The Development of Population-Specific Spirometric Reference Equations for Iraqi Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurement and Materials
2.3. Statistical Analysis
3. Results
3.1. Phase One: Formulating an Equation
3.1.1. Spirometry Indices in Males
3.1.2. Spirometry Parameters in Females
3.2. Equation Validation
4. Discussion
4.1. Strengths and Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FEV1 | Forced Expiratory Volume in one second |
FVC | Forced Vital Capacity |
FEF25–75% | Forced Expiratory Flow at 25% to 75% of FVC |
GLI | Global Lung Function Initiative |
GAMLSS | Generalized Additive Models for Location, Scale, and Shape |
BCCG | Box-Cox-Cole-Green distribution |
BCPE | Box-Cox power exponential distribution |
SBC | Schwarz Bayesian Criterion |
DF | Degrees of Freedom |
SD | Standard Deviation |
ISE | Iraqi Spirometric Equation |
Appendix A
Model | Distribution | Link | Variability | Skewness | Kurtosis | Height (h) | Age (wt) |
---|---|---|---|---|---|---|---|
Model 1 | BCCG | Log | Spline log (age) | Log (age) | - | Log | Log |
Model 2 | BCCG | Log | Spline log (age) | Vector stars at 1 | - | Log | Log |
Model 3 | BCPE | Log | Spline log (age) | Log (age) | Log (age) | Log | Log |
Model 4 | Normal | Log | Spline log (age) | - | - | Log | Log |
Model 5 | BCCG | Identity | Spline log (age) | Log (age) | - | Log | Log |
Model 6 | BCCG | Identity | Spline log (age) | Vector stars at 1 | - | Log | Log |
Model 7 | BCCG | Log | Spline log (age) | Log (age) | - | Log | Identity |
Models | FEV1(L) | FVC(L) | FEV1/FVC% | FEF25–75 (L/s) | ||||
---|---|---|---|---|---|---|---|---|
DF | SBC | DF | SBC | DF | SBC | DF | SBC | |
Model 1 | 12.11 | −1945.10 | 16.29 | 1114.28 | 13.35 | −1952.10 | 10.87 | 1564.80 |
Model 2 | 8.87 | 801.15 | 5.00 | 1120.00 | 13.32 | −1952.06 | 9.21 | 1572.32 |
Model 3 | 8.79 | 801.19 | 11.51 | 1130.97 | 13.32 | −1952.05 | 9.21 | 1572.32 |
Model 4 | 10.99 | 801.24 | 13.31 | 1137.62 | 11.81 | −1947.39 | 9.23 | 1572.43 |
Model 5 | 9.45 | 804.70 | 9.06 | 1211.41 | 11.79 | −1947.25 | 9.20 | 1573.52 |
Model 6 | 6.59 | 824.72 | 9.28 | 1214.30 | 12.11 | −1945.09 | 7.55 | 1706.23 |
Model 7 | 6.63 | 825.09 | 8.92 | 1215.07 | 14.32 | −1963.42 | 9.99 | 1706.79 |
Models | FEV1(L) | FVC(L) | FEV1/FVC% | FEF25–75 (L/s) | ||||
---|---|---|---|---|---|---|---|---|
DF | SBC | DF | SBC | DF | SBC | DF | SBC | |
Model 1 | 10.49 | 220.06 | 5.00 | 358.73 | 6.02 | −782.85 | 9.02 | 688.03 |
Model 2 | 10.67 | 222.20 | 8.95 | 366.22 | 6.03 | −782.81 | 8.33 | 700.74 |
Model 3 | 10.65 | 222.61 | 10.09 | 366.79 | 8.21 | −775.34 | 9.40 | 703.19 |
Model 4 | 12.88 | 228.55 | 11.15 | 373.21 | 8.24 | −775.25 | 9.40 | 703.20 |
Model 5 | 6.80 | 237.22 | 6.23 | 424.03 | 8.24 | −775.19 | 5.00 | 711.18 |
Model 6 | 7.88 | 239.75 | 6.11 | 425.16 | 7.7 | 240.76 | 5.01 | 711.53 |
Model 7 | 7.78 | 240.76 | 6.54 | 430.85 | Model did not converge | 5.57 | 712.73 |
Appendix B
References
- Pierce, R. Spirometry: An essential clinical measurement. Aust. Fam. Physician 2005, 34, 535–539. [Google Scholar] [PubMed]
- Haynes, J.M. Basic spirometry testing and interpretation for the primary care provider. Can. J. Respir. Ther. 2018, 54, 10-29390. [Google Scholar] [CrossRef] [PubMed]
- Stanojevic, S.; Rosenfeld, M. Selection and Appropriate Use of Spirometric Reference Equations for the Pediatric Population. In Diagnostic Tests in Pediatric Pulmonology: Applications and Interpretation; Davis, S., Eber, E., Koumbourlis, A., Eds.; Humana Press: New York, NY, USA, 2015; pp. 181–193. [Google Scholar]
