Driving Online Healthcare Growth Amid the Digital Divide: How Trust in Professional Signals from Doctor Biographies Shapes Patient Decisions
Abstract
:1. Introduction
2. Literature Review
2.1. Patient-Generated Content and Doctor-Generated Content
2.2. Trust
2.3. Social Distance Theory
3. Hypotheses Development
4. Methodology
4.1. Data Resources and Collection
4.2. Latent Dirichlet Allocation
4.3. Topic Extraction
4.4. Topic Aggregation
4.5. Data Processing
4.5.1. Independent Variable
4.5.2. Dependent Variable
4.5.3. Moderating Variable
4.5.4. Mediating Variable
4.6. Estimation
5. Empirical Results
5.1. Main Effect and Moderation Effect
5.2. Mediating Effect of Follower Community
5.3. Robustness Check
6. Discussion
6.1. Key Findings
6.2. Practical Implications
6.3. Theoretical Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Topic 1 | Topic 2 | Topic 3 | Topic 4 | Topic 5 | Topic 6 | Topic 7 | Topic 8 | Topic 9 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability |
Urology | 0.03 | Shanghai | 0.022 | Committee Member | 0.029 | Orthopedics | 0.033 | Surgery | 0.027 | Chief Physician | 0.019 | Skin | 0.022 | of | 0.028 | Surgery | 0.031 |
Plastic | 0.027 | China | 0.018 | Branch | 0.022 | Stomatology | 0.028 | Treatment | 0.027 | Clinical | 0.018 | Dermatology | 0.022 | and | 0.016 | Treatment | 0.03 |
Surgery | 0.026 | Tumor | 0.014 | Committee | 0.021 | Joint | 0.023 | Surgery | 0.021 | Work | 0.017 | Dermatology Department | 0.021 | in | 0.012 | Spine | 0.02 |
Cosmetology | 0.018 | Committee Member | 0.013 | Professional | 0.018 | Surgery | 0.018 | Tumor | 0.02 | Disease | 0.016 | Treatment | 0.016 | Journal | 0.011 | Microinvasive | 0.014 |
Plastic Surgery | 0.017 | Physician | 0.011 | Henan Province | 0.016 | Sports | 0.018 | Neurosurgery | 0.019 | Hospital | 0.015 | Cosmetology | 0.01 | the | 0.008 | Surgery | 0.012 |
Treatment | 0.015 | Association | 0.01 | China | 0.014 | Injury | 0.016 | Disease | 0.011 | Graduate | 0.013 | Cicatrix | 0.009 | for | 0.005 | Technology | 0.011 |
Tumor | 0.012 | Branch | 0.01 | Association | 0.014 | Maxillofacial | 0.016 | Endoscopy | 0.01 | Engaged in | 0.012 | Hemangioma | 0.009 | Chinese | 0.005 | Patient | 0.009 |
Repair | 0.012 | Committee | 0.01 | Institution | 0.014 | Trauma | 0.015 | Microinvasive | 0.01 | Diagnosis and Treatment | 0.01 | Lupus Erythematosus | 0.008 | Research | 0.005 | Professor | 0.008 |
Microinvasive | 0.012 | Clinical | 0.01 | Shandong Province | 0.014 | Repair | 0.015 | Chief Physician | 0.01 | Specializes in | 0.01 | Laser | 0.008 | with | 0.005 | Development | 0.008 |
Laparoscopy | 0.01 | Surgery | 0.009 | Director Chairman | 0.012 | Arthroscopy | 0.011 | Laparoscopy | 0.009 | Medical School | 0.01 | Acne | 0.008 | Clinical | 0.004 | Domestic | 0.008 |
Prostate Cancer | 0.009 | Research | 0.009 | Physician | 0.011 | Fracture | 0.011 | Work | 0.009 | Children | 0.01 | Dermatovenereology | 0.008 | Journal | 0.004 | Clinical | 0.007 |
Specializes in | 0.008 | International | 0.009 | Medical Association | 0.011 | Treatment | 0.01 | Clinical | 0.009 | Affiliated | 0.01 | Rheumatism | 0.008 | cancer | 0.004 | Vascular | 0.006 |
Reconstruction | 0.008 | Journal | 0.009 | Publication | 0.01 | Oral Medicine | 0.01 | Specializes in | 0.008 | Mentor | 0.01 | Psoriasis | 0.007 | Treatment | 0.004 | Interventional | 0.006 |
Bladder | 0.008 | Medicine | 0.009 | Journal | 0.009 | Reconstruction | 0.01 | Resection | 0.008 | Research | 0.009 | Research | 0.007 | 2008 | 0.004 | Disease | 0.006 |
Ureter | 0.007 | Hospital | 0.008 | Treatment | 0.009 | Knee Joint | 0.009 | Engaged in | 0.007 | Treatment | 0.009 | Systemic | 0.007 | Cancer | 0.004 | Work | 0.006 |
Prostate | 0.007 | Professional | 0.008 | Chinese | 0.008 | Deformity | 0.009 | Research | 0.007 | Dr. | 0.008 | Hair | 0.007 | Zhang | 0.004 | Hospital | 0.005 |
Deformity | 0.006 | National | 0.008 | Disease | 0.008 | Medical School | 0.008 | Hospital | 0.007 | Director | 0.008 | Specializes in | 0.006 | 2010 | 0.003 | Deformity | 0.005 |
Chief Physician | 0.006 | Publication | 0.008 | Chinese Medical Association | 0.008 | Replacement | 0.008 | Diagnosis | 0.006 | Professor | 0.007 | Burn | 0.006 | Tumor | 0.003 | Neural | 0.005 |
