The Implications and Predictability of Sleep Reversal for People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Machine Learning Approach
Abstract
1. Introduction
2. Methods
2.1. DePaul Sample
2.2. Solve ME/CFS BioBank Sample
2.3. Newcastle Sample
2.4. Norway 1 Sample
2.5. Norway 2 Sample
2.6. Norway 3 Sample
2.7. Chronic Illness Sample
2.8. Japanese Sample
2.9. Spain Sample
2.10. Netherlands Sample
3. Measures
3.1. The DePaul Symptom Questionnaire
3.2. The Medical Outcomes Study (MOS) Short-Form Health Survey (SF-36)
3.3. Missing Values
3.4. Random Forest Algorithm
3.5. Selection of Important Features: Mean Decrease in the Gini Coefficient
3.6. Determining a Threshold
3.7. Exploring Group Differences
3.8. Random Forest Predictive Model Selection
4. Results
Random Forest Final Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANCOVA | Analysis of covariance |
ANOVA | Analysis of variance |
AUC | Area under the ROC curve |
BMI | Body mass index |
CCC | Canadian Consensus Criteria |
CFS | Chronic fatigue syndrome |
DSQ | DePaul Symptom Questionnaire |
ME | Myalgic encephalomyelitis |
ME/CFS | Myalgic encephalomyelitis/chronic fatigue syndrome |
PEM | Post-exertional malaise |
ROC | Receiver operating characteristic |
SF-36 | Medical Outcomes Study 36-item Short-Form Health Survey |
VSURF | Variable selection using random forests |
References
- Carruthers, B.M.; Jain, A.K.; De Meirleir, K.L.; Peterson, D.L.; Klimas, N.G.; Lerner, A.M.; Bested, A.C.; Flor-Henry, P.; Joshi, P.; Powles, A.C.P.; et al. Myalgic encephalomyelitis/chronic fatigue syndrome: Clinical working case definition, diagnostic and treatment protocols. J. Chronic Fatigue Syndr. 2003, 11, 7–115. [Google Scholar] [CrossRef]
- Carruthers, B.M.; Van De Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338, Erratum in J. Intern. Med. 2017, 282, 353. [Google Scholar] [CrossRef]
- Beyond myalgic encephalomyelitis/chronic fatigue syndrome: Redefining an illness. Mil. Med. 2015, 180, 721–723. [CrossRef] [PubMed]
- Maksoud, R.; Eaton-Fitch, N.; Matula, M.; Cabanas, H.; Staines, D.; Marshall-Gradisnik, S. Systematic review of sleep characteristics in myalgic encephalomyelitis/chronic fatigue syndrome. Healthcare 2021, 9, 568. [Google Scholar] [CrossRef] [PubMed]
- Mariman, A.N.; Vogelaers, D.P.; Tobback, E.; Delesie, L.M.; Hanoulle, I.P.; Pevernagie, D.A. Sleep in the chronic fatigue syndrome. Sleep. Med. Rev. 2013, 17, 193–199. [Google Scholar] [CrossRef]
- Jackson, M.L.; Bruck, D. Sleep abnormalities in chronic fatigue syndrome/myalgic encephalomyelitis: A review. J. Clin. Sleep. Med. 2012, 8, 719–728. [Google Scholar] [CrossRef]
- Milrad, S.F.; Hall, D.L.; Jutagir, D.R.; Lattie, E.G.; Ironson, G.H.; Wohlgemuth, W.; Nunez, M.V.; Garcia, L.; Czaja, S.J.; Perdomo, D.M.; et al. Poor sleep quality is associated with greater circulating pro-inflammatory cytokines and severity and frequency of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) symptoms in women. J. Neuroimmunol. 2017, 303, 43–50. [Google Scholar] [CrossRef]
- Jason, L.A.; Sunnquist, M.; Brown, A.; Evans, M.; Vernon, S.D.; Furst, J.D.; Simonis, V. Examining case definition criteria for chronic fatigue syndrome and myalgic encephalomyelitis. Fatigue 2014, 2, 40–56. [Google Scholar] [CrossRef]
- Jason, L.A.; Sunnquist, M. The development of the DePaul Symptom Questionnaire: Original, Expanded, Brief, and Pediatric versions. Front. Pediatr. 2018, 6, 330. [Google Scholar] [CrossRef]
