An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
INT | Integrative neuromuscular training |
PEC | Physical education classes |
References
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Rebullido, T.R. Understanding physical literacy in youth. Strength Cond. J. 2018, 40, 90–94. [Google Scholar] [CrossRef]
- Bermejo-Cantarero, A.; Álvarez-Bueno, C.; Martinez-Vizcaino, V.; García-Hermoso, A.; Torres-Costoso, A.I.; Sánchez-López, M. Association between physical activity, sedentary behavior, and fitness with health related quality of life in healthy children and adolescents: A protocol for a systematic review and meta-analysis. Medicine 2017, 96, e6407. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.R.; Carver, K.D.; Atkinson, F.; Daniell, N.D.; Lewis, L.K.; Fitzgerald, J.S.; Lang, J.J.; Ortega, F.B. European normative values for physical fitness in children and adolescents aged 9–17 years: Results from 2 779 165 Eurofit performances representing 30 countries. Br. J. Sports Med. 2018, 52, 1445–1456. [Google Scholar] [CrossRef]
- Aubert, S.; Barnes, J.; Abdeta, C.; Abi Nader, P.; Adeniyi, A.; Aguilar-Farias, N.; Tenesaca, D.; Bhawra, J.; Brazo-Sayavera, J.; Cardon, G.; et al. Global Matrix 3.0 Physical Activity Report Card Grades for Children and Youth: Results and Analysis from 49 Countries. J. Phys. Act. Health 2018, 15, S251–S273. [Google Scholar] [CrossRef]
- Belton, S.; O’Brien, W.; Meegan, S.; Woods, C.; Issartel, J. Youth-physical activity towards health: Evidence and background to the development of the Y-PATH physical activity intervention for adolescents. BMC Public Health 2014, 14, 122. [Google Scholar] [CrossRef]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Gorber, S.C. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 98. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Schwarzfischer, P.; Gruszfeld, D.; Socha, P.; Luque, V.; Closa-Monasterolo, R.; Rousseaux, D.; Moretti, M.; Mariani, B.; Verduci, E.; Koletzko, B.; et al. Longitudinal analysis of physical activity, sedentary behaviour and anthropometric measures from ages 6 to 11 years. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 1–9. [Google Scholar] [CrossRef]
- Schwarzfischer, P.; Gruszfeld, D.; Stolarczyk, A.; Ferre, N.; Escribano, J.; Rousseaux, D.; Moretti, M.; Mariani, B.; Verduci, E.; Koletzko, B.; et al. Physical Activity and Sedentary Behavior From 6 to 11 Years. Pediatrics 2019, 143, e20180994. [Google Scholar] [CrossRef]
- Moliner-Urdiales, D.; Ruiz, J.R.; Ortega, F.B.; Jiménez-Pavón, D.; Vicente-Rodriguez, G.; Rey-López, J.P.; Martínez-Gómez, D.; Casajús, J.A.; Mesana, M.I.; Marcos, A.; et al. Secular trends in health-related physical fitness in Spanish adolescents: The AVENA and HELENA Studies. J. Sci. Med. Sport 2010, 13, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Rebullido, T.R.; MacDonald, J.P. Pediatric Inactivity Triad: A Risky PIT. Curr. Sports Med. Rep. 2018, 17, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Hills, A.P.; King, N.A.; Armstrong, T.P. The contribution of physical activity and sedentary behaviours to the growth and development of children and adolescents: Implications for overweight and obesity. Sports Med. 2007, 37, 533–545. [Google Scholar] [CrossRef]