Facial | 0.006 | Professor | 0.007 | Hubei Province | 0.008 | Chief Physician | 0.007 | Liver Cancer | 0.006 | MD | 0.007 | Sexually Transmitted Disease | 0.006 | 2013 | 0.003 | End | 0.004 |
Transplantation | 0.006 | Youth | 0.007 | More than | 0.007 | Implantation | 0.007 | Hepatobiliary | 0.006 | Gynecology | 0.007 | Facial | 0.006 | 2015 | 0.003 | Chief Physician | 0.004 |
Topic 1 | Topic 2 | Topic 3 | Topic 4 | Topic 5 | Topic 6 | Topic 7 | Topic 8 | Topic 9 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability |
泌尿外科 | 0.03 | 上海市 | 0.022 | 委员 | 0.029 | 骨科 | 0.033 | 手术 | 0.027 | 主任医师 | 0.019 | 皮肤 | 0.022 | of | 0.028 | 手术 | 0.031 |
整形 | 0.027 | 中国 | 0.018 | 分会 | 0.022 | 口腔 | 0.028 | 治疗 | 0.027 | 临床 | 0.018 | 皮肤病 | 0.022 | and | 0.016 | 治疗 | 0.03 |
手术 | 0.026 | 肿瘤 | 0.014 | 委员会 | 0.021 | 关节 | 0.023 | 外科 | 0.021 | 工作 | 0.017 | 皮肤科 | 0.021 | in | 0.012 | 脊柱 | 0.02 |
美容 | 0.018 | 委员 | 0.013 | 专业 | 0.018 | 外科 | 0.018 | 肿瘤 | 0.02 | 疾病 | 0.016 | 治疗 | 0.016 | 杂志 | 0.011 | 微创 | 0.014 |
整形外科 | 0.017 | 医师 | 0.011 | 河南省 | 0.016 | 运动 | 0.018 | 神经外科 | 0.019 | 医院 | 0.015 | 美容 | 0.01 | the | 0.008 | 外科 | 0.012 |
治疗 | 0.015 | 协会 | 0.01 | 中国 | 0.014 | 损伤 | 0.016 | 疾病 | 0.011 | 毕业 | 0.013 | 瘢痕 | 0.009 | for | 0.005 | 技术 | 0.011 |
肿瘤 | 0.012 | 分会 | 0.01 | 协会 | 0.014 | 颌面 | 0.016 | 内镜 | 0.01 | 从事 | 0.012 | 血管瘤 | 0.009 | 中华 | 0.005 | 患者 | 0.009 |
修复 | 0.012 | 委员会 | 0.01 | 学会 | 0.014 | 创伤 | 0.015 | 微创 | 0.01 | 诊治 | 0.01 | 红斑狼疮 | 0.008 | 研究 | 0.005 | 教授 | 0.008 |
微创 | 0.012 | 临床 | 0.01 | 山东省 | 0.014 | 修复 | 0.015 | 主任医师 | 0.01 | 擅长 | 0.01 | 激光 | 0.008 | with | 0.005 | 开展 | 0.008 |
腹腔镜 | 0.01 | 外科 | 0.009 | 主任委员 | 0.012 | 关节镜 | 0.011 | 腹腔镜 | 0.009 | 医学院 | 0.01 | 痤疮 | 0.008 | 临床 | 0.004 | 国内 | 0.008 |
前列腺癌 | 0.009 | 研究 | 0.009 | 医师 | 0.011 | 骨折 | 0.011 | 工作 | 0.009 | 儿童 | 0.01 | 皮肤性病 | 0.008 | Journal | 0.004 | 临床 | 0.007 |
擅长 | 0.008 | 国际 | 0.009 | 医学会 | 0.011 | 治疗 | 0.01 | 临床 | 0.009 | 附属 | 0.01 | 风湿 | 0.008 | cancer | 0.004 | 血管 | 0.006 |
重建 | 0.008 | 杂志 | 0.009 | 发表 | 0.01 | 口腔医学 | 0.01 | 擅长 | 0.008 | 导师 | 0.01 | 银屑病 | 0.007 | 治疗 | 0.004 | 介入 | 0.006 |
膀胱 | 0.008 | 医学 | 0.009 | 杂志 | 0.009 | 重建 | 0.01 | 切除 | 0.008 | 研究 | 0.009 | 研究 | 0.007 | 2008 | 0.004 | 疾病 | 0.006 |
输尿管 | 0.007 | 医院 | 0.008 | 治疗 | 0.009 | 膝关节 | 0.009 | 从事 | 0.007 | 治疗 | 0.009 | 系统性 | 0.007 | Cancer | 0.004 | 工作 | 0.006 |
前列腺 | 0.007 | 专业 | 0.008 | 中华 | 0.008 | 畸形 | 0.009 | 研究 | 0.007 | 博士 | 0.008 | 毛发 | 0.007 | Zhang | 0.004 | 医院 | 0.005 |
畸形 | 0.006 | 国家 | 0.008 | 疾病 | 0.008 | 医学院 | 0.008 | 医院 | 0.007 | 主任 | 0.008 | 擅长 | 0.006 | 2010 | 0.003 | 畸形 | 0.005 |
主任医师 | 0.006 | 发表 | 0.008 | 中华医学会 | 0.008 | 置换 | 0.008 | 诊断 | 0.006 | 教授 | 0.007 | 烧伤 | 0.006 | 肿瘤 | 0.003 | 神经 | 0.005 |
面部 | 0.006 | 教授 | 0.007 | 湖北省 | 0.008 | 主任医师 | 0.007 | 肝癌 | 0.006 | 医学博士 | 0.007 | 性病 | 0.006 | 2013 | 0.003 | 结束 | 0.004 |
移植 | 0.006 | 青年 | 0.007 | 余篇 | 0.007 | 种植 | 0.007 | 肝胆 | 0.006 | 妇科 | 0.007 | 面部 | 0.006 | 2015 | 0.003 | 主任医师 | 0.004 |
References
- Schmitz, A.; Díaz-Martín, A.M.; Guillén, J.Y. Modifying UTAUT2 for a cross-country comparison of telemedicine adoption. Comput. Hum. Behav. 2022, 130, 107183. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, T.; Esmaeilzadeh, P. Engagement in online health communities: Channel expansion and social exchanges. Inf. Manag. 2021, 58, 103404. [Google Scholar] [CrossRef]
- Biancone, P.; Secinaro, S.; Marseglia, R.; Calandra, D. E-health for the future. Managerial perspectives using a multiple case study approach. Technovation 2023, 120, 102406. [Google Scholar] [CrossRef]
- Cheng, X.; Fu, S.; Sun, J.; Han, Y.; Shen, J.; Zarifis, A. Investigating individual trust in semi-virtual collaboration of multicultural and unicultural teams. Comput. Hum. Behav. 2016, 62, 267–276. [Google Scholar] [CrossRef]
- Wang, X.H.; Shi, J.Y.; Kong, H.X. Online Health Information Seeking: A Review and Meta-Analysis. Health Commun. 2021, 36, 1163–1175. [Google Scholar] [CrossRef]
- Zhao, Y.; Da, J.; Yan, J. Detecting health misinformation in online health communities: Incorporating behavioral features into machine learning based approaches. Inf. Process. Manag. 2021, 58, 102390. [Google Scholar] [CrossRef]