- Vollset, S.E.; Ababneh, H.S.; Abate, Y.H.; Abbafati, C.; Abbasgholizadeh, R.; Abbasian, M.; Abbastabar, H.; Abd Al Magied, A.H.; Abd ElHafeez, S.; Abdelkader, A.; et al. Burden of disease scenarios for 204 countries and territories, 2022–2050: A forecasting analysis for the Global Burden of Disease Study 2021. Lancet 2024, 403, 2204–2256. [Google Scholar] [CrossRef] [PubMed]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.; Zheng, J.; et al. Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. Eur. Respir. Soc. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Belacy, N.A.; Altemani, A.H.; Abdelsalam, M.H.; El-Damarawi, M.A.; Elsawy, B.M.; Nasif, N.A.; El-Bassuoni, E.A. Reference Values for Lung Function Tests in Adult Saudi Population. Int. J. Intern. Med. 2014, 3, 43–52. [Google Scholar]
- Choi, H.S.; Park, Y.B.; Yoon, H.K.; Lim, S.Y.; Kim, T.H.; Park, J.H.; Lee, W.Y.; Park, S.J.; Lee, S.W.; Kim, W.J.; et al. Validation of previous spirometric reference equations and new equations. J. Korean Med. Sci. 2019, 34, e304. [Google Scholar] [CrossRef]
- Coates, A.L.; Wong, S.L.; Tremblay, C.; Hankinson, J.L. Reference equations for spirometry in the Canadian population. Ann. Am. Thorac. Soc. 2016, 13, 833–841. [Google Scholar] [CrossRef]
- Al-Qerem, W.A.; Jarab, A.S. Applicability of GLI 2012 spirometry equation among preschool aged Jordanian. Respir. Med. 2021, 182, 106397. [Google Scholar] [CrossRef]
- Al-Qerem, W.A.; Alsajri, A.; Ling, J. Applicability of GLI 2012 spirometry equation and a regional equation among Iraqi adults. J. Health Manag. 2024, 09720634241262632. [Google Scholar] [CrossRef]
- Simon, K. Digital 2024: Iraq. 2024. Available online: https://datareportal.com/reports/digital-2024-iraq (accessed on 24 December 2024).
- Ruhighira, J.J.; Mashili, F.L.; Tungu, A.M.; Mamuya, S. Spirometry profiles among pregnant and non-pregnant African women: A cross-sectional study. BMC Womens Health 2022, 22, 483. [Google Scholar] [CrossRef]
- Grindheim, G.; Toska, K.; Estensen, M.; Rosseland, L.A. Changes in pulmonary function during pregnancy: A longitudinal cohort study. BJOG 2012, 119, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, D.; Parker, R.A.; Pinnock, H.; Roy, S.; Ghorpade, D.; Salvi, S.; Khatavkar, P.; Juvekar, S.; Campbell, H.; Nair, H.; et al. Normal spirometry predictive values for the Western Indian adult population. Eur. Respir. J. 2020, 56, 1902129. [Google Scholar] [CrossRef]
- Al-Qerem, W.A.; Hammad, A.M.; AlQirem, R.A.; Ling, J. Do the global lung function initiative reference equations reflect a sample of adult Middle Eastern population? Clin. Respir. J. 2019, 13, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Hankinson, J.A.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Degryse, J.; Buffels, J.; Van Dijck, Y.; Decramer, M.; Nemery, B. Accuracy of office spirometry performed by trained primary-care physicians using the MIR Spirobank hand-held spirometer. Respiration 2012, 83, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Michailidis, C.; Smanis, I.; Stamatis, K.; Bergeles, C.; Kouris, A. Development of a smartphone-enabled spirometer for personalised respiratory health. In Proceedings of the 2014 4th International Conference on Wireless Mobile Communication and Healthcare-Transforming Healthcare Through Innovations in Mobile and Wireless Technologies (MOBIHEALTH), Athens, Greece, 3–5 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 67–70. [Google Scholar]
- Al-Qerem, W.A. How applicable are GLI 2012 equations to a sample of Middle Eastern school-age children? Pediatr. Pulmonol. 2020, 55, 986–993. [Google Scholar] [CrossRef]
- Stasinopoulos, D.M.; Rigby, R.A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 2008, 23, 1–46. [Google Scholar]
- Quanjer, P.H.; Stocks, J.; Cole, T.J.; Hall, G.L.; Stanojevic, S. Influence of secular trends and sample size on reference equations for lung function tests. Eur. Respir. J. 2011, 37, 658–664. [Google Scholar] [CrossRef]
