Identifying Areas with Low Access to the COVID-19 Vaccine: A New Objective Framework Incorporating Mobility Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Vaccine Provider Data
2.2. Road Network Data
2.3. SafeGraph Mobility Data
2.4. Adapted USDA Low-Access Definition
2.5. Mobility Data-Driven Definition
- Step 1: Calculate the threshold distance
- Step 2: Determine the “significant share” of a population
2.6. Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- COVID-19 Cases|WHO COVID-19 Dashboard. Datadot 2023. Available online: https://data.who.int/dashboards/covid19/cases (accessed on 1 March 2025).
- COVID-19 Deaths|WHO COVID-19 Dashboard. Datadot 2023. Available online: https://data.who.int/dashboards/covid19/deaths?n=o (accessed on 1 March 2025).
- COVID-19 Vaccine Effectiveness Monthly Update. Centers for Disease Control and Prevention. 2022. Available online: https://covid.cdc.gov/covid-data-tracker/#vaccine-effectiveness (accessed on 13 February 2023).
- DiRago, N.V.; Li, M.; Tom, T.; Schupmann, W.; Carrillo, Y.; Carey, C.M.; Gaddis, S.M. COVID-19 Vaccine Rollouts and the Reproduction of Urban Spatial Inequality: Disparities Within Large US Cities in March and April 2021 by Racial/Ethnic and Socioeconomic Composition. J. Urban Health 2022, 99, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Jean-Jacques, M.; Bauchner, H. Vaccine Distribution—Equity Left Behind? JAMA 2021, 325, 829–830. [Google Scholar] [CrossRef] [PubMed]
- Hardeman, A.; Wong, T.; Denson, J.L.; Postelnicu, R.; Rojas, J.C. Evaluation of Health Equity in COVID-19 Vaccine Distribution Plans in the United States. JAMA Netw. Open 2021, 4, e2115653. [Google Scholar] [CrossRef] [PubMed]
- Murthy, B.P.; Sterrett, N.; Weller, D.; Zell, E.; Reynolds, L.; Toblin, R.L.; Murthy, N.; Kriss, J.; Rose, C.; Cadwell, B.; et al. Disparities in COVID-19 Vaccination Coverage Between Urban and Rural Counties—United States, December 14, 2020–April 10, 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 759–764. [Google Scholar] [CrossRef]
- Pressman, A.R.; Lockhart, S.H.; Shen, Z.; Azar, K.M.J. Measuring and Promoting SARS-CoV-2 Vaccine Equity: Development of a COVID-19 Vaccine Equity Index. Health Equity 2021, 5, 476–483. [Google Scholar] [CrossRef]
- Saelee, R.; MStat, E.; Murthy, B.; Castro-Roman, P.; Fast, H.; Meng, L. Disparities in COVID-19 Vaccination Coverage Between Urban and Rural Counties—United States, December 14, 2020–January 31, 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 335–340. [Google Scholar] [CrossRef]
- Sallam, M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef]
- Food Access Research Atlas Documentation. U.S. Department of Agriculture. Economic Research Service. 2022. Available online: https://www.ers.usda.gov/data-products/food-access-research-atlas/documentation/ (accessed on 13 February 2023).