- Taylor, L.A.; Nong, P.; Platt, J. Fifty Years of Trust Research in Health Care: A Synthetic Review. Milbank Q. 2023, 101, 126–178. [Google Scholar] [CrossRef] [PubMed]
- Kordzadeh, N. Investigating bias in the online physician reviews published on healthcare organizations’ websites. Decis. Support Syst. 2019, 118, 70–82. [Google Scholar] [CrossRef]
- Fan, W.J.; Zhou, Q.Q.; Qiu, L.F.; Kumar, S. Should Doctors Open Online Consultation Services? An Empirical Investigation of Their Impact on Offline Appointments. Inf. Syst. Res. 2023, 34, 629–651. [Google Scholar] [CrossRef]
- Chen, L.T.; Baird, A.; Straub, D. A linguistic signaling model of social support exchange in online health communities. Decis. Support Syst. 2020, 130, 113233. [Google Scholar] [CrossRef]
- Liu, S.; Si, G.S.; Gao, B.J. Which voice are you satisfied with? Understanding the physician-patient voice interactions on online health platforms. Decis. Support Syst. 2022, 157, 113754. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Q.; Zhou, S.; Li, X.; Zhang, X.M. Unintended Emotional Effects of Online Health Communities: A Text Mining-Supported Empirical Study. MIS Q. 2023, 47, 195–226. [Google Scholar] [CrossRef]
- Wang, L.A.; Yan, L.; Zhou, T.X.; Guo, X.T.; Heim, G.R. Understanding Physicians’ Online-Offline Behavior Dynamics: An Empirical Study. Inf. Syst. Res. 2020, 31, 537–555. [Google Scholar] [CrossRef]
- Shoji, M.; Fujiwara, A.; Shimada, A.; Onda, M. The relationship between community pharmacists’ social distance from and their confidence in interacting with patients with depression in Japan. Int. J. Clin. Pharm. 2020, 42, 1499–1506. [Google Scholar] [CrossRef]
- Khurana, S.; Qiu, L.; Kumar, S. When a Doctor Knows, It Shows: An Empirical Analysis of Doctors’ Responses in a Q&A Forum of an Online Healthcare Portal. Inf. Syst. Res. 2019, 30, 872–891. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, M.Y.; Gao, B.J.; Jiang, G.Y. Physician voice characteristics and patient satisfaction in online health consultation. Inf. Manag. 2020, 57, 103233. [Google Scholar] [CrossRef]
- Gong, Y.L.; Wang, H.W.; Xia, Q.W.; Zheng, L.J.; Shi, Y.X. Factors that determine a Patient’s willingness to physician selection in online healthcare communities: A trust theory perspective. Technol. Soc. 2021, 64, 101510. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Song, Y.; Zhao, W.; Guo, X.; Ju, X.; Vogel, D. Exploring the Role of Online Health Community Information in Patients’ Decisions to Switch from Online to Offline Medical Services. Int. J. Med. Inform. 2019, 130, 103951. [Google Scholar] [CrossRef]
- Wu, J.; Huang, X.; Sun, P.; Zhang, X.F. What affects patients’ choice of consultant: An empirical study of online doctor consultation service. Electron. Commer. Res. 2022, 24, 2903–2925. [Google Scholar] [CrossRef]
- Paige, S.R.; Krieger, J.L.; Stellefson, M.L. The Influence of eHealth Literacy on Perceived Trust in Online Health Communication Channels and Sources. J. Health Commun. 2017, 22, 53–65. [Google Scholar] [CrossRef]
- Parrillo, V.N.; Donoghue, C. Updating the Bogardus social distance studies: A new national survey. Soc. Sci. J. 2005, 42, 257–271. [Google Scholar] [CrossRef]
- Park, G.; Chung, J.Y.; Lee, S.Y. Human vs. machine-like representation in chatbot mental health counseling: The serial mediation of psychological distance and trust on compliance intention. Curr. Psychol. 2024, 43, 4352–4363. [Google Scholar] [CrossRef]
- He, Y.Q.; Tan, X.M.; Wang, J.J.; Wiley, J.; Huang, Y.X.; Ding, H.; Wang, Q.; Huang, T.H.; Sun, M. Trust, discrimination and preference for shared decision-making in adolescents diagnosed with depression: Implications from Chinese mental health professionals. Patient Educ. Couns. 2024, 122, 108137. [Google Scholar] [CrossRef] [PubMed]
- Schnittker, J. Social distance in the clinical encounter: Interactional and sociodemographic foundations for mistrust in physicians. Soc. Psychol. Q. 2004, 67, 217–235. [Google Scholar] [CrossRef]
- Huang, C.Z.; Xie, P.; Liang, W.S.; Zhou, A.B. “Kill the familiar effect”: The impact of anger on deceptive behavior. Curr. Psychol. 2024, 43, 21698–21710. [Google Scholar] [CrossRef]
