back Pain: A Cross-Over Randomized Controlled Trial. Healthcare. 2025; 13(14):1719. https://doi.org/10.3390/healthcare13141719
Chicago/Turabian StyleSampsonis, Thomas, Stefanos Karanasios, and George Gioftsos. 2025. "The Immediate Hypoalgesic Effects of Mobilization and Manipulation in Patients with Non-Specific Chronic Low Back Pain: A Cross-Over Randomized Controlled Trial" Healthcare 13, no. 14: 1719. https://doi.org/10.3390/healthcare13141719
APA StyleSampsonis, T., Karanasios, S., & Gioftsos, G. (2025). The Immediate Hypoalgesic Effects of Mobilization and Manipulation in Patients with Non-Specific Chronic Low Back Pain: A Cross-Over Randomized Controlled Trial. Healthcare, 13(14), 1719. https://doi.org/10.3390/healthcare13141719