- Hills, A.P.; Andersen, L.B.; Byrne, N.M. Physical activity and obesity in children. Br. J. Sports Med. 2011, 45, 866–870. [Google Scholar] [CrossRef]
- Myer, G.D.; Faigenbaum, A.D.; Edwards, N.M.; Clark, J.F.; Best, T.M.; Sallis, R.E. Sixty minutes of what? A developing brain perspective for activating children with an integrative exercise approach. Br. J. Sports Med. 2015, 49, 1510–1516. [Google Scholar] [CrossRef]
- Alonso-Aubin, D.A.; Picón-Martínez, M.; Rebullido, T.R.; Faigenbaum, A.D.; Cortell-Tormo, J.M.; Chulvi-Medrano, I. Integrative Neuromuscular Training Enhances Physical Fitness in 6-to 14-Year-Old Rugby Players. J. Strength Cond. Res. 2021, 35, 2263–2271. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Farrell, A.; Fabiano, M.; Radler, T.; Naclerio, F.; Ratamess, N.A.; Kang, J.; Myer, G.D. Effects of integrative neuromuscular training on fitness performance in children. Pediatr. Exerc. Sci. 2011, 23, 573–584. [Google Scholar] [CrossRef]
- Meyer, U.; Roth, R.; Zahner, L.; Gerber, M.; Puder, J.J.; Hebestreit, H.; Kriemler, S. Contribution of physical education to overall physical activity. Scand. J. Med. Sci. Sports 2013, 23, 600–606. [Google Scholar] [CrossRef]
- Polet, J.; Hassandra, M.; Lintunen, T.; Laukkanen, A.; Hankonen, N.; Hirvensalo, M.; Tammelin, T.; Hagger, M.S. Using physical education to promote out-of school physical activity in lower secondary school students—A randomized controlled trial protocol. BMC Public Health 2019, 19, 157. [Google Scholar] [CrossRef]
- Khodaverdi, Z.; Bahram, A.; Stodden, D.; Kazemnejad, A. The relationship between actual motor competence and physical activity in children: Mediating roles of perceived motor competence and Health-Related physical fitness. J. Sports Sci. 2016, 34, 1523–1529. [Google Scholar] [CrossRef]
- Utesch, T.; Bardid, F.; Büsch, D.; Strauss, B. The Relationship Between Motor Competence and Physical Fitness from Early Childhood to Early Adulthood: A Meta-Analysis. Sports Med. 2019, 49, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Corder, K.; Atkin, A.J.; Ekelund, U.; van Sluijs, E.M.F. What do adolescents want in order to become more active? BMC Public Health 2013, 13, 718. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.G.; Smith, J.J.; Morgan, P.J.; Peralta, L.R.; Hilland, T.A.; Eather, N.; Lonsdale, C.; Okely, A.D.; Plotnikoff, R.C.; Salmon, J.O.; et al. Implementing Resistance Training in Secondary Schools: A Cluster Randomized Controlled Trial. Med. Sci. Sports Exerc. 2017, 50, 32–72. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, R.; Shen, J.; Zhou, A. Effects of school-based neuromuscular training on fundamental movement skills and physical fitness in children: A systematic review. PeerJ 2022, 10, e13726. [Google Scholar] [CrossRef]
- Duncan, M.J.; Eyre, E.L.J.; Oxford, S.W. The Effects of 10-week Integrated Neuromuscular Training on Fundamental Movement Skills and Physical Self-efficacy in 6–7-Year-Old Children. J. Strength Cond. Res. 2018, 32, 3348–3356. [Google Scholar] [CrossRef]
- Guzmán-Muñoz, E.; Sazo-Rodriguez, S.; Concha-Cisternas, Y.; Valdés-Badilla, P.; Lira-Cea, C.; Silva-Moya, G.; Henríquez, R.; Farias, T.Y.; Cigarroa, I.; Castillo-Retamal, M.; et al. Four Weeks of Neuromuscular Training Improve Static and Dynamic Postural Control in Overweight and Obese Children: A Randomized Controlled Trial. J. Mot. Behav. 2020, 52, 761–769. [Google Scholar] [CrossRef]
