A Retrospective, Multicenter Analysis of a Novel Sacroiliac Joint Fusion Device on Safety and Efficacy at 12 Months: Access Study
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heiney, J.; Capobianco, R.; Cher, D. A systematic review of minimally invasive sacroiliac joint fusion utilizing a lateral transarticular technique. Int. J. Spine Surg. 2015, 9, 40. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Simopoulos, T.T.; Manchikanti, L.; Singh, V.; Gupta, S.; Hameed, H.; Diwan, S.; Cohen, S.P. A systematic evaluation of prevalence and diagnostic accuracy of sacroiliac joint interventions. Pain Physician 2012, 15, E305–E344. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.P.; Soto, A.T. Sacroiliac Joint Dysfunction: Diagnosis and Treatment. Am. Fam. Physician 2022, 105, 239–245. [Google Scholar] [PubMed]
- Polly, D.W.; Swofford, J.; Whang, P.G.; Frank, C.J.; Glaser, J.A.; Limoni, R.P.; Cher, D.J.; Wine, K.D.; Sembrano, J.N.; INSITE Study Group. Two-Year Outcomes from a Randomized Controlled Trial of Minimally Invasive Sacroiliac Joint Fusion vs. Non-Surgical Management for Sacroiliac Joint Dysfunction. Int. J. Spine Surg. 2016, 10, 28. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, E.; Rains, C.; Ali, R.; Wines, R.C.; Kahwati, L.C. Minimally invasive sacroiliac joint fusion for chronic sacroiliac joint pain: A systematic review. Spine J. 2022, 22, 1240–1253. [Google Scholar] [CrossRef] [PubMed]
- Calodney, A.; Azeem, N.; Buchanan, P.; Skaribas, I.; Antony, A.; Kim, C.; Girardi, G.; Vu, C.; Bovinet, C.; Vogel, R.; et al. Safety, Efficacy, and Durability of Outcomes: Results from SECURE: A Single-Arm, Multicenter, Prospective, Clinical Study on a Minimally Invasive Posterior Sacroiliac Fusion Allograft Implant. J. Pain Res. 2024, 17, 1209–1222. [Google Scholar] [CrossRef]
- Moghim, R.; Bovinet, C.; Jin, M.Y.; Edwards, K.; Abd-Elsayed, A. Clinical outcomes for minimally invasive sacroiliac joint fusion with allograft using a posterior approach. Pain Pract. 2025, 25, e13406. [Google Scholar] [CrossRef] [PubMed]
- Raikar, S.V.; Nilles-Melchert, T.; Patil, A.A.; Crum, W.; Pandey, D. Posterior Oblique Approach for Sacroiliac Joint Fusion. Cureus 2023, 15, e33502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, K.; Li, Y.L.; Xiao, S.H.; Pan, Y.W. Minimally invasive lateral, posterior, and posterolateral sacroiliac joint fusion for low back pain: A systematic review and meta-analysis. J. Int. Med. Res. 2025, 53, 3000605251315300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raji, O.R.; Pope, J.E.; Falowski, S.M.; Stoffman, M.; Leasure, J.M. Fixation of the Sacroiliac Joint: A Cadaver-Based Concurrent-Controlled Biomechanical Comparison of Posterior Interposition and Posterolateral Transosseous Techniques. Neurospine 2025, 22, 185–193. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Polly, D.; Cher, D.; Wine, K.; Whang, P.G.; Frank, C.J.; Harvey, C.F.; Lockstadt, H.; Glaser, J.A.; Limoni, R.P.; Sembrano, J.N. Randomized Controlled Trial of Minimally Invasive Sacroiliac Joint Fusion Using Triangular Titanium Implants vs Nonsurgical Management for Sacroiliac Joint Dysfunction: 12-Month Outcomes. Neurosurgery 2015, 77, 674–691. [Google Scholar] [CrossRef]
- Cornidez, E.; Boev, A.; Mehta, P.; Falowski, S.; Vu, C.; Pope, J.E. A Retrospective, Multicenter, Analysis of a Novel Sacroiliac Joint Fusion Device on Safety at 3 and 12 months. J. Surg. 2025, 10, 11284. [Google Scholar] [CrossRef]
