Predicting Ischemic Stroke Patients to Transfer for Endovascular Thrombectomy Using Machine Learning: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context
2.2. Data Collection
2.3. Data Analysis
2.4. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EMS | Emergency medical services |
EVT | Endovascular thrombectomy |
LVO | Large vessel occlusion |
NNT | Number needed to treat |
ML | Machine learning |
ASPECTS | Alberta Stroke Program Early CT Score |
k-NN | K-nearest neighbour |
ROC | Receiver operating characteristics |
AUC | Area under the curve |
DIDO | Door-in-door-out |
References
- Feigin, V.L.; Forouzanfar, M.H.; Krishnamurthi, R.; Mensah, G.A.; Connor, M.; Bennett, D.A.; Moran, A.E.; Sacco, R.L.; Anderson, L.; Truelsen, T.; et al. Global and regional burden of stroke during 1990–2010: Findings from the Global Burden of Disease Study 2010. Lancet 2014, 383, 245–255. [Google Scholar] [CrossRef]
- Holodinsky, J.K.; Lindsay, P.; Yu, A.Y.X.; Ganesh, A.; Joundi, R.A.; Hill, M.D. Estimating the number of hospital or emergency department presentations for stroke in Canada. Can. J. Neurol. Sci. 2023, 50, 820–825. [Google Scholar] [CrossRef]
- Kamal, N.; Lindsay, M.P.; Côté, R.; Fang, J.; Kapral, M.K.; Hill, M.D. Ten-year trends in stroke admission and outcomes in Canada. Can. J. Neurol. Sci. 2023, 42, 168–175. [Google Scholar] [CrossRef]
- The National Institute of Neurological Disorders and Stroke RT-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995, 333, 1581–1587. [Google Scholar] [CrossRef]
- Emberson, J.; Lee, K.R.; Lynden, P.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with aleplase for actue ischaemic stroke: A meta-analysis of individual patient data from randomised trials. Lancet 2014, 384, 1929–1935. [Google Scholar] [CrossRef]
- Heran, M.; Lindsay, P.; Gubitz, G.; Yu, A.; Ganesh, A.; Lund, R.; Arsenault, S.; Balckford, D.; Derbyshire, D.; Doucette, S.; et al. Canadian stroke best practice recommendations: Acute stroke management, practice guidelines update, 2022. Can. J. Neurol. Sci. 2024, 51, 1–31. [Google Scholar] [CrossRef]
- Goyal, M.; Menon, B.K.; Van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.; van der Lugt, A.; De Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef]
- Goyal, M.; Demchuk, A.M.; Menon, B.K.; Eesa, M.; Rempel, J.L.; Thornton, J.; Roy, D.; Jovin, T.G.; Willinsky, R.A.; Sapkota, B.L.; et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 2015, 372, 1019–1030. [Google Scholar] [CrossRef]
- Malhotra, K.; Gornbein, J.; Saver, J.L. Ischemic strokes due to large-vessel occlusions contribute disproportionately to stroke-related dependence and death: A review. Front. Neurol. 2017, 8, 651. [Google Scholar] [CrossRef]
- Saver, J.L.; Goyal, M.; Van der Lugt, A.A.; Menon, B.K.; Majoie, C.B.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A.; et al. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis. JAMA 2016, 316, 1279–1289. [Google Scholar] [CrossRef]
- Saver, J.L. Time is brain—Quantified. Stroke 2006, 37, 263–266. [Google Scholar] [CrossRef]
- Gao, M.M.; Wang, J.Z.; Liao, J.; Reiter, S.D.; Vyas, M.V.; Linkewich, E.; Swartz, R.H.; da Costa, L.; Kassardjian, C.D.; Amy, Y.X. Delayed Thrombectomy Center Arrival is Associated with Decreased Treatment Probability. Can. J. Neurol. Sci. 2020, 47, 770–774. [Google Scholar] [CrossRef]
- Regenhardt, R.W.; Mecca, A.P.; Flavin, S.A.; Boulouis, G.; Lauer, A.; Zachrison, K.S.; Boomhower, J.; Patel, A.B.; Hirsch, J.A.; Schwamm, L.H.; et al. Delays in the air or ground transfer of patients for endovascular thrombectomy. Stroke 2018, 49, 1419–1425. [Google Scholar] [CrossRef]