- Silva-Moya, G.; Méndez-Rebolledo, G.; Valdes-Badilla, P.; Gómez-Álvarez, N.; Guzmán-Muñoz, E. Effects of neuromuscular training on psychomotor development and active joint position sense in school children. J. Mot. Behav. 2022, 54, 57–66. [Google Scholar] [CrossRef]
- Sinđić, M.; Mačak, D.; Todorović, N.; Purda, B.; Batez, M. Effect of Integrated Neuromuscular Exercise in Physical Education Class on Health-Related Fitness in Female Children. Healthcare 2021, 9, 312. [Google Scholar] [CrossRef]
- Tabacchi, G.; López-Sánchez, G.; Şahin, F.N.; Kızılyallı, M.; Genchi, R.; Basile, M.; Kirkar, M.; Silva, C.; Loureiro, N.; Teixeira, E.; et al. Field-Based Tests for the Assessment of Physical Fitness in Children and Adolescents Practicing Sport: A Systematic Review within the ESA Program. Sustainability 2019, 11, 7187. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Molina-Garcia, P.; Molina-Molina, A.; Smeets, A.; Migueles, J.H.; Ortega, F.B.; Vanrenterghem, J. Effects of integrative neuromuscular training on the gait biomechanics of children with overweight and obesity. Scand. J. Med. Sci. Sports 2022, 32, 1119–1130. [Google Scholar] [CrossRef]
- Trigueros, R.; Mínguez, L.A.; González-Bernal, J.J.; Aguilar-Parra, J.M.; Soto-Cámara, R.; Álvarez, J.F.; Rocamora, P. Physical Education Classes as a Precursor to the Mediterranean Diet and the Practice of Physical Activity. Nutrients 2020, 12, 239. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Rebullido, T.R.; Peña, J.; Chulvi-Medrano, I. Resistance Exercise for the Prevention and Treatment of Pediatric Dynapenia. J. Sci. Sport Exerc. 2019, 1, 208–216. [Google Scholar] [CrossRef]
- Chaput, J.P.; Willumsen, J.; Bull, F.; Chou, R.; Ekelund, U.; Firth, J.; Jago, R.; Ortega, F.B.; Katzmarzyk, P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 141. [Google Scholar] [CrossRef]
- Cox, A.; Fairclough, S.J.; Kosteli, M.-C.; Noonan, R.J. Efficacy of School-Based Interventions for Improving Muscular Fitness Outcomes in Adolescent Boys: A Systematic Review and Meta-analysis. Sports Med. 2020, 50, 543–560. [Google Scholar] [CrossRef]
- Villa-González, E.; Barranco-Ruiz, Y.; García-Hermoso, A.; Faigenbaum, A.D. Efficacy of school-based interventions for improving muscular fitness outcomes in children: A systematic review and meta-analysis. Eur. J. Sport Sci. 2023, 23, 444–459. [Google Scholar] [CrossRef]
- Sañudo, B.; Sánchez-Hernández, J.; Bernardo-Filho, M.; Abdi, E.; Taiar, R.; Núñez, J. Integrative Neuromuscular Training in Young Athletes, Injury Prevention, and Performance Optimization: A Systematic Review. Appl. Sci. 2019, 9, 3839. [Google Scholar] [CrossRef]
- Wang, Z.-H.; Pan, R.-C.; Huang, M.-R.; Wang, D. Effects of Integrative Neuromuscular Training Combined with Regular Tennis Training Program on Sprint and Change of Direction of Children. Front. Physiol. 2022, 13, 831248. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, C.; Bi, Y.; Chen, L. Effect of Integrative Neuromuscular Training for Injury Prevention and Sports Performance of Female Badminton Players. BioMed Res. Int. 2021, 2021, 5555853. [Google Scholar] [CrossRef]