- He, W.M.; Qiu, J.J.; Chen, Y.Y.; Zhong, Y.F. Gratitude Intervention Evokes Indebtedness: Moderated by Perceived Social Distance. Front. Psychol. 2022, 13, 824326. [Google Scholar] [CrossRef]
- Qiao, W.; Huang, N.; Yan, Z. How to Translate Firm-Generated Content to Sales? Evidence from Online Healthcare Platforms. J. Manag. Inf. Syst. 2024, 41, 1173–1197. [Google Scholar] [CrossRef]
- Zhou, J.J.; Kishore, R.; Amo, L.; Ye, C. Description and demonstration signals as complements and substitutes in an online market for mental health care. MIS Q. 2022, 46, 2055–2084. [Google Scholar] [CrossRef]
- Yuen, K.F.; Bin Saidi, M.S.; Bai, X.W.; Wang, X.Q. Cruise transport service usage post COVID-19: The health belief model application. Transp. Policy 2021, 111, 185–196. [Google Scholar] [CrossRef]
- Xie, J.H.; Liu, X.; Zeng, D.D.J.; Fang, X. Understanding Medication Nonadherence from Social Media: A Sentiment-Enriched Deep Learning Approach. MIS Q. 2022, 46, 341–372. [Google Scholar] [CrossRef]
- Shen, J.; An, B.; Xu, M.; Gan, D.; Pan, T. Internal or External Word-of-Mouth (WOM), Why Do Patients Choose Doctors on Online Medical Services (OMSs) Single Platform in China? Int. J. Environ. Res. Public Health 2022, 19, 13293. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, F.Z.; Fei, Y.F. Repetitions in online doctor-patient communication: Frequency, functions, and reasons. Patient Educ. Couns. 2023, 107, 107565. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.Y.; Heng, C.S.; Lin, Z.J. Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content. Inf. Syst. Res. 2013, 24, 88–107. [Google Scholar] [CrossRef]
- Duvall, M.; North, F.; Leasure, W.; Pecina, J. Patient portal message characteristics and reported thoughts of self-harm and suicide: A retrospective cohort study. J. Telemed. Telecare 2021, 27, 501–508. [Google Scholar] [CrossRef]
- Caruana, A. Service loyalty: The effects of service quality and the mediating role of customer satisfaction. Eur. J. Mark. 2002, 36, 811–828. [Google Scholar] [CrossRef]
- Mosahab, R.; Mahamad, O.; Ramayah, T. Service quality, customer satisfaction and loyalty: A test of mediation. Int. Bus. Res. 2010, 3, 72. [Google Scholar] [CrossRef]
- Yan, L.; Tan, Y. The Consensus Effect in Online Health-Care Communities. J. Manag. Inf. Syst. 2017, 34, 11–39. [Google Scholar] [CrossRef]
- Li, J.; Tang, J.; Liu, X.; Ma, L. How do users adopt health information from social media? The narrative paradigm perspective. Health Inf. Manag. J. 2019, 48, 116–126. [Google Scholar] [CrossRef]
- Jin, J.H.; Yan, X.B.; Li, Y.J.; Li, Y.M. How users adopt healthcare information: An empirical study of an online Q&A community. Int. J. Med. Inform. 2016, 86, 91–103. [Google Scholar] [CrossRef]
- Meng, F.B.; Zhang, X.F.; Liu, L.B.; Ren, C.C. Converting readers to patients? From free to paid knowledge-sharing in online health communities. Inf. Process. Manag. 2021, 58, 102490. [Google Scholar] [CrossRef]
- Yang, X.J.; Xi, N.N.; Gu, D.X.; Liang, C.Y.; Liu, H.; Tang, H.R.; Hamari, J. Medical practice in gamified online communities: Longitudinal effects of gamification on doctor engagement. Inf. Manag. 2024, 61, 103906. [Google Scholar] [CrossRef]
- Guo, S.S.; Guo, X.T.; Fang, Y.L.; Vogel, D. How Doctors Gain Social and Economic Returns in Online Health-Care Communities: A Professional Capital Perspective. J. Manag. Inf. Syst. 2017, 34, 487–519. [Google Scholar] [CrossRef]
- Luhmann, N. Trust and Power; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Pizzutti, C.; Fernandes, D. Effect of recovery efforts on consumer trust and loyalty in e-tail: A contingency model. Int. J. Electron. Commer. 2010, 14, 127–160. [Google Scholar] [CrossRef]
- Hesse, B.W.; Nelson, D.E.; Kreps, G.L.; Croyle, R.T.; Arora, N.K.; Rimer, B.K.; Viswanath, K. Trust and sources of health information—The impact of the Internet and its implications for health care providers: Findings from the first Health Information National Trends Survey. Arch. Intern. Med. 2005, 165, 2618–2624. [Google Scholar] [CrossRef]
- Muda, M.; Hamzah, M.I. Should I suggest this YouTube clip? The impact of UGC source credibility on eWOM and purchase intention. J. Res. Interact. Mark. 2021, 15, 441–459. [Google Scholar] [CrossRef]