- Fukuda, K.; Straus, S.E.; Hickie, I.; Sharpe, M.C.; Dobbins, J.G.; Komaroff, A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. Ann. Intern. Med. 1994, 121, 953–959. [Google Scholar] [CrossRef]
- McCarthy, M.J. Circadian rhythm disruption in myalgic encephalomyelitis/chronic fatigue syndrome: Implications for the post-acute sequelae of COVID-19. Brain Behav. Immun. Health 2022, 20, 100412. [Google Scholar] [CrossRef]
- Conroy, K.E.; Islam, M.F.; Jason, L.A. Evaluating case diagnostic criteria for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): Toward an empirical case definition. Disabil. Rehabil. 2023, 45, 840–847. [Google Scholar] [CrossRef]
- Jason, L.A.; Sunnquist, M.; Brown, A.; Furst, J.; Cid, M.; Farietta, J.; Kot, B.; Bloomer, C.; Nicholson, L.; Williams, Y.; et al. Factor analysis of the DePaul Symptom Questionnaire: Identifying core domains. J. Neurol. Neurobiol. 2015, 1. [Google Scholar] [CrossRef]
- Akerstedt, T. Inversion of the sleep wakefulness pattern: Effects on circadian variations in psychophysiological activation. Ergonomics 1977, 20, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Pena-Orbea, C.; Kolla, B.P.; Mansukhani, M.P. Jet Lag Sleep Disorder. In Circadian Rhythm Sleep-Wake Disorders; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Zammit, G.K. Delayed sleep phase syndrome and related conditions. In Understanding Sleep: The Evaluation and Treatment of Sleep Disorders; Pressman, M.R., Orr, W.C., Eds.; American Psychological Association: Washington, DC, USA, 1997; pp. 229–248. [Google Scholar]
- Jason, L.A.; So, S.; Brown, A.A.; Sunnquist, M.; Evans, M. Test-retest reliability of the DePaul Symptom Questionnaire. Fatigue 2015, 3, 16–32. [Google Scholar] [CrossRef] [PubMed]
- McHorney, C.A.; Ware JEJr Lu, J.F.; Sherbourne, C.D. The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 1994, 32, 40–66. [Google Scholar] [CrossRef]
- Jason, L.A.; Kot, B.; Sunnquist, M.; Brown, A.; Evans, M.; Jantke, R.; Williams, Y.; Furst, J.; Vernon, S.D. Chronic fatigue syndrome and myalgic encephalomyelitis: Toward an empirical case definition. Health Psychol. Behav. Med. 2015, 3, 82–93. [Google Scholar] [CrossRef]
- McGarrigle, W.J.; Furst, J.; Jason, L.A. Psychometric evaluation of the DePaul Symptom Questionnaire-Short Form (DSQ-SF) among adults with Long COVID, ME/CFS, and healthy controls: A machine learning approach. J. Health Psychol. 2024, 29, 1241–1252. [Google Scholar] [CrossRef]
- Watson, S.P.; Ruskin, A.S.; Simonis, V.; Jason, L.A.; Sunnquist, M.; Furst, J.D. Identifying defining aspects of chronic fatigue syndrome via unsupervised machine learning and feature selection. Int. J. Mach. Learn. Comput. 2014, 4, 133–138. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Lenth, R.V. Least-squares means: The R package lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Nahler, G. Dictionary of Pharmaceutical Medicine; Springer: Vienna, Austria, 2009. [Google Scholar]
- Kumar, R.; Indrayan, A. Receiver operating characteristic (ROC) curve for medical researchers. Indian. Pediatr. 2011, 48, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Speiser, J.L.; Miller, M.E.; Tooze, J.; Ip, E. A comparison of random forest variable selection methods for classification prediction modeling. Expert. Syst. Appl. 2019, 134, 93–101. [Google Scholar] [CrossRef]