- Sayed, D.; Deer, T.R.; Francio, V.T.; Lam, C.M.; Sochacki, K.; Hussain, N.; Weaver, T.; Karri, J.; Orhurhu, V.; Strand, N.H.; et al. American Society of Pain and Neuroscience Best Practice (ASPN) Guideline for the Treatment of Sacroiliac Disorders. J. Pain Res. 2024, 17, 1601–1638. [Google Scholar] [CrossRef]
- Randers, E.M.; Gerdhem, P.; Stuge, B.; Diarbakerli, E.; Nordsletten, L.; Röhrl, S.M.; Kibsgård, T.J. The effect of minimally invasive sacroiliac joint fusion compared to sham operation: A double-blind randomized placebo-controlled trial. EClinicalMedicine 2024, 68, 102438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Copay, A.G.; Cher, D.J. Is the Oswestry Disability Index a valid measure of response to sacroiliac joint treatment? Qual. Life Res. 2016, 25, 283–292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Salaffi, F.; Stancati, A.; Silvestri, C.A.; Ciapetti, A.; Grassi, W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur. J. Pain 2004, 8, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Dengler, J.; Duhon, B.; Whang, P.; Frank, C.; Glaser, J.; Sturesson, B.; Garfin, S.; Cher, D.; Rendahl, A.; Polly, D. Predictors of Outcome in Conservative and Minimally Invasive Surgical Management of Pain Originating from the Sacroiliac Joint: A Pooled Analysis. Spine (Phila, Pa 1976). Spine 2017, 42, 1664–1673. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Whang, P.G.; Cher, D.; Polly, D.; Frank, C.; Lockstadt, H.; Glaser, J.; Limoni, R.; Sembrano, J. Sacroiliac Joint Fusion Using Triangular Titanium Implants vs. Non-Surgical Management: Six-Month Outcomes from a Prospective Randomized Controlled Trial. Int. J. Spine Surg. 2015, 9, 6. [Google Scholar] [CrossRef]
- Patel, V.; Kovalsky, D.; Meyer, S.C.; Chowdhary, A.; Lockstadt, H.; Techy, F.; Billys, J.; Limoni, R.; Yuan, P.S.; Kranenburg, A.; et al. Minimally invasive lateral transiliac sacroiliac joint fusion using 3D-printed triangular titanium implants. Med. Devices Evid. Res. 2019, 12, 203–214. [Google Scholar] [CrossRef]
- Patel, V.; Kovalsky, D.; Meyer, S.C.; Chowdhary, A.; Lockstadt, H.; Techy, F.; Langel, C.; Limoni, R.; Yuan, P.S.; Kranenburg, A.; et al. Prospective Trial of Sacroiliac Joint Fusion Using 3D-Printed Triangular Titanium Implants. Med. Devices Evid. Res. 2020, 13, 173–182. [Google Scholar] [CrossRef]
- Patel, V.; Kovalsky, D.; Meyer, S.C.; Chowdhary, A.; LaCombe, J.; Lockstadt, H.; Techy, F.; Langel, C.; Limoni, R.; Yuan, P.; et al. Prospective Trial of Sacroiliac Joint Fusion Using 3D-Printed Triangular Titanium Implants: 24-Month Follow-Up. Med. Devices Evid. Res. 2021, 14, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Duhon, B.S.; Bitan, F.; Lockstadt, H.; Kovalsky, D.; Cher, D.; Hillen, T. Triangular Titanium Implants for Minimally Invasive Sacroiliac Joint Fusion: 2-Year Follow-Up from a Prospective Multicenter Trial. Int. J. Spine Surg. 2016, 10, 13. [Google Scholar] [CrossRef] [PubMed]
Overall (N = 42) | ODI ≥ 30 & NRS ≥ 5 (N = 18) | |
---|---|---|
Age (yr), mean ± SD, (range) | 59.7 ± 11.4, (5, 76) | 60.9 ± 8.7, (45, 75) |
Female, %(n) | 71.4% (30) | 72.2% (13) |
Unilateral, %(n) | 90.5% (38) | 94.4% (17) |
ODI (0–100), mean ± SD, (range) | 33.0 ± 15.2, (9, 70) | 44.6 ± 11.9, (30, 70) |
NRS pain (0–10), mean ± SD, (range) | 7.1 ± 2.8, (0, 10) | 8.3 ± 1.7, (5, 10) |
Overall (N = 42) | ODI ≥ 30 & NRS ≥ 5 (N = 18) | |
---|---|---|
Operating room time (min), mean ± SD, (range) | 59.0 ± 10.8, (44, 91) | 57.9 ± 6.9, (45, 69) |
Estimated blood loss < 50 mL | 100% (42) | 100% (18) |
Cohort | N | Baseline | 12 Months | Improvement | Achieved MCID * | p-Value ** | |
---|---|---|---|---|---|---|---|
Overall (N = 42) | ODI (0–100), mean ± SD (range) | 42 | 33.0 ± 15.3 (9, 70) | 17.1 ± 10.6 (0, 44) | 16.0 ± 14.9 (−12, 50) | 52.4% (22) | <0.0001 |