- Geng, R.S.; Chen, J. The Influencing Mechanism of Interaction Quality of UGC on Consumers’ Purchase Intention—An Empirical Analysis. Front. Psychol. 2021, 12, 697382. [Google Scholar] [CrossRef]
- Gopichandran, V.; Chetlapalli, S.K. Dimensions and determinants of trust in health care in resource poor settings—A qualitative exploration. PLoS ONE 2013, 8, e69170. [Google Scholar] [CrossRef]
- Xu, Y.X.; Yang, Z.S.; Jiang, H.Y.; Sun, P.Z. Research on patients’ willingness to conduct online health consultation from the perspective of web trust model. Front. Public Health 2022, 10, 963522. [Google Scholar] [CrossRef]
- Yang, H.L.; Guo, X.T.; Wu, T.S.; Ju, X.F. Exploring the effects of patient-generated and system-generated information on patients’ online search, evaluation and decision. Electron. Commer. Res. Appl. 2015, 14, 192–203. [Google Scholar] [CrossRef]
- Dong, W.; Lei, X.X.; Liu, Y.M. The Mediating Role of Patients’ Trust Between Web-Based Health Information Seeking and Patients’ Uncertainty in China: Cross-sectional Web-Based Survey. J. Med. Internet Res. 2022, 24, e25275. [Google Scholar] [CrossRef]
- Choi, M.; Choi, Y.; Bangura, E.; Kim, D. ChatGPT or online review: Which is a better determinant of customers’ trust in Airbnb listings and stay intention? Int. J. Hosp. Manag. 2024, 122, 103852. [Google Scholar] [CrossRef]
- Yang, X. How perceived social distance and trust influence reciprocity expectations and eWOM sharing intention in social commerce. Ind. Manag. Data Syst. 2019, 119, 867–880. [Google Scholar] [CrossRef]
- Walther, J.B.; Pingree, S.; Hawkins, R.P.; Buller, D.B. Attributes of interactive online health information systems. J. Med. Internet Res. 2005, 7, e382. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.L.; Du, H.S.; Shang, W. Understanding the influence of professional status and service feedback on patients’ doctor choice in online healthcare markets. Internet Res. 2021, 31, 1236–1261. [Google Scholar] [CrossRef]
- Wu, H.; Deng, Z.H.; Wang, B.; Gupta, S. How does service price influence patients’ decisions? An examination of the free-market pricing mechanism in online health communities. Electron. Mark. 2021, 31, 877–893. [Google Scholar] [CrossRef]
- Liu, X.C.; Xu, Z.; Yu, X.T.; Oda, T. Using Telemedicine during the COVID-19 Pandemic: How Service Quality Affects Patients’ Consultation. Int. J. Environ. Res. Public Health 2022, 19, 12384. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Y.; Li, Y.L.; Albright, K. Better interaction performance attracts more chronic patients? Evidence from an online health platform. Inf. Process. Manag. 2023, 60, 103413. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, Y.; Hu, J.; Chen, X. Understanding Health Empowerment From the Perspective of Information Processing: Questionnaire Study. J. Med. Internet Res. 2022, 24, e27178. [Google Scholar] [CrossRef]
- Blei, D.M.; Ng, A.Y.; Jordan, M. Latent dirichlet allocation. Adv. Neural Inf. Process. Syst. 2003, 3, 993–1022. [Google Scholar]
- Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet allocation (LDA) and topic modeling: Models, applications, a survey. Multimed. Tools Appl. 2019, 78, 15169–15211. [Google Scholar] [CrossRef]
- Sievert, C.; Shirley, K. LDAvis: A method for visualizing and interpreting topics. In Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, Baltimore, MD, USA, 27 June 2014. [Google Scholar]
- Chuang, J.; Manning, C.D.; Heer, J. Termite: Visualization techniques for assessing textual topic models. In Proceedings of the International Working Conference On Advanced Visual Interfaces, Capri Island, Italy, 21–25 May 2012; pp. 74–77. [Google Scholar]
- Hayashi, F. Econometrics; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Agostinelli, C.J. Robust stepwise regression. J. Appl. Stat. 2002, 29, 825–840. [Google Scholar] [CrossRef]
- Andrews, D.W. Empirical process methods in econometrics. In Handbook of Econometrics; Elsevier: Amsterdam, The Netherlands, 1994; Volume 4, pp. 2247–2294. [Google Scholar]
Topic 1 | Topic 4 | Topic 7 | |||
---|---|---|---|---|---|
Keywords | Distribution Probability | Keywords | Distribution Probability | Keywords | Distribution Probability |
Urology | 0.03 | Orthopedics | 0.033 | Skin | 0.022 |