- Smith, J.J.; Eather, N.; Morgan, P.J.; Plotnikoff, R.C.; Faigenbaum, A.D.; Lubans, D.R. The health benefits of muscular fitness for children and adolescents: A systematic review and meta-analysis. Sports Med. 2014, 44, 1209–1223. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Ramírez-Vélez, R.; García-Alonso, Y.; Alonso-Martínez, A.M.; Izquierdo, M. Association of Cardiorespiratory Fitness Levels During Youth with Health Risk Later in Life: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 952–960. [Google Scholar] [CrossRef]
- Myer, G.D.; Faigenbaum, A.D.; Ford, K.R.; Best, T.M.; Bergeron, M.F.; Hewett, T.E. When to initiate integrative neuromuscular training to reduce sports-related injuries and enhance health in youth? Curr. Sports Med. Rep. 2011, 10, 155–156. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Stracciolini, A.; MacDonald, J.P.; Rebullido, T.R. Mythology of youth resistance training. Br. J. Sports Med. 2022, 56, 997–998. [Google Scholar] [CrossRef] [PubMed]
- Foss, K.D.B.; Thomas, S.; Khoury, J.C.; Myer, G.D.; Hewett, T.E. A School-Based Neuromuscular Training Program and Sport-Related Injury Incidence: A Prospective Randomized Controlled Clinical Trial. J. Athl. Train. 2018, 53, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Chow, Z.-S.; Moreland, A.T.; Macpherson, H.; Teo, W.-P. The Central Mechanisms of Resistance Training and Its Effects on Cognitive Function. Sports Med. 2021, 51, 2483–2506. [Google Scholar] [CrossRef]
- Ford, P.; de Ste Croix, M.; Lloyd, R.; Meyers, R.; Moosavi, M.; Oliver, J.; Till, K.; Williams, C. The Long-Term Athlete Development model: Physiological evidence and application. J. Sports Sci. 2011, 29, 389–402. [Google Scholar] [CrossRef]
- Collins, H.; Booth, J.N.; Duncan, A.; Fawkner, S. The effect of resistance training interventions on fundamental movement skills in youth: A meta-analysis. Sports Med.—Open 2019, 5, 17. [Google Scholar] [CrossRef]
- Faigenbaum, A. Resistance exercise and youth: Survival of the strongest. Pediatr. Exerc. Sci. 2017, 29, 14–18. [Google Scholar] [CrossRef]
- Granacher, U.; Lesinski, M.; Büsch, D.; Muehlbauer, T.; Prieske, O.; Puta, C.; Gollhofer, A.; Behm, D.G. Effects of resistance training in youth athletes on muscular fitness and athletic performance: A conceptual model for long-term athlete development. Front. Physiol. 2016, 7, 164. [Google Scholar] [CrossRef]
- Zwolski, C.; Quatman-Yates, C.; Paterno, M.V. Resistance Training in Youth: Laying the Foundation for Injury Prevention and Physical Literacy. Sports Health 2017, 9, 436–443. [Google Scholar] [CrossRef]
- Smith, J.J.; DeMarco, M.; Kennedy, S.G.; Kelson, M.; Barnett, L.M.; Faigenbaum, A.D.; Lubans, D.R. Prevalence and correlates of resistance training skill competence in adolescents. J. Sports Sci. 2018, 36, 1241–1249. [Google Scholar] [CrossRef]
- Rodríguez Ayllón, M.; Cadenas Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora González, J.R.; Hidalgo Migueles, J.; Molina García, P.; Henriksson, H.; Mena Molina, A.; Martínez Vizcaíno, V.; et al. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: A systematic review and meta-analysis. Sports Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef] [PubMed]