- Girot, J.B.; Richard, S.; Gariel, F.; Sibon, I.; Labreuche, J.; Kyheng, M.; Gory, B.; Dargazanli, C.; Maier, B.; Consoli, A.; et al. Predictors of unexplained early neurological deterioration after endovascular treatment for acute ischemic stroke. Stroke 2020, 51, 2943–2950. [Google Scholar] [CrossRef]
- Sugiura, Y.; Yamagami, H.; Sakai, N.; Yoshimura, S. Predictors of symptomatic intracranial hemorrhage after endovascular therapy in acute ischemic stroke with large vessel occlusion. J. Stroke Cerebrovasc. Dis. 2017, 26, 766–771. [Google Scholar] [CrossRef]
- Ozdemir, O.; Giray, S.; Arlier, Z.; Baş, D.F.; Inanc, Y.; Colak, E. Predictors of a good outcome after endovascular stroke treatment with stent retrievers. Sci. World J. 2015, 2015, 403726. [Google Scholar] [CrossRef]
- Nagaraja, N.; Olasoji, E.B.; Patel, U.K. Sex and racial disparity in utilization and outcomes of t-PA and thrombectomy in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104954. [Google Scholar] [CrossRef]
- Nannoni, S.; Strambo, D.; Sirimarco, G.; Amiguet, M.; Vanacker, P.; Eskandari, A.; Saliou, G.; Wintermark, M.; Dunet, V.; Michel, P. Eligibility for late endovascular treatment using DAWN, DEFUSE-3, and more liberal selection criteria in a stroke center. J. Neurointerventional Surg. 2020, 12, 842–847. [Google Scholar] [CrossRef]
- Vanacker, P.; Lambrou, D.; Eskandari, A.; Mosimann, P.J.; Maghraoui, A.; Michel, P. Eligibility and predictors for acute revascularization procedures in a stroke center. Stroke 2016, 47, 1844–1849. [Google Scholar] [CrossRef]
- Venema, E.; Groot, A.E.; Lingsma, H.F.; Hinsenveld, W.; Treurniet, K.M.; Chalos, V.; Zinkstok, S.M.; Mulder, M.J.; de Ridder, I.R.; Marquering, H.A.; et al. Effect of interhospital transfer on endovascular treatment for acute ischemic stroke. Stroke 2019, 50, 923–930. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Alaka, S.A.; Menon, B.K.; Brobbey, A.; Williamson, T.; Goyal, M.; Demchuk, A.M.; Hill, M.D.; Sajobi, T.T. Functional outcome prediction in Ischemic stroke: A comparison of machine learning algorithms and regression models. Front. Neurol. 2020, 11, 889. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, J.G.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine learning–based model for prediction of outcomes in acute stroke. Stroke 2019, 50, 1263–1265. [Google Scholar] [CrossRef]
- Fang, G.; Liu, W.; Wang, L. A machine learning approach to select features important to stroke prognosis. Comput. Biol. Chem. 2020, 88, 107316. [Google Scholar] [CrossRef]
- Asadi, H.; Dowling, R.; Yan, B.; Mitchell, P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE 2014, 9, e88225. [Google Scholar] [CrossRef]
- Van Os, H.J.; Ramos, L.A.; Hilbert, A.; Van Leeuwen, M.; van Walderveen, M.A.; Kruyt, N.D.; Dippel, D.W.; Steyerberg, E.W.; van der Schaaf, I.C.; Lingsma, H.F.; et al. Predicting outcome of endovascular treatment for acute ischemic stroke: Potential value of machine learning algorithms. Front. Neurol. 2018, 9, 784. [Google Scholar] [CrossRef]
- Brugnara, G.; Neuberger, U.; Mahmutoglu, M.A.; Foltyn, M.; Herweh, C.; Nagel, S.; Schönenberger, S.; Heiland, S.; Ulfert, C.; Ringleb, P.A.; et al. Multimodal predictive modeling of endovascular treatment outcome for acute ischemic stroke using machine-learning. Stroke 2020, 51, 3541–3551. [Google Scholar] [CrossRef]