Plastic | 0.027 | Stomatology | 0.028 | Dermatology | 0.022 |
Surgery | 0.026 | Joint | 0.023 | Dermatology Department | 0.021 |
Cosmetology | 0.018 | Surgery | 0.018 | Treatment | 0.016 |
Plastic Surgery | 0.017 | Sports | 0.018 | Cosmetology | 0.01 |
Treatment | 0.015 | Injury | 0.016 | Cicatrix | 0.009 |
Tumor | 0.012 | Maxillofacial | 0.016 | Hemangioma | 0.009 |
Repair | 0.012 | Trauma | 0.015 | Lupus Erythematosus | 0.008 |
Microinvasive | 0.012 | Repair | 0.015 | Laser | 0.008 |
Laparoscopy | 0.01 | Arthroscopy | 0.011 | Acne | 0.008 |
Prostate Cancer | 0.009 | Fracture | 0.011 | Dermatovenereology | 0.008 |
Specializes in | 0.008 | Treatment | 0.01 | Rheumatism | 0.008 |
Reconstruction | 0.008 | Oral Medicine | 0.01 | Psoriasis | 0.007 |
Bladder | 0.008 | Reconstruction | 0.01 | Research | 0.007 |
Ureter | 0.007 | Knee Joint | 0.009 | Systemic | 0.007 |
Prostate | 0.007 | Deformity | 0.009 | Hair | 0.007 |
Deformity | 0.006 | Medical School | 0.008 | Specializes in | 0.006 |
Chief Physician | 0.006 | Replacement | 0.008 | Burn | 0.006 |
Facial | 0.006 | Chief Physician | 0.007 | Sexually Transmitted Disease | 0.006 |
Transplantation | 0.006 | Implantation | 0.007 | Facial | 0.006 |
Category | Topic Number | Topic Name | Topic Description |
---|---|---|---|
Surgery and Surgical Operation | 1 | Surgery and Plastic Surgery | Involves surgical procedures and treatment methods in urology and plastic surgery fields, including urinary system operations, plastic and cosmetic surgeries. |
4 | Orthopedic and Oral Surgical Repair and Reconstruction | Primarily involves surgical repair and tissue reconstruction techniques in orthopedics and oral surgery, especially repair of fractures, joints, maxillofacial areas, etc. | |
7 | Skin Diseases and Cosmetic Treatments | Focuses on cosmetic and treatment methods in dermatology, involving content related to diagnosis and treatment of skin diseases and cosmetic repair. | |
Academic Roles and Committees | 2 | Medical Committees and Academic Activities | Reflects doctors’ positions in medical academic committees, participation in international academic activities and conferences, highlighting academic identity and industry status. |
3 | Positions in Medical Professional Associations and Committees | Focuses on doctors’ identities and positions in medical professional associations, emphasizing doctors’ professional backgrounds and recognition in specialized fields. | |
8 | International Journal Publications and Academic Impact | Emphasizes doctors’ academic publications in international journals and the resulting academic influence, reflecting doctors’ international academic standing. | |
Tumor Treatment and Clinical Applications | 5 | Tumor Treatment and Surgical Techniques | Focuses on treatment in the tumor field and application of surgical techniques, including tumor resection, minimally invasive surgery, and related technologies. |
9 | Spine and Minimally Invasive Surgical Applications | Focuses on spine surgery and application of minimally invasive techniques in surgery, including development and application of minimally invasive surgery in spine surgery. | |
Career Development | 6 | Career Development and Clinical Work Experience | Describes doctors’ career development experiences, including educational background, professional experience, workplace, and extensive clinical practice experience. |
Variable | Mean | Std. Dev. | Min | Max | Definition |
---|---|---|---|---|---|
Consultation | 3247.38 | 4941 | 0 | 64998 | Cumulative number of patients the doctor has treated |
Experience | 0 | 1 | −0.65 | 3.86 | The sum of the standardized intensity scores of Topics 1, 4, and 7 |
Follower | 3167.64 | 4448 | 1 | 55,000 | Number of followers on the doctor’s account |
Sentiment | 0.92 | 0.23 | 0 | 1 | Sentiment intensity score of the doctor’s personal profile text |
Hospital | 0.96 | 0.19 | 0 | 1 | Whether the doctor is from a Grade A tertiary hospital (1 = yes, 0 = no) |
Appointment | 0.65 | 0.48 | 0 | 1 | Whether appointment booking service is activated (1 = yes, 0 = no) |
ClinicTitle | 3.40 | 0.74 | 1 | 4 | Clinical professional title level (1 = other, 2 = attending physician, 3 = associate chief physician, 4 = chief physician) |