- Nacul, L.; O’Boyle, S.; Palla, L.; Nacul, F.E.; Mudie, K.; Kingdon, C.C.; Cliff, J.M.; Clark, T.G.; Dockrell, H.M.; Lacerda, E.M. How myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) progresses: The natural history of ME/CFS. Front. Neurol. 2020, 11, 826. [Google Scholar] [CrossRef]
- Figueiro, M.G. Disruption of circadian rhythms by light during day and night. Curr. Sleep. Med. Rep. 2017, 3, 76–84. [Google Scholar] [CrossRef]
- Wang, T.F.; Liou, Y.S.; Chang, H.H.; Yang, S.H.; Li, C.C.; Wang, J.H.; Sun, D.S. Correlation of body mass index and proinflammatory cytokine levels with hematopoietic stem cell mobilization. J. Clin. Med. 2022, 11, 4169. [Google Scholar] [CrossRef]
- Omoigui, S. The biochemical origin of pain: The origin of all pain is inflammation and the inflammatory response. Part 2 of 3—Inflammatory profile of pain syndromes. Med. Hypotheses 2007, 69, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Elenkov, I.J.; Chrousos, G.P. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann. N. Y. Acad. Sci. 2002, 966, 290–303. [Google Scholar] [CrossRef]
- Torres-Harding, S.; Sorenson, M.; Jason, L.; Maher, K.; Fletcher, M.A.; Reynolds, N.; Brown, M. The associations between basal salivary cortisol and illness symptomatology in chronic fatigue syndrome. J. Appl. Biobehav. Res. 2008, 13, 157–180. [Google Scholar] [CrossRef]
- Nijhof, S.L.; Rutten, J.M.; Uiterwaal, C.S.; Bleijenberg, G.; Kimpen, J.L.; Putte, E.M. The role of hypocortisolism in chronic fatigue syndrome. Psychoneuroendocrinology 2014, 42, 199–206. [Google Scholar] [CrossRef]
- Scott, L.V.; Dinan, T.G. Urinary free cortisol excretion in chronic fatigue syndrome, major depression and in healthy volunteers. J. Affect. Disord. 1998, 47, 49–54. [Google Scholar] [CrossRef]
- Wright KPJr Drake, A.L.; Frey, D.J.; Fleshner, M.; Desouza, C.A.; Gronfier, C.; Czeisler, C.A. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav. Immun. 2015, 47, 24–34. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, Y.; Dai, Y.; Nie, K. Gastrointestinal inflammation plays a critical role in chemotherapy-induced nausea and vomiting. Eur. J. Pharmacol. 2022, 936, 175379. [Google Scholar] [CrossRef] [PubMed]
- Garami, A.; Steiner, A.A.; Romanovsky, A.A. Fever and hypothermia in systemic inflammation. Handb. Clin. Neurol. 2018, 157, 565–597. [Google Scholar] [CrossRef] [PubMed]
- Okamoto-Mizuno, K.; Mizuno, K. Effects of thermal environment on sleep and circadian rhythm. J. Physiol. Anthropol. 2012, 31, 14. [Google Scholar] [CrossRef]
- Khatooni, M.; Samiee-Siboni, F.; Alimoradi, Z.; Atashi, V.; Momeni, M. Is sleep quality associated with restless legs syndrome in patients suffering from multiple sclerosis? Shiraz E-Med. J. 2017, 18, e14521. [Google Scholar] [CrossRef]
- Pajediene, E.; Bileviciute-Ljungar, I.; Friberg, D. Sleep patterns among patients with chronic fatigue: A polysomnography-based study. Clin. Respir. J. 2018, 12, 1389–1397. [Google Scholar] [CrossRef]
- Fossey, M.; Libman, E.; Bailes, S.; Baltzan, M.; Schondorf, R.; Amsel, R.; Fichten, C.S. Sleep quality and psychological adjustment in chronic fatigue syndrome. J. Behav. Med. 2004, 27, 581–605. [Google Scholar] [CrossRef]
- Hamilton, N.A.; Nelson, C.A.; Stevens, N.; Kitzman, H. Sleep and psychological well-being. Soc. Indic. Res. 2007, 82, 147–163. [Google Scholar] [CrossRef]
- Baron, K.G.; Reid, K.J. Circadian misalignment and health. Int. Rev. Psychiatry 2014, 26, 139–154. [Google Scholar] [CrossRef]