- Teo, Y.H.; Lim, I.C.; Tseng, F.S.; Teo, Y.N.; Kow, C.S.; Ng, Z.H.; Ko, N.C.; Sia, C.H.; Leow, A.S.; Yeung, W.; et al. Predicting Clinical Outcomes in Acute Ischemic Stroke Patients Undergoing Endovascular Thrombectomy with Machine Learning. Clin. Neuroradiol. 2021, 31, 1121–1130. [Google Scholar] [CrossRef]
- Qiu, W.; Kuang, H.; Teleg, E.; Ospel, J.M.; Sohn, S.I.; Almekhlafi, M.; Goyal, M.; Hill, M.D.; Demchuk, A.M.; Menon, B.K. Machine learning for detecting early infarction in acute stroke with non–contrast-enhanced CT. Radiology 2020, 294, 638–644. [Google Scholar] [CrossRef]
- Kuang, H.; Najm, M.; Chakraborty, D.; Maraj, N.; Sohn, S.I.; Goyal, M.; Hill, M.D.; Demchuk, A.M.; Menon, B.K.; Qiu, W. Automated ASPECTS on noncontrast CT scans in patients with acute ischemic stroke using machine learning. Am. J. Neuroradiol. 2019, 40, 33–38. [Google Scholar] [CrossRef]
- Lee, H.; Lee, E.J.; Ham, S.; Lee, H.B.; Lee, J.S.; Kwon, S.U.; Kim, J.S.; Kim, N.; Kang, D.W. Machine learning approach to identify stroke within 4.5 hours. Stroke 2020, 51, 860–866. [Google Scholar] [CrossRef]
- Alawieh, A.; Zaraket, F.; Alawieh, M.B.; Chatterjee, A.R.; Spiotta, A. Using machine learning to optimize selection of elderly patients for endovascular thrombectomy. J. Neurointerv. Surg. 2019, 11, 847–851. [Google Scholar] [CrossRef]
- Lim, D.Z.; Yeo, M.; Dahan, A.; Tahayori, B.; Kok, H.K.; Abbasi-Rad, M.; Maingard, J.; Kutaiba, N.; Russell, J.; Thijs, V.; et al. Development of a machine learning-based real-time location system to streamline acute endovascular intervention in acute stroke: A proof-of-concept study. J. Neurointerv. Surg. 2021, 14, 799–803. [Google Scholar] [CrossRef]
- Baik, S.H.; Kim, J.Y.; Jung, C. A review of endovascular treatment for posterior circulation strokes. Neurointervention 2023, 18, 90–106. [Google Scholar] [CrossRef]
- Pirson, F.A.; Boodt, N.; Brouwer, J.; Bruggeman, A.A.; den Hartog, S.J.; Goldhoorn, R.J.; Langezaal, L.C.; Staals, J.; van Zwam, W.H.; van der Leij, C.; et al. Endovascular treatment for posterior circulation stroke in routine clinical practice: Results of the multicenter randomized clinical trial of endovascular treatment for acute ischemic stroke in the Netherlands registry. Stroke 2022, 53, 758–768. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Springer Nature: Cham, Switzerland, 2021. [Google Scholar]
- Zhang, S. Nearest neighbor selection for iteratively kNN imputation. J. Syst. Softw. 2012, 85, 2541–2552. [Google Scholar] [CrossRef]
- Kashani, N.; Ospel, J.M.; Menon, B.K.; Saposnik, G.; Almekhlafi, M.; Sylaja, P.N.; Campbell, B.C.; Heo, J.H.; Mitchell, P.J.; Cherian, M.; et al. Influence of guidelines in endovascular therapy decision making in acute ischemic stroke: Insights from UNMASK EVT. Stroke 2019, 50, 3578–3584. [Google Scholar] [CrossRef]
Variable | Input/Output | Type | Description |
---|---|---|---|
Age | Input | Numeric | The age of the patient at the time of stroke onset (years). |
Sex | Input | Categorical | The sex of the patient; converted to a binary variable. |
Onset to first CT | Input | Numeric | The time from onset of stroke symptoms to the time of the CT scan at the thrombolysis-only center (minutes). |
ASPECTS | Input | Integer (0–6) | The number of ischemic changes measured using ASPECTS at the thrombolysis-only center. |
Clot Location | Input | Categorical | The thrombus location at the thrombolysis-only center based on the CTA; the following categories were used: tandem (0), terminal ICA (1), M1 (2), M2 (4), MCA (5) Other (7). Note: posterior was assigned a value of 3 but was subsequently removed. |