- Wisseh, C.; Hildreth, K.; Marshall, J.; Tanner, A.; Bazargan, M.; Robinson, P. Social Determinants of Pharmacy Deserts in Los Angeles County. J. Racial Ethn. Health Disparities 2021, 8, 1424–1434. [Google Scholar] [CrossRef]
- Qato, D.M.; Daviglus, M.L.; Wilder, J.; Lee, T.; Qato, D.; Lambert, B. ‘Pharmacy Deserts’ Are Prevalent in Chicago’s Predominantly Minority Communities, Raising Medication Access Concerns. Health Aff. 2014, 33, 1958–1965. [Google Scholar] [CrossRef]
- Pednekar, P.; Peterson, A. Mapping pharmacy deserts and determining accessibility to community pharmacy services for elderly enrolled in a State Pharmaceutical Assistance Program. PLoS ONE 2018, 13, e0198173. [Google Scholar] [CrossRef]
- Tao, Z.; Cheng, Y.; Zheng, Q.; Li, G. Measuring spatial accessibility to healthcare services with constraint of administrative boundary: A case study of Yanqing District, Beijing, China. Int. J. Equity Health 2018, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Wang, F. Measures of Spatial Accessibility to Health Care in a GIS Environment: Synthesis and a Case Study in the Chicago Region. Environ. Plan. B Plan. Des. 2003, 30, 865–884. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Qi, Y. An enhanced two-step floating catchment area (E2SFCA) method for measuring spatial accessibility to primary care physicians. Health Place 2009, 15, 1100–1107. [Google Scholar] [CrossRef]
- Dai, D. Black residential segregation, disparities in spatial access to health care facilities, and late-stage breast cancer diagnosis in metropolitan Detroit. Health Place 2010, 16, 1038–1052. [Google Scholar] [CrossRef]
- Bemanian, A.; Mosser, J.F. Investigating the Spatial Accessibility and Coverage of the Pediatric COVID-19 Vaccine: An Ecologic Study of Regional Health Data. Vaccines 2024, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Chen, H.; Zuo, C.; Zhang, N. The impact of traffic on equality of urban healthcare service accessibility: A case study in Wuhan, China. Sustain. Cities Soc. 2022, 86, 104130. [Google Scholar] [CrossRef]
- Luo, W.; Whippo, T. Variable catchment sizes for the two-step floating catchment area (2SFCA) method. Health Place 2012, 18, 789–795. [Google Scholar] [CrossRef]
- Cao, Y.; Li, T.; Chen, H.; Zhao, Q.; Sun, J.; Grépin, K.A.; Kang, J.-Y. Evaluating geographic accessibility to COVID-19 vaccination across 54 countries/regions. BMJ Glob. Health 2025, 10, e017761. [Google Scholar] [CrossRef]
- Rader, B.; Astley, C.M.; Sewalk, K.; Delamater, P.L.; Cordiano, K.; Wronski, L.; Rivera, J.M.; Hallberg, K.; Pera, M.F.; Cantor, J.; et al. Spatial modeling of vaccine deserts as barriers to controlling SARS-CoV-2. Commun. Med. 2022, 2, 141. [Google Scholar] [CrossRef]
- Brenner, P.S.; DeLamater, J. Lies, Damned Lies, and Survey Self-Reports? Identity as a Cause of Measurement Bias. Soc. Psychol. Q. 2016, 79, 333–354. [Google Scholar] [CrossRef]
- Allan, D.P. Catchments of general practice in different countries—A literature review. Int. J. Health Geogr. 2014, 13, 32. [Google Scholar] [CrossRef]
- Census Bureau Data. US Census Bureau. 2017. Available online: https://data.census.gov/ (accessed on 13 February 2023).
- TIGER/Line® Shapefiles. US Census Bureau. 2022. Available online: https://www.census.gov/cgi-bin/geo/shapefiles/index.php (accessed on 13 February 2023).
- Rural-Urban Commuting Area Codes. U.S. Department of Agriculture. Economic Research Service. 2020. Available online: https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes.aspx (accessed on 13 February 2023).
- Oregon Rural-Urban Commuting Areas. Oregon Health & Science University. 2014. Available online: https://www.ohsu.edu/oregon-office-of-rural-health/about-rural-and-frontier-data (accessed on 13 February 2023).
- ALERT Immunization Information System. Oregon Health Authority. 2020. Available online: https://www.alertiis.org/ORPRD/portalInfoManager.do (accessed on 13 February 2023).
- Grabenstein, J.D. Essential services: Quantifying the contributions of America’s pharmacists in COVID-19 clinical interventions. J. Am. Pharm. Assoc. 2022, 62, 1929–1945.e1. [Google Scholar] [CrossRef] [PubMed]
- Management of Anaphylaxis at COVID-19 Vaccination Sites|CDC. 2025. Available online: https://www.cdc.gov/vaccines/covid-19/clinical-considerations/managing-anaphylaxis.html (accessed on 30 May 2025).
- Oregon Health Authority. OHA Powerpoint for Press Conference 2021. Available online: https://www.oregon.gov/oha/ERD/Documents/OHA%20Powerpoint%20for%20Press%20Conference%202.26.21.pdf (accessed on 20 May 2025).
- OSRM API Documentation. Open Source Routing Machine. 2017. Available online: http://project-osrm.org/docs/v5.24.0/api/# (accessed on 13 February 2023).