- Katsanis, G.; Chatzopoulos, D.; Barkoukis, V.; Lola, A.; Chatzelli, C.; Paraschos, I. Effect of a school-based resistance training program using a suspension training system on strength parameters in adolescents. J. Phys. Educ. Sport 2021, 21, 2607–2621. [Google Scholar] [CrossRef]
- Ten Hoor, G.A.; Rutten, G.M.; Van Breukelen, G.J.P.; Kok, G.; Ruiter, R.A.C.; Meijer, K.; Kremers, S.P.J.; Feron, F.J.M.; Crutzen, R.; Schols, A.M.J.W.; et al. Strength exercises during physical education classes in secondary schools improve body composition: A cluster randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 92. [Google Scholar] [CrossRef]
- Pichardo, A.W.; Oliver, J.L.; Harrison, C.B.; Maulder, P.S.; Lloyd, R.S. Integrating Resistance Training into High School Curriculum. Strength Cond. J. 2019, 41, 39–50. [Google Scholar] [CrossRef]
- Zemková, E. Strength and Power-Related Measures in Assessing Core Muscle Performance in Sport and Rehabilitation. Front. Physiol. 2022, 13, 861582. [Google Scholar] [CrossRef]
- Ss, M.; Dharuman, M. Effects of integrative neuromuscular training combined with yoga and stretching exercises on abdominal strength endurance of primary school children. Indian J. Public Health Res. Dev. 2020, 11, 899–903. [Google Scholar]
- Kumar, R.; Zemková, E. The Effect of 12-Week Core Strengthening and Weight Training on Muscle Strength, Endurance and Flexibility in School-Aged Athletes. Appl. Sci. 2022, 12, 12550. [Google Scholar] [CrossRef]
- Seitz, L.B.; Reyes, A.; Tran, T.T.; de Villarreal, E.S.; Haff, G.G. Increases in Lower-Body Strength Transfer Positively to Sprint Performance: A Systematic Review with Meta-Analysis. Sports Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef]
- Uthoff, A.; Oliver, J.; Cronin, J.; Winwood, P.; Harrison, C.; Lee, J.E. Resisted Sprint Training in Youth: The Effectiveness of Backward vs. Forward Sled Towing on Speed, Jumping, and Leg Compliance Measures in High-School Athletes. J. Strength Cond. Res. 2021, 35, 2205–2212. [Google Scholar] [CrossRef]
- Faigenbaum, A.D.; Kang, J.; Ratamess, N.A.; Farrell, A.C.; Belfert, M.; Duffy, S.; Jenson, C.; Bush, J. Acute Cardiometabolic Responses to Multi-Modal Integrative Neuromuscular Training in Children. J. Funct. Morphol. Kinesiol. 2019, 4, 39. [Google Scholar] [CrossRef]
Session 1 | Session 2 | |||
---|---|---|---|---|
Weeks | Exercises | Volume (sets × reps and recovery) and intensity | Exercises | Volume (sets × reps and recovery) and intensity |
Week 1 | Hip mobility | 2 × 10; R:15 s; BW | Hamstring mobility | 2 × 5 + 5; R:15 s; BW |
Superman | 2 × 5 + 5; R15 s; BW | Gluteus mobility | 2 × 5 + 5; R15 s; BW | |
Trunk mobility | 2 × 5 + 5; R15 s; BW | Dead bug | 2 × 5 + 5; R15 s; BW | |
Bilateral jumps | 2 × 10; R:20 s; BW | One-leg balance | 2 × 10; R:20 s; BW | |
Squats | 2 × 10; R:30 s; BW | Single-leg squat 90° | 2 × 10; R:30 s; BW | |
Biceps curl | 2 × 12 + 12; R:30 s; 3 Kg | Burpees | 2 × 10; R:30 s, BW | |
Lateral planks | 2 × 12 + 12; R:30 s; BW | Circuit | ||
20 m forward run, 20 m backpedal run, and 30 s front planks | ||||
2 sets, R:30 s | ||||
Week 2 | Hip mobility | 2 × 12; R:15 s; BW | Hamstring mobility | 2 × 8 + 8; R:15 s; BW |
Superman | 2 × 8 + 8; R15 s; BW | Gluteus mobility | 2 × 8 + 8; R15 s; BW | |