Recommendation | 4.02 | 0.44 | 3.3 | 5 | Recommendation score assigned to the doctor by the platform algorithm |
Ratings | 0.72 | 0.44 | 0.01 | 1 | Average rating given to the doctor by users |
Price | 70.91 | 103.00 | 0 | 1500 | Price for a single online consultation |
Duration | 3521.83 | 1322.80 | 12 | 5435 | Cumulative number of days the doctor has been active on the platform |
Views | 208,963.20 | 814,112.40 | 0 | 32,046,000 | Cumulative views of the doctor’s educational articles |
Variable | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Consultation | 1 | |||||||||||
Experience | 0.067 *** | 1 | ||||||||||
Follower | 0.867 *** | 0.074 *** | 1 | |||||||||
Sentiment | −0.029 * | −0.071 *** | −0.021 | 1 | ||||||||
Hospital | −0.055 *** | 0.021 | −0.033 ** | 0.018 | 1 | |||||||
Appointment | 0.178 *** | 0.021 | 0.204 *** | −0.006 | −0.029 * | 1 | ||||||
ClinicTitle | 0.103 *** | −0.174 *** | 0.049 *** | 0.117 *** | 0.013 | −0.043 *** | 1 | |||||
Recommendation | 0.427 *** | 0.041 *** | 0.515 *** | −0.001 | −0.034 ** | 0.311 *** | −0.091 *** | 1 | ||||
Ratings | 0.274 *** | 0.073 *** | 0.313 *** | −0.066 *** | −0.091 *** | 0.361 *** | −0.292 *** | 0.567 *** | 1 | |||
Price | 0.239 *** | −0.056 *** | 0.321 *** | 0.026 * | 0.027 * | 0.059 *** | 0.147 *** | 0.243 *** | 0.162 *** | 1 | ||
Duration | 0.246 *** | −0.036 ** | 0.148 *** | 0.071 *** | 0.034 ** | −0.017 | 0.516 *** | −0.031 ** | −0.177 *** | 0.146 *** | 1 | |
Views | 0.335 *** | 0.011 | 0.311 *** | 0.005 | −0.077 *** | 0.067 *** | 0.038 ** | 0.160 *** | 0.084 *** | 0.108 *** | 0.130 *** | 1 |
Variable | Experience | Follower | Sentiment | Hospital | Appointment | Clinic-Title | Recommendation | Ratings | Price | Duration | Views | Mean VIF |
---|---|---|---|---|---|---|---|---|---|---|---|---|
VIF | 1.05 | 1.61 | 1.02 | 1.02 | 1.15 | 1.52 | 1.82 | 1.65 | 1.17 | 1.43 | 1.12 | 1.32 |
1/VIF | 0.95 | 0.62 | 0.98 | 0.98 | 0.87 | 0.66 | 0.55 | 0.60 | 0.86 | 0.70 | 0.89 | - |
Variable | Model (1) | Model (2) | Model (3) |
---|---|---|---|
Consultation | Consultation | Consultation | |
Experience | 332.658 *** (67.298) | 321.643 ***(68.489) | −85.596 (198.088) |
Experience * Sentiment | - | - | 464.289 ** (222.696) |
Sentiment | - | −889.938 ** (370.587) | −954.335 ** (383.363) |
Hospital | −712.955 * (428.059) | −698.535 (428.544) | −687.838 (429.819) |
Appointment | 282.950 ** (124.558) | 289.350 ** (124.614) | 271.754 ** (124.491) |
ClinicTitle | 277.864 *** (110.322) | 301.156 *** (110.121) | 302.635 *** (110.142) |
Recommendation | 3618.376 *** (265.360) | 3634.267 *** (266.028) | 3635.505 *** (265.965) |
Ratings | 976.717 *** (150.707) | 950.641 *** (150.985) | 948.825 *** (151.185) |
Price | 4.379 *** (0.854) | 4.395 *** (0.857) | 4.406 *** (0.859) |
Duration | 0.824 *** (0.070) | 0.827 *** (0.071) | 0.825 *** (0.071) |
Views | 0.001 *** (0.000) | 0.001 *** (0.000) | 0.001 *** (0.000) |
constant | −15,905.060 *** (1055.458) | −15,240.040 *** (1051.923) | −15,177.210 *** (1049.130) |
Observations | 4126 | 4125 | 4125 |
R-squared | 0.326 | 0.328 | 0.328 |
F test | 126.79 | 114.62 | 106.97 |
Variable | Model (4) | Model (5) | Model (6) |
---|---|---|---|
Consultation (Log) | Follower (Log) | Consultation (Log) | |
Experience | 0.136 *** (0.017) | 0.124 *** (0.016) | 0.031 ** (0.011) |
Follower | - | - | 0.877 *** (0.021) |
Hospital | −0.192 * (0.093) | 0.018 (0.089) | −0.208 *** (0.051) |
Appointment | 0.386 *** (0.043) | 0.397 *** (0.039) | 0.042 (0.028) |
ClinicTitle | 0.125 *** (0.030) | 0.128 *** (0.028) | 0.019 (0.019) |
Recommendation | 0.943 *** (0.047) | 1.084 *** (0.041) | −0.006 (0.032) |
Ratings | 1.383 *** (0.062) | 1.523 *** (0.058) | 0.059 (0.057) |
Price | 0.002 *** (0.000) | 0.002 *** (0.000) | −0.000 *** (0.000) |
Duration | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) |
Views | 0.000 ** (0.000) | 0.000 *** (0.000) | 0.000 * (0.000) |
constant | 0.550 ** (0.207) | 0.309 (0.196) | 0.236 * (0.120) |
Observations | 4119 | 4126 | 4119 |
R-squared | 0.484 | 0.554 | 0.809 |
F test | 328.72 | 391.58 | 1185.76 |
Variable | Model (7) Additional Controls | Model (8) Additional Controls | Model (9) Additional Controls |
---|---|---|---|