- Juhász, L.; Hochmair, H. Studying Spatial and Temporal Visitation Patterns of Points of Interest Using SafeGraph Data in Florida. GIForum 2020, 8, 119–136. [Google Scholar] [CrossRef]
- Weekly Patterns|SafeGraph Docs. SafeGraph n.d. Available online: https://docs.safegraph.com/docs/weekly-patterns (accessed on 19 May 2025).
- Klise, K.; Beyeler, W.; Finley, P.; Makvandi, M. Analysis of mobility data to build contact networks for COVID-19. PLoS ONE 2021, 16, e0249726. [Google Scholar] [CrossRef] [PubMed]
- Moreland, A.; Christine, H.; Michael, T.; Gregory, S.; McCord, R.F.; Hilton, C. Timing of State and Territorial COVID-19 Stay-at-Home Orders and Changes in Population Movement—United States, March 1–May 31, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1198–1203. [Google Scholar] [CrossRef]
- Gottumukkala, R.; Katragadda, S.; Bhupatiraju, R.T.; Kamal, A.M.; Raghavan, V.; Chu, H.; Kolluru, R.; Ashkar, Z. Exploring the relationship between mobility and COVID− 19 infection rates for the second peak in the United States using phase-wise association. BMC Public Health 2021, 21, 1669. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.; Newberger, N.; Smalling, S. The spread of social distancing. Econ. Lett. 2020, 196, 109511. [Google Scholar] [CrossRef] [PubMed]
- North American Industry Classification System (NAICS). US Census Bureau. 2022. Available online: https://www.census.gov/naics/ (accessed on 13 February 2023).
- Boddy, R.; Smith, G. Statistical Methods in Practice: For Scientists and Technologists; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; ISBN 978-0-470-74664-6. [Google Scholar]
- Gade, K. A Non-singular Horizontal Position Representation. J. Navig. 2010, 63, 395–417. [Google Scholar] [CrossRef]
- Lopez, L.; Hart, L.H.; Katz, M.H. Racial and Ethnic Health Disparities Related to COVID-19. JAMA 2021, 325, 719. [Google Scholar] [CrossRef]
- Webb Hooper, M.; Nápoles, A.M.; Pérez-Stable, E.J. COVID-19 and Racial/Ethnic Disparities. JAMA 2020, 323, 2466. [Google Scholar] [CrossRef]
- Mackey, K.; Ayers, C.K.; Kondo, K.K.; Saha, S.; Advani, S.M.; Young, S.; Spencer, H.; Rusek, M.; Anderson, J.; Veazie, S.; et al. Racial and Ethnic Disparities in COVID-19–Related Infections, Hospitalizations, and Deaths. Ann. Intern. Med. 2021, 174, 362–373. [Google Scholar] [CrossRef]
- COVID-19 Vaccine Equity for Racial and Ethnic Minority Groups. Centers for Disease Control and Prevention. 2022. Available online: https://archive.cdc.gov/#/details?url=https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/vaccine-equity.html (accessed on 13 February 2023).
- Weiss, A.; Pickens, G.; Roemer, M. Methods for Calculating Patient Travel Distance to Hospital in HCUP Data. Available online: https://hcup-us.ahrq.gov/reports/methods/MS2021-02-Distance-to-Hospital.jsp (accessed on 13 February 2023).
- Akinlotan, M.; Primm, K.; Khodakarami, N.; Bolin, J.; Ferdinand, A.; Rural-Urban Variations in Travel Burdens for Care: Findings from the 2017 National Household Travel Survey. Southwest Rural Health Research Center. 2021. Available online: https://oaktrust.library.tamu.edu/server/api/core/bitstreams/bdb2f5a7-627b-4bb9-bc86-fb4890cfc9db/content#:~:text=On%20average%2C%20U.S.%20residents%20spent,%2C%20(p%3C0.0001) (accessed on 13 February 2023).