Trunk mobility | 2 × 8 + 8; R15 s; BW | Dead bug | 2 × 8 + 8; R15 s; BW | |
Bilateral jumps | 2 × 12; R:20 s; BW | One-leg balance | 2 × 12; R:20 s; BW | |
Squats | 2 × 15; R:30 s; BW | Single-leg squat 90° | 2 × 12; R:30 s; BW | |
Biceps curl | 2 × 15 + 15; R:30 s; 3 Kg | Burpees | 2 × 12; R:30 s, BW | |
Lateral planks | 2 × 15 + 15; R:30 s; BW | Circuit | ||
20 m forward run, 20 m backpedal run, and 30 s front planks | ||||
3 sets R:30 s | ||||
Week 3 | Hip mobility | 3 × 12; R:15 s; BW | Hamstring mobility | 3 × 8 + 8; R:15 s; BW |
Superman | 3 × 8 + 8; R15 s; BW | Gluteus mobility | 3 × 8 + 8; R15 s; BW | |
Trunk mobility | 3 × 8 + 8; R15 s; BW | Dead bug | 3 × 8 + 8; R15 s; BW | |
Bilateral jumps | 3 × 12; R:20 s; BW | One-leg balance | 3 × 12; R:20 s; BW | |
Squats | 3 × 15; R:30 s; BW | Single-leg squat 90° | 3 × 12; R:30 s; BW | |
Biceps curl | 3 × 15 + 15; R:30 s; 3 Kg | Burpees | 3 × 12; R:30 s; BW | |
Lateral planks | 3 × 15 + 15; R:30 s; BW | Circuit | ||
30 m forward run, 30 m backpedal run and 30 s front planks | ||||
2 sets, R:30 s | ||||
Week 4 | Hip mobility | 3 × 12; R:15 s; BW | Hamstring mobility | 3 × 8 + 8; R:15 s; BW |
Superman | 3 × 8 + 8; R15 s; BW | Gluteus mobility | 3 × 8 + 8; R15 s; BW | |
Trunk mobility | 3 × 8 + 8; R15 s; BW | Dead bug | 3 × 8 + 8; R15 s; BW | |
Bilateral jumps | 3 × 12; R:20 s; BW | One-leg balance | 3 × 12; R:20 s; BW | |
Squats | 3 × 15; R:30 s; BW | Single-leg squat 90° | 3 × 12; R:30 s; BW | |
Biceps curl | 3 × 15 + 15; R:30 s; 5 Kg | Burpees | 3 × 12; R:30 s; BW | |
Lateral planks | 3 × 15 + 15; R:30 s; BW | Circuit | ||
30 m forward run, 30 m backpedal run, and 30 s front planks | ||||
3 sets, R:30 s |
Groups | Metric | Baseline Mean (SD) | CI 95% | Final Assessment Mean (SD) | CI 95% | t | p | d | Interpretation |
---|---|---|---|---|---|---|---|---|---|
G1exp | Lower-body power (m) | 1.36 (0.30) | 1.25–1.48 | 1.56 (0.27) | 1.46–1.67 | −7.04 | <0.001 ** | −1.30 | Large |
Upper-body power (m) | 3.80 (0.86) | 3.47–4.13 | 4.09 (0.91) | 3.75–4.44 | −5.94 | <0.001 ** | −1.10 | Large | |
Abdominal endurance strength (reps) | 18.59 (4.18) | 17.0–20.2 | 21.24 (4.34) | 19.6–22.9 | −9.72 | <0.001 ** | −1.80 | Large | |
Sprint (s) | 11.30 (1.01) | 10.6–11.7 | 10.82 (0.85) | 10.5–11.1 | 5.22 | <0.001 ** | 0.96 | Large | |
G2exp | Lower-body power (m) | 1.58 (0.40) | 1.43–1.72 | 1.67 (0.39) | 1.53–1.81 | −5.19 | <0.001 ** | −0.91 | Large |
Upper-body power (m) | 4.73 (1.27) | 4.27–5.19 | 4.92 (1.37) | 4.43–5.42 | −3.52 | <0.001 ** | −0.62 | Moderate | |
Abdominal endurance strength (reps) | 19.50 (6.86) | 17.0–22.0 | 22.84 (5.60) | 20.8–24.9 | −4.75 | <0.001 ** | −0.84 | Large | |
Sprint (s) | 11.28 (1.22) | 10.8–11.7 | 10.65 (1.15) | 10.2–11.1 | 5.90 | <0.001 ** | 1.04 | Large | |
G1con | Lower-body power (m) | 1.43 (0.27) | 1.33–1.53 | 1.44 (0.24) | 1.34–1.53 | −0.76 | 0.448 | −0.14 | Small |
Upper-body power (m) | 4.23 (0.83) | 3.91–4.54 | 4.13 (0.77) | 3.83–4.42 | 1.55 | 0.131 | 0.28 | Small | |
Abdominal endurance strength (reps) | 15.79 (3.77) | 14.4–17.2 | 17.17 (3.52) | 15.8–18.5 | −5.21 | <0.001 ** | −0.96 | Large | |
Sprint (s) | 12.17 (1.14) | 11.7–12.6 | 12.08 (1.08) | 11.7–12.5 | 1.83 | 0.077 | 0.34 | Small | |