(95% CI) | (28.3, 37.8) | (13.7, 20.3) | (11.3, 20.6) | ||||
NRS Pain (0–10), mean ± SD (range) | 38 | 7.13 ± 2.81 (0, 10) | 2.89 ± 2.24 (0, 9) | 4.24 ± 3.42 (−7, 10) | 82.4% (32) | <0.0001 | |
(95% CI) | (6.2, 8.1) | (2.2, 3.6) | (3.1, 5.4) | ||||
ODI ≥ 30 & NRS ≥ 5 (N = 18) | ODI (0–100), mean ± SD (range) | 18 | 44.6 ± 11.9 (30, 70) | 21.2 ± 7.4 (8, 35) | 23.3 ± 12.67 (0, 50) | 84.2% (32) | <0.0001 |
(95% CI) | (38.6, 50.5) | (17.6, 24.9) | (17.0, 29.6) | ||||
NRS Pain (0–10), mean ± SD (range) | 18 | 8.28 ± 1.74 (5, 10) | 3.56 ± 2.59 (0, 9) | 4.72 ± 2.95 (0, 10) | 88.9% (16) | <0.0001 | |
(95% CI) | (7.4, 9.1) | (2.3, 4.8) | (3.3, 6.2) |
Procedure | 12M | |
---|---|---|
Serious AE (bleeding, infection, nerve injury) | 0 | 0 |
Device complication | 0 | 0 |
Study Name | iMIA (10, 12) NCT01741025 | INSITE (1, 13, 14) NCT01681004 | SIFI (18) NCT01640353 | SALLY (15, 16, 17) NCT03122899 | SiLO TFX Retrospective | SiLO TFX Retrospective, Subset ODI ≥ 30, NRS ≥ 5 |
---|---|---|---|---|---|---|
Design | RCT | RCT | 1 arm, prospective | 1 arm, prospective | 1 arm, retrospective | 1 arm, retrospective |
Device | TTI | TTI | TTI | 3D printed TTI | SiLO TFX | SiLO TFX |
BASELINE CHARACTERISTICS | ||||||
N | 52 | 102 | 172 | 51 | 42 | 18 |
Age (yr), mean ± SD (range) | 49.4 (27, 70) | 50.2 ± 11.4 (25.6, 71.7) | 50.9 (23.5, 71.6) | 53.2 ± 15 | 59.7 ± 11.4 (35, 76) | 60.9 ± 8.7 (45, 75) |
Female | 73% | 74% | 69.8% | 76.5% | 71.4% | 72.2% |
Bilateral | 32.7% | - | - | 9.8% | 9.5% | 5.6% |
OUTCOMES | ||||||
VAS pain, BL * | 77.7 ± 11.3 | 82.3 | 79.8 ± 12.8 | 78.5 ± 11 | 71 ± 28 | 83 ± 17 |
VAS pain, 12M * | 41.6 ± 27.0 | 28.6 | 30.4 ± 27.6 | 20.5 ** | 29 ± 22 | 36 ± 26 |
Absolute VAS pain Improvement * | 36.1 ** | 53.7 | 49.3 ± 29.5 | 58 | 42 ± 34 | 47 ± 29 |
VAS pain Improved 20 points, 12M | - | 81% | - | 96% | 84.2% | 88.9% |
ODI, Baseline | 57.5 ± 14.4 | 57.2 ± 13 | 55.2 ± 11.5 | 52.8 ± 12.3 | 33.0 ± 15.2 | 44.6 ± 11.9 |
ODI, 12M | 32.1 ± 19.9 | 28.3 | 31.5 ± 19.2 | 28 | 17.1 ± 10.6 | 21.2 ± 7.4 |
Absolute ODI improvement | 25.4 ** | 28.9 | 23.8 ± 20.6 | 25 | 16.0 ± 14.9 | 23.3 ± 12.7 |
ODI Improved 15 points | - | 72.0% | - | 67% | 52.4% | 77.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorsi, M.J.; Mehta, P.; Vu, C.; Boev, A.; Bailey-Classen, A.; Moore, G.; Reece, D.; Abd-Elsayed, A.; Falowski, S.; Pope, J.E. A Retrospective, Multicenter Analysis of a Novel Sacroiliac Joint Fusion Device on Safety and Efficacy at 12 Months: Access Study. Healthcare 2025, 13, 1544. https://doi.org/10.3390/healthcare13131544
Dorsi MJ, Mehta P, Vu C, Boev A, Bailey-Classen A, Moore G, Reece D, Abd-Elsayed A, Falowski S, Pope JE. A Retrospective, Multicenter Analysis of a Novel Sacroiliac Joint Fusion Device on Safety and Efficacy at 12 Months: Access Study. Healthcare. 2025; 13(13):1544. https://doi.org/10.3390/healthcare13131544
Chicago/Turabian StyleDorsi, Michael J., Pankaj Mehta, Chau Vu, Angel Boev, Ashley Bailey-Classen, Greg Moore, David Reece, Alaa Abd-Elsayed, Steven Falowski, and Jason E. Pope. 2025. "A Retrospective, Multicenter Analysis of a Novel Sacroiliac Joint Fusion Device on Safety and Efficacy at 12 Months: Access Study" Healthcare 13, no. 13: 1544. https://doi.org/10.3390/healthcare13131544
APA StyleDorsi, M. J., Mehta, P., Vu, C., Boev, A., Bailey-Classen, A., Moore, G., Reece, D., Abd-Elsayed, A., Falowski, S., & Pope, J. E. (2025). A Retrospective, Multicenter Analysis of a Novel Sacroiliac Joint Fusion Device on Safety and Efficacy at 12 Months: Access Study. Healthcare, 13(13), 1544. https://doi.org/10.3390/healthcare13131544