Collateral Status | Input | Categorical | The level of collateral circulation using the following categories: good (0), intermediate (1), poor (2). |
Thrombolysis | Input | Binary | Whether the patient received thrombolysis at the thrombolysis-only center: not given (0), given (1). |
Distance | Input | Numeric | The driving distance between the thrombolysis center where the patient was first seen to the EVT-capable center. The Euclidean distance is a straight-line distance between the thrombolysis center where the patient was first seen to the EVT-capable center.Driving distance is used when ground transportation is used, and Euclidean distance is used when helicopter is used. (km) |
Door-In-Door-Out | Input | Numeric | The time from the patient’s arrival at the thrombolysis-only center to the time of departure from this center. |
Transfer Modality | Input | Categorical | The modality of transfer: ground (0), helicopter (1) |
EVT Performed | Output | Binary | Whether EVT was performed (1) or not performed (0). |
Variable | Entire Dataset (n = 93) | Received EVT (n = 47) | Did Not Receive EVT (n = 46) |
---|---|---|---|
Age, Mean (±SD) | 66.8 (±15.68) | 69.11 (±12.47) | 64.43 (±18.23) |
Sex, Women (%) | 47.31% | 53.19% | 41.30% |
ASPECTS, Median (IQR) | 9.0 (8.0–10.0) | 9.0 (8.0–10.0) | 9.0 (8.0–10.0) |
Occlusion Location | |||
M1, % | 42.52% | 51.44% | 33.60% |
M2, % | 17.24% | 14.38% | 20.07% |
MCA, % | 8.04% | 0% | 16.08% |
Tandem, % | 17.24% | 20.29% | 14.19% |
Terminal ICA, % | 13.79% | 13.89% | 13.69% |
Other, % | 1.17% | 0% | 2.37% |
Collateral Status | |||
Good, % | 61.45% | 63.82% | 59.08% |
Intermediate, % | 28.92% | 31.93% | 25.82% |
Poor, % | 9.63% | 4.25% | 15.01% |
tPA, % that received | 55.91% | 63.82% | 47.82% |
Distance, median (IQR) | 105.0 (87.40–195.0) | 105.0 (92.70–157.0) | 105.0 (8.0–221.7) |
Mode of Transfer | |||
Ambulance, % | 75.56% | 78.72% | 72.74% |
Air, % | 24.44% | 21.28% | 27.26% |
DIDO Time, Median (IQR) | 165.58 (114.18–243.47) | 156.83 (108.07–211.0) | 179.66 (123.43–319.92) |
Onset to 1st CT, Median (IQR) | 139.0 (69.50–230.50) | 87.50 (57.75–196.25) | 164.0 (99.0–366.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, N.; Han, J.-H.; Alim, S.; Taeb, B.; Devpura, A.; Aljendi, S.; Goldstein, J.; Fok, P.T.; Hill, M.D.; Naoum-Sawaya, J.; et al. Predicting Ischemic Stroke Patients to Transfer for Endovascular Thrombectomy Using Machine Learning: A Case Study. Healthcare 2025, 13, 1435. https://doi.org/10.3390/healthcare13121435
Kamal N, Han J-H, Alim S, Taeb B, Devpura A, Aljendi S, Goldstein J, Fok PT, Hill MD, Naoum-Sawaya J, et al. Predicting Ischemic Stroke Patients to Transfer for Endovascular Thrombectomy Using Machine Learning: A Case Study. Healthcare. 2025; 13(12):1435. https://doi.org/10.3390/healthcare13121435
Chicago/Turabian StyleKamal, Noreen, Joon-Ho Han, Simone Alim, Behzad Taeb, Abhishek Devpura, Shadi Aljendi, Judah Goldstein, Patrick T. Fok, Michael D. Hill, Joe Naoum-Sawaya, and et al. 2025. "Predicting Ischemic Stroke Patients to Transfer for Endovascular Thrombectomy Using Machine Learning: A Case Study" Healthcare 13, no. 12: 1435. https://doi.org/10.3390/healthcare13121435
APA StyleKamal, N., Han, J.-H., Alim, S., Taeb, B., Devpura, A., Aljendi, S., Goldstein, J., Fok, P. T., Hill, M. D., Naoum-Sawaya, J., & Cora, E. A. (2025). Predicting Ischemic Stroke Patients to Transfer for Endovascular Thrombectomy Using Machine Learning: A Case Study. Healthcare, 13(12), 1435. https://doi.org/10.3390/healthcare13121435