- Shahid, R.; Bertazzon, S.; Knudtson, M.L.; Ghali, W.A. Comparison of distance measures in spatial analytical modeling for health service planning. BMC Health Serv. Res. 2009, 9, 200. [Google Scholar] [CrossRef]
- Grech, V.; Borg, M. Influenza vaccination in the COVID-19 era. Early Hum. Dev. 2020, 148, 105116. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Kassens-Noor, E.; Kuljanin, G.; Vertalka, J. A geographic analysis of population density thresholds in the influenza pandemic of 1918–19. Int. J. Health Geogr. 2013, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Bonabeau, E.; Toubiana, L.; Flahault, A. The geographical spread of influenza. Proc. R. Soc. Lond. B Biol. Sci. 1998, 265, 2421–2425. [Google Scholar] [CrossRef]
- Attonito, J.; Van Arsdale, W.; Fishman, K.; Darya, M.; Jacomino, M.; Luck, G. Sociodemographic Disparities in Access to COVID-19 Vaccines upon Initial Rollout in Florida. Health Aff. Proj. Hope 2021, 40, 1883–1891. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.F. Social and economic inequality in coronavirus disease 2019 vaccination coverage across Illinois counties. Sci. Rep. 2021, 11, 18443. [Google Scholar] [CrossRef]
- Williams, A.M.; Clayton, H.B.; Singleton, J.A. Racial and Ethnic Disparities in COVID-19 Vaccination Coverage: The Contribution of Socioeconomic and Demographic Factors. Am. J. Prev. Med. 2022, 62, 473–482. [Google Scholar] [CrossRef]
- Coronavirus (COVID-19). Indian Health Service. 2020. Available online: https://mcc-covid.crc.pitt.edu/COVID19_official_websites/United%20States%20of%20America%20(the)/ihs_situation_update/2020-12-15_092153.html (accessed on 13 February 2023).
- Coston, A.; Guha, N.; Ouyang, D.; Lu, L.; Chouldechova, A.; Ho, D.E. Leveraging Administrative Data for Bias Audits: Assessing Disparate Coverage with Mobility Data for COVID-19 Policy. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, Virtual Event Canada, 3–10 March 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 173–184. [Google Scholar]
Metrics | MDD—Spring | MDD—Summer | MDD—Fall | MDD—Winter | USDA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MED | IQR | MED | IQR | MED | IQR | MED | IQR | MED | IQR | ||
Calculated Metrics | |||||||||||
G2SFCA score | 20 | 0.00 | 0.08 | 0.00 | 0.02 | 0.00 | 0.08 | 0.00 | 0.15 | 0.24 | 0.23 |
30 | 0.00 | 0.13 | 0.00 | 0.09 | 0.00 | 0.13 | 0.01 | 0.19 | 0.25 | 0.24 | |
40 | 0.04 | 0.14 | 0.02 | 0.09 | 0.04 | 0.14 | 0.04 | 0.17 | 0.29 | 0.23 | |
50 | 0.05 | 0.14 | 0.03 | 0.08 | 0.05 | 0.14 | 0.06 | 0.19 | 0.32 | 0.22 | |
60 | 0.08 | 0.15 | 0.04 | 0.11 | 0.08 | 0.15 | 0.09 | 0.18 | 0.33 | 0.19 | |
70 | 0.09 | 0.17 | 0.06 | 0.13 | 0.09 | 0.17 | 0.11 | 0.18 | 0.33 | 0.16 | |
80 | 0.12 | 0.17 | 0.09 | 0.15 | 0.12 | 0.17 | 0.13 | 0.17 | 0.34 | 0.13 | |
90 | 0.15 | 0.16 | 0.09 | 0.13 | 0.15 | 0.16 | 0.16 | 0.16 | 0.35 | 0.11 | |
Population-to-facility ratio | 20 | 4954 | 4133 | 4954 | 3815 | 4954 | 4133 | 4954 | 4176 | 50 | 243 |
30 | 4954 | 4653 | 4954 | 4648 | 4954 | 4653 | 1386 | 4647 | 23 | 65 | |
40 | 449 | 2258 | 472 | 2295 | 449 | 2258 | 450 | 2290 | 14 | 31 | |
50 | 260 | 1498 | 413 | 1506 | 260 | 1498 | 252 | 1365 | 11 | 20 | |