Consultation | Consultation | Consultation | |
Experience | 333.552 *** (65.154) | 322.036 ** (68.569) | −84.468 (199.111) |
Experience * Sentiment | - | - | 463.396 ** (223.525) |
Sentiment | - | −883.130 ** (373.069) | −950.800 *** (384.150) |
Hospital | −705.318 * (327.104) | −696.068 (428.160) | −685.208 ** (429.377) |
Appointment | 278.410 * (147.160) | 287.773 ** (125.591) | 270.037 * (125.257) |
ClinicTitle | 271.199 ** (106.793) | 298.735 *** (111.998) | 299.905 *** (112.476) |
Recommendation | 3619.923 *** (181.546) | 3634.657 *** (266.011) | 3635.883 *** (265.970) |
Ratings | 981.783 *** (197.506) | 952.558 *** (152.615) | 951.255 *** (153.175) |
Price | 4.372 *** (0.662) | 4.393 *** (0.856) | 4.404 *** (0.858) |
Duration | 0.820 *** (0.058) | 0.825 *** (0.070) | 0.824 *** (0.070) |
Views | 0.001 *** (0.000) | 0.001 ** (0.001) | 0.001 *** (0.001) |
Text Length | 0.088 (0.148) | 0.030 (0.208) | 0.109 (0.718) |
constant | −15,913.000 *** (789.766) | −15,247.790 *** (816.369) | −15,182.640 *** (816.797) |
Observations | 4126 | 4125 | 4126 |
F test | 199.050 | 104.430 | 104.460 |
R-squared | 0.326 | 0.328 | 0.328 |
Variable | Model (10) Additional Controls | Model (11) Additional Controls | Model (12) Additional Controls | Model (13) Using Negative Binomial Regression | Model (14) Using Negative Binomial Regression | Model (15) Using Negative Binomial Regression |
---|---|---|---|---|---|---|
Consultation (Log) | Follower (Log) | Consultation (Log) | Consultation (Log) | Follower (Log) | Consultation (Log) | |
Experience | 0.137 *** (0.017) | 0.124 *** (0.016) | 0.031 *** (0.011) | 0.018 *** (0.002) | 0.0169 *** (0.0022) | 0.003 * (0.002) |
Follower(log) | - | - | 0.877 *** (0.021) | - | - | 0.137 *** (0.003) |
Hospital | −0.185 * (0.093) | 0.021 (0.090) | −0.204 *** (0.051) | −0.027 * (0.012) | 0.001 (0.012) | −0.026 *** (0.007) |
Appointment | 0.382 *** (0.043) | 0.395 *** (0.039) | 0.040 (0.028) | 0.057 *** (0.006) | 0.059 *** (0.006) | 0.0111 ** (0.004) |
ClinicTitle | 0.119 *** (0.030) | 0.125 *** (0.028) | 0.015 (0.019) | 0.018 *** (0.004) | 0.018 *** (0.004) | 0.002 (0.002) |
Recommendation | 0.944 *** (0.047) | 1.084 *** (0.041) | −0.005 (0.032) | 0.124 *** (0.006) | 0.139 *** (0.005) | −0.024 *** (0.005) |
Ratings | 1.388 *** (0.063) | 1.526 *** (0.058) | 0.062 (0.057) | 0.218 *** (0.010) | 0.246 *** (0.010) | 0.0253 ** (0.0086) |
Price | 0.001 *** (0.000) | 0.002 *** (0.000) | 0.000 ** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) |
Duration | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) |
Views | 0.000 ** (0.000) | 0.000 *** (0.000) | 0.000 ** (0.000) | 0.000 *** (0.000) | 0.000 *** (0.000) | 0.000 (0.000) |
Text Length | 0.0003 (0.0002) | 0.0001 (0.0001) | 0.0002 (0.0001) | - | - | - |
constant | 0.543 ** (0.207) | 0.306 (0.196) | 0.232 (0.119) | 1.044 *** (0.028) | 1.021 *** (0.027) | 0.956 *** (0.017) |
Observations | 4119 | 4126 | 4119 | 4119 | 4126 | 4119 |
R-squared | 0.4845 | 0.5537 | 0.8092 | 0.0423 (Pseudo) | 0.0467 (Pseudo) | 0.0741 (Pseudo) |
F test | 296.22 | 352.56 | 1078.94 | 2513.06 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Jin, J.; Li, L.; Liu, J.; Wang, D. Driving Online Healthcare Growth Amid the Digital Divide: How Trust in Professional Signals from Doctor Biographies Shapes Patient Decisions. Healthcare 2025, 13, 1418. https://doi.org/10.3390/healthcare13121418
Wang H, Jin J, Li L, Liu J, Wang D. Driving Online Healthcare Growth Amid the Digital Divide: How Trust in Professional Signals from Doctor Biographies Shapes Patient Decisions. Healthcare. 2025; 13(12):1418. https://doi.org/10.3390/healthcare13121418
Chicago/Turabian StyleWang, Hongyang, Jian Jin, Li Li, Jiaqi Liu, and Da Wang. 2025. "Driving Online Healthcare Growth Amid the Digital Divide: How Trust in Professional Signals from Doctor Biographies Shapes Patient Decisions" Healthcare 13, no. 12: 1418. https://doi.org/10.3390/healthcare13121418
APA StyleWang, H., Jin, J., Li, L., Liu, J., & Wang, D. (2025). Driving Online Healthcare Growth Amid the Digital Divide: How Trust in Professional Signals from Doctor Biographies Shapes Patient Decisions. Healthcare, 13(12), 1418. https://doi.org/10.3390/healthcare13121418