G2con | Lower-body power (m) | 1.64 (0.38) | 1.50–1.78 | 1.69 (0.39) | 1.54–1.83 | −1.72 | 0.095 | −0.31 | Small |
Upper-body power (m) | 5.42 (1.16) | 4.99–5.84 | 5.56 (1.33) | 5.08–6.05 | −1.65 | 0.107 | −0.29 | Small | |
Abdominal endurance strength (reps) | 20.19 (7.75) | 17.3–23.0 | 20.74 (6.99) | 18.2–23.3 | −0.67 | 0.505 | −0.12 | Small | |
Sprint (s) | 11.04 (1.28) | 10.6–11.5 | 10.86 (1.24) | 10.40–11.30 | 1.82 | 0.078 | 0.32 | Small |
Metric | Comparisons | Baseline | Final Assessment | ||||
---|---|---|---|---|---|---|---|
Mean Differences | t | p | Mean Differences | t | p | ||
Lower-body power | G1exp vs. G2exp | −0.21 | −2.42 | 0.07 | −0.10 | −1.20 | 0.63 |
G1exp vs. G1con | −0.06 | −0.74 | 0.88 | 0.12 | 1.40 | 0.50 | |
G1exp vs. G2con | −0.27 | −3.11 | 0.01 * | −0.12 | −1.39 | 0.50 | |
G2exp vs. G1con | 0.14 | 1.66 | 0.34 | 0.22 | 2.64 | 0.04 * | |
G2exp vs. G2con | −0.06 | −0.73 | 0.88 | −0.01 | −0.21 | 0.99 | |
G1con vs. G2con | −0.21 | −2.36 | 0.09 | −0.24 | −2.82 | 0.02 * | |
Upper-body power | G1exp vs. G2exp | −0.92 | −3.72 | 0.005 ** | −0.82 | −2.83 | 0.02 * |
G1exp vs. G1con | −0.42 | −1.53 | 0.42 | −0.03 | −0.10 | 1.00 | |
G1exp vs. G2con | −1.61 | −5.91 | <0.001 ** | −1.47 | −4.98 | <0.001 ** | |
G2exp vs. G1con | 0.50 | 1.85 | 0.25 | 0.79 | 2.71 | 0.03 * | |
G2exp vs. G2con | −0.68 | −2.58 | 0.05 | −0.64 | −2.23 | 0.12 | |
G1con vs. G2con | −1.19 | −4.35 | <0.001 ** | −1.43 | −4.87 | <0.001 ** | |
Abdominal endurance strength | G1exp vs. G2exp | −0.91 | −0.59 | 0.93 | −1.60 | −1.17 | 0.64 |
G1exp vs. G1con | 2.79 | 1.78 | 0.28 | 4.07 | 2.91 | 0.02 * | |
G1exp vs. G2con | −1.60 | −1.04 | 0.72 | 0.49 | 0.36 | 0.98 | |
G2exp vs. G1con | 3.71 | 2.43 | 0.07 | 5.67 | 4.15 | <0.001 ** | |
G2exp vs. G2con | −0.69 | −0.46 | 0.96 | 2.10 | 1.56 | 0.40 | |
G1con vs. G2con | −4.40 | −2.85 | 0.02 * | −3.57 | −2.59 | 0.05 * | |
Sprint | G1exp vs. G2exp | 0.02 | 0.07 | 1.00 | 0.17 | 0.60 | 0.93 |
G1exp vs. G1con | −0.86 | −2.81 | 0.02 * | −1.26 | −4.36 | <0.001 ** | |
G1exp vs. G2con | 0.26 | 0.87 | 0.82 | −0.03 | −0.13 | 0.99 | |
G2exp vs. G1con | −0.89 | −2.95 | 0.02 * | −1.43 | −5.07 | <0.001 ** | |
G2exp vs. G2con | 0.24 | 0.81 | 0.84 | −0.20 | −0.75 | 0.87 | |
G1con vs. G2con | 1.13 | −3.73 | 0.002 ** | 1.22 | 4.30 | <0.001 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Aubin, D.A.; Moya del Saz, I.; Martínez-Guardado, I.; Chulvi-Medrano, I. An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance. Healthcare 2025, 13, 1372. https://doi.org/10.3390/healthcare13121372
Alonso-Aubin DA, Moya del Saz I, Martínez-Guardado I, Chulvi-Medrano I. An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance. Healthcare. 2025; 13(12):1372. https://doi.org/10.3390/healthcare13121372
Chicago/Turabian StyleAlonso-Aubin, Diego A., Ignacio Moya del Saz, Ismael Martínez-Guardado, and Iván Chulvi-Medrano. 2025. "An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance" Healthcare 13, no. 12: 1372. https://doi.org/10.3390/healthcare13121372
APA StyleAlonso-Aubin, D. A., Moya del Saz, I., Martínez-Guardado, I., & Chulvi-Medrano, I. (2025). An Integrative Neuromuscular Training Program in Physical Education Classes Improves Strength and Speed Performance. Healthcare, 13(12), 1372. https://doi.org/10.3390/healthcare13121372