- Rahman, K.; Burton, A.; Galbraith, S.; Lloyd, A.; Vollmer-Conna, U. Sleep-wake behavior in chronic fatigue syndrome. Sleep 2011, 34, 671–678. [Google Scholar] [CrossRef] [PubMed]
Sleep Reversal | No Sleep Reversal | p-Value | ||
---|---|---|---|---|
Demographic | (N = 327) | (N = 1986) | ||
M (SD) | M (SD) | |||
Age (years) | 43.7 (13.5) | 47.4 (13.6) | <0.05 | |
BMI | 27.3 (8) | 25.5 (5.9) | <0.05 | |
% (n) | % (n) | |||
Gender | 0.27 | |||
Male | 15.5 (50) | 18.2 (357) | ||
Female | 84.5 (272) | 81.8 (1601) | ||
Race | 0.71 | |||
White/Caucasian | 91.0 (254) | 91.7 (1512) | ||
Black/African American | 0.0 (0) | 0.1 (2) | ||
Asian/Pacific Islander | 7.2 (20) | 6.8 (112) | ||
American Indian/ Alaskan Native | 0.0 (0) | 0.1 (2) | ||
Other | 1.8 (5) | 1.0 (17) | ||
Hispanic or Latino | 12.9 (36) | 6.0 (99) | <0.05 | |
Marital Status | <0.05 | |||
Married or living with partner | 52.8 (141) | 65.5 (1095) | ||
Separated/Widowed/ Divorced | 6.0 (16) | 5.4 (90) | ||
Never married | 41.2 (110) | 29.2 (488) | ||
Work Status | <0.05 | |||
On disability | 51.4 (72) | 48.2 (408) | ||
Student/Homemaker/ Retired | 15.0 (21) | 21.6 (183) | ||
Unemployed | 22.9 (32) | 14.4 (122) | ||
Working part-time/ Working full-time | 10.7 (15) | 15.7 (133) | ||
Education Level | 0.21 | |||
High school/GED or less | 7.0 (15) | 4.4 (67) | ||
Partial college or specialized training | 22.8 (49) | 21.4 (327) | ||
Standard college degree | 44.7 (96) | 50.6 (773) | ||
Graduate or professional degree | 25.6 (55) | 23.7 (362) |
Sleep Reversal | No Sleep Reversal | |||
---|---|---|---|---|
Symptom Domain | (N = 327) | (N = 1986) | p-Value | |
Symptom | M (SD) | M (SD) | ||
Sleep | ||||
Unrefreshing Sleep | 86.9 (15.1) | 74.7 (20.9) | <0.01 | |
Needing to Nap | 69.2 (27.5) | 53.3 (30.5) | <0.01 | |
Difficulty Falling Asleep | 75.1 (26.3) | 54.2 (30.7) | <0.01 | |
Difficulty Staying Asleep | 69.4 (28.9) | 54.4 (30.6) | <0.01 | |
Waking up Early | 59.0 (33.2) | 47.0 (31.6) | <0.01 | |
Sleep Reversal | 66.3 (15.6) | 9.04 (15.8) | <0.01 | |
PEM | <0.01 | |||
Heavy Feeling | 75.9 (25.8) | 65.6 (28.7) | <0.01 | |
Mental Fatigue | 74.1 (22.3) | 62.0 (25.3) | <0.01 | |
Minimum Exercise | 82.2 (18.6) | 71.4 (23.9) | <0.01 | |
Feeling Drained | 77.4 (20.4) | 67.2 (25.2) | <0.01 | |
Fatigue | 86.0 (13.8) | 76.9 (17.8) | <0.01 | |
Muscle Weakness | 70.7 (25.8) | 57.3 (29.1) | <0.01 | |
Neurocognitive | <0.01 | |||
Difficulty Remembering | 72.1 (25.1) | 59.5 (26.6) | <0.01 | |
Trouble Paying Attention | 75.4 (24.4) | 65.9 (25.8) | <0.01 | |
Trouble Forming Words | 68.8 (24.6) | 57.2 (26.1) | <0.01 | |
Difficulty Understanding | 56.2 (26.4) | 44.9 (27.1) | <0.01 | |
Difficulty Focusing | 71.5 (25.0) | 60.8 (28.4) | <0.01 | |
Slowness of Thought | 64.8 (26.6) | 54.2 (27.3) | <0.01 | |
Sensitivity to Noise | 65.1 (28.4) | 53.2 (29.5) | <0.01 | |
Sensitivity to Light | 63.4 (27.9) | 48.7 (31.1) | <0.01 | |
Sensitivity to Smells | 55.3 (34.2) | 42.2 (34.0) | <0.01 | |
Unable to Focus Vision | 59.4 (28.1) | 46.0 (27.6) | <0.01 | |
Loss of Depth Perception | 33.2 (31.9) | 21.1 (28.1) | <0.01 | |
Twitching | 50.7 (29.9) | 31.3 (25.8) | <0.01 | |
Absent Mindedness | 67.9 (26.3) | 54.4 (27.2) | <0.01 | |
Immune | <0.01 | |||
Sore Throats | 47.3 (26.9) | 35.4 (26.1) | <0.01 | |
Lymph Nodes | 45.5 (30.4) | 33.7 (28.7) | <0.01 | |
Fever | 27.3 (26.6) | 17.6 (22.5) | <0.01 | |