60 | 151 | 3180 | 181 | 3176 | 151 | 3180 | 143 | 896 | 8 | 15 | |
70 | 122 | 919 | 122 | 2417 | 122 | 919 | 111 | 399 | 6 | 12 | |
80 | 91 | 306 | 106 | 451 | 91 | 306 | 75 | 234 | 5 | 10 | |
90 | 60 | 223 | 66 | 305 | 60 | 223 | 50 | 189 | 4 | 9 | |
Non-calculated Metrics | Indicator | ||||||||||
Socioeconomic Status | Poverty Rate (%) | 13.30 | 8.20 | 13.00 | 7.10 | 13.30 | 8.20 | 13.50 | 8.03 | 9.65 | 8.00 |
No High School Diploma Rate (%) | 8.56 | 4.29 | 8.39 | 3.69 | 8.56 | 4.29 | 8.66 | 4.60 | 7.59 | 6.70 | |
Unemployment Rate (%) | 6.80 | 4.60 | 6.60 | 4.80 | 6.80 | 4.60 | 6.80 | 4.48 | 4.90 | 3.60 | |
Uninsured Rate (%) | 6.50 | 2.80 | 6.50 | 3.10 | 6.50 | 2.80 | 6.50 | 2.73 | 5.65 | 4.10 | |
Per Capita Income | 27.5 K | 7.7 K | 28.7 K | 8.5 K | 27.6 K | 7.7 K | 27.6 K | 7.3 K | 34.0 K | 13.9 K |
All Oregon | Low-Vaccine-Accessibility Areas by Definition | |||||
---|---|---|---|---|---|---|
USDA | MDD—Spring | MDD—Summer | MDD—Fall | MDD—Winter | ||
Age (years) | ||||||
Under 5 | 5.58% | 5.49% | 4.45% | 4.66% | 4.45% | 4.56% |
5 to 19 | 17.80% | 18.51% | 15.60% | 16.55% | 15.60% | 15.57% |
20 to 64 | 59.43% | 57.29% | 54.58% | 54.70% | 54.58% | 54.41% |
65+ | 17.18% | 18.71% | 25.37% | 24.09% | 25.37% | 25.47% |
Race | ||||||
White alone | 84.29% | 86.51% | 88.77% | 87.83% | 88.77% | 89.23% |
Black or African American alone | 1.91% | 1.24% | 0.71% | 0.78% | 0.71% | 0.62% |
American Indian and Alaska Native alone | 1.16% | 0.96% | 4.50% | 5.74% | 4.50% | 4.28% |
Asian alone | 4.37% | 4.01% | 0.78% | 0.76% | 0.78% | 0.69% |
Native Hawaiian and Other Pacific Islander alone | 0.40% | 0.29% | 0.14% | 0.14% | 0.14% | 0.11% |
Some other race alone | 3.07% | 2.52% | 1.27% | 1.44% | 1.27% | 1.11% |
Two or more races | 4.80% | 4.47% | 3.84% | 3.31% | 3.84% | 3.95% |
Ethnicity | ||||||
Hispanic or Latino | 13.01% | 11.25% | 7.25% | 7.45% | 7.25% | 6.76% |
Non-Hispanic or Latino | 86.99% | 88.75% | 92.75% | 92.55% | 92.75% | 93.24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, D.; Agor, J.; McGregor, J.; Douglass, T.; Gibler, A.; Vergara, H.A. Identifying Areas with Low Access to the COVID-19 Vaccine: A New Objective Framework Incorporating Mobility Data. Healthcare 2025, 13, 1368. https://doi.org/10.3390/healthcare13121368
Tao D, Agor J, McGregor J, Douglass T, Gibler A, Vergara HA. Identifying Areas with Low Access to the COVID-19 Vaccine: A New Objective Framework Incorporating Mobility Data. Healthcare. 2025; 13(12):1368. https://doi.org/10.3390/healthcare13121368
Chicago/Turabian StyleTao, Defeng, Joseph Agor, Jessina McGregor, Trevor Douglass, Andrew Gibler, and Hector A. Vergara. 2025. "Identifying Areas with Low Access to the COVID-19 Vaccine: A New Objective Framework Incorporating Mobility Data" Healthcare 13, no. 12: 1368. https://doi.org/10.3390/healthcare13121368
APA StyleTao, D., Agor, J., McGregor, J., Douglass, T., Gibler, A., & Vergara, H. A. (2025). Identifying Areas with Low Access to the COVID-19 Vaccine: A New Objective Framework Incorporating Mobility Data. Healthcare, 13(12), 1368. https://doi.org/10.3390/healthcare13121368