High Temperature | 45.8 (29.8) | 28.1 (28.0) | <0.01 | |
Flu | 56.1 (27.7) | 44.6 (28.1) | <0.01 | |
Neuroendocrine | <0.01 | |||
Cold Limbs | 59.1 (29.5) | 49.7 (30.4) | <0.01 | |
Chills | 43.8 (27.6) | 31.7 (27.1) | <0.01 | |
Feeling Hot/Cold | 62.2 (28.0) | 43.7 (28.4) | <0.01 | |
Night Sweats | 47.9 (29.8) | 30.6 (28.8) | <0.01 | |
Sweating Hands | 29.5 (31.2) | 12.4 (22.8) | <0.01 | |
Weight Change | 49.4 (35.1) | 32.3 (33.6) | <0.01 | |
Loss of Appetite | 39.4 (27.4) | 23.2 (24.9) | <0.01 | |
Low Temperature | 36.9 (30.5) | 25.3 (28.4) | <0.01 | |
Pain | <0.01 | |||
Muscle Pain | 75.8 (24.1) | 62.9 (27.6) | <0.01 | |
Headaches | 57.5 (25.6) | 47.5 (26.4) | <0.01 | |
Eye Pain | 45.1 (29.1) | 30.0 (28.1) | <0.01 | |
Soreness | 80.7 (17.9) | 69.5 (23.4) | <0.01 | |
Joint Pain | 70.2 (28.3) | 52.4 (32.0) | <0.01 | |
Gastrointestinal | <0.01 | |||
Bloating | 52.0 (29.7) | 39.2 (28.9) | <0.01 | |
Bladder Issues | 44.2 (33.5) | 30.6 (31.8) | <0.01 | |
Sensitivity to Alcohol | 39.6 (37.6) | 36.3 (36.3) | 0.22 | |
Stomach Pain | 50.2 (27.9) | 37.3 (28.2) | <0.01 | |
Irregular Bowels | 52.6 (33.3) | 41.7 (33.3) | <0.01 | |
Orthostatic | <0.01 | |||
Nausea | 38.8 (26.4) | 29.0 (25.8) | <0.01 | |
Chest Pain | 38.1 (27.9) | 24.1 (25.1) | <0.01 | |
Feeling Unsteady | 57.9 (29.8) | 40.2 (27.9) | <0.01 | |
Shortness of Breath | 50.2 (29.0) | 35.7 (27.7) | <0.01 | |
Dizziness | 47.3 (27.5) | 34.9 (26.4) | <0.01 |
Sleep Reversal | No Sleep Reversal | ||
---|---|---|---|
Subscale | (N = 274) | (N = 1782) | p-Value |
M (SD) | M (SD) | ||
Physical functioning | 27.7 (22.8) | 35.5 (23.6) | <0.01 |
Role limitations due to physical health | 4.6 (11.1) | 7.01 (16.7) | <0.01 |
Role limitations due to emotional problems | 50.9 (46.6) | 61.7 (42.8) | <0.01 |
Energy/fatigue | 14.2 (13.8) | 15.8 (15.3) | <0.01 |
Emotional well-being | 58.3 (22.2) | 65.0 (19.2) | <0.01 |
Social functioning | 21.8 (22.5) | 29.6 (24.0) | <0.01 |
Pain | 29.5 (24.2) | 44.0 (26.4) | <0.01 |
General health | 22.2 (14.8) | 26.2 (16.1) | <0.01 |
Predicted Class | Actual Class | Sensitivity | Specificity | |
---|---|---|---|---|
No Sleep Reversal | Sleep Reversal | |||
No Sleep Reversal | 242 | 11 | 74.42% | 74.46% |
Sleep Reversal | 83 | 32 | ||
Accuracy: 74.46% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietrich, M.P.; Pravin, R.; Furst, J.; Jason, L.A. The Implications and Predictability of Sleep Reversal for People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Machine Learning Approach. Healthcare 2025, 13, 1255. https://doi.org/10.3390/healthcare13111255
Dietrich MP, Pravin R, Furst J, Jason LA. The Implications and Predictability of Sleep Reversal for People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Machine Learning Approach. Healthcare. 2025; 13(11):1255. https://doi.org/10.3390/healthcare13111255
Chicago/Turabian StyleDietrich, Meghan P., Raam Pravin, Jacob Furst, and Leonard A. Jason. 2025. "The Implications and Predictability of Sleep Reversal for People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Machine Learning Approach" Healthcare 13, no. 11: 1255. https://doi.org/10.3390/healthcare13111255
APA StyleDietrich, M. P., Pravin, R., Furst, J., & Jason, L. A. (2025). The Implications and Predictability of Sleep Reversal for People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Machine Learning Approach. Healthcare, 13(11), 1255. https://doi.org/10.3390/healthcare13111255