- Stulp, G.; Barrett, L. Evolutionary perspectives on human height variation. Biol. Rev. 2016, 91, 206–234. [Google Scholar] [CrossRef]
- Fulambarker, A.; Copur, A.S.; Cohen, M.E.; Patel, M.; Gill, S.; Schultz, S.T.; Quanjer, P.H. Comparison of pulmonary function in immigrant vs US-born Asian Indians. Chest 2010, 137, 1398–1404. [Google Scholar] [CrossRef]
- Al-Qerem, W.; Hammad, A.M.; Gassar, E.S.; Al-Qirim, R.A.; Ling, J. Spirometry reference equations for an adult Middle Eastern population. Expert. Rev. Respir. Med. 2019, 13, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Al-Rawas, O.A.; Baddar, S.; Al-Maniri, A.A.; Balaji, J.; Jayakrishnan, B.; Al-Riyami, B.M. Normal spirometric reference values for Omani adults. Lung 2009, 187, 245–251. [Google Scholar] [CrossRef]
- Cole, T.J.; Green, P.J. Smoothing reference centile curves: The LMS method and penalized likelihood. Stat. Med. 1992, 11, 1305–1319. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, D.M. Smooth centile curves for skew and kurtotic data modelled using the Box–Cox power exponential distribution. Stat. Med. 2004, 23, 3053–3076. [Google Scholar] [CrossRef]
- Rigby, R.A.; Stasinopoulos, D.M. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C Appl. Stat. 2005, 54, 507–554. [Google Scholar] [CrossRef]
- Pride, N.B. Ageing and changes in lung mechanics. Eur. Respir. J. 2005, 26, 563–565. [Google Scholar] [CrossRef] [PubMed]
- Kubota, M.; Kobayashi, H.; Quanjer, P.H.; Omori, H.; Tatsumi, K.; Kanazawa, M. Reference values for spirometry, including vital capacity, in Japanese adults calculated with the LMS method and compared with previous values. Respir. Investig. 2014, 52, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Pefura-Yone, E.W.; Balkissou, A.D.; Poka-Mayap, V.; Djenabou, A.; Massongo, M.; Ofimboudem, N.A.; Mayoh-Nguemfo, C.F.; Tsala, A.G.; Hadjara, H.; Amougou, F. Spirometric reference equations for Cameroonians aged 4 to 89 years derived using lambda, mu, sigma (LMS) method. BMC Pulm. Med. 2021, 21, 344. [Google Scholar] [CrossRef]
- Jo, B.S.; Myong, J.P.; Rhee, C.K.; Yoon, H.K.; Koo, J.W.; Kim, H.R. Reference Values for Spirometry Derived Using Lambda, Mu, Sigma (LMS) Method in Korean Adults: In Comparison with Previous References. J. Korean Med. Sci. 2018, 33, e16. [Google Scholar] [CrossRef]
- Lee, H.W.; Lee, J.K.; Hwang, Y.I.; Seo, H.; Ahn, J.H.; Kim, S.R.; Kim, H.J.; Jung, K.S.; Yoo, K.H.; Kim, D.K. Spirometric Interpretation and Clinical Relevance According to Different Reference Equations. J. Korean Med. Sci. 2024, 39, e20. [Google Scholar] [CrossRef]
- Tanabe, N. Is the Global Lung Function Initiative Race-Neutral Spirometry Reference Equation Ready for Clinical Use Around the World? Chest 2025, 167, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.O.; Rogers, R.M.; Hoffman, R.M. Nutrition and chronic lung disease. Am. Rev. Respir. Dis. 1985, 132, 1347–1365. [Google Scholar]
- United Nations D of E and SAPD. World Population Prospects: The 2024 Revision. 2024. Available online: https://population.un.org/wpp/ (accessed on 24 December 2024).
- Al-Riyami, B.M.; Al-Rawas, O.A.; Hassan, M.O. Normal spirometric reference values for Omani children and adolescents. Respirology 2004, 9, 387–391. Available online: https://www.zuj.edu.jo/wp-content/uploads/2020/09/Abstract-1.pdf (accessed on 5 January 2025). [CrossRef]
- Aloosh, O.; Torkashvand, M.; Torkashvand, A.; Mohammadi, N. Evaluation of Spirometric Values in Healthy Population Referred to Spirometry Centers in Hamedan City, Iran. J. Iran. Med. Counc. 2022, 5, 661–667. [Google Scholar] [CrossRef]
- Im, E.O.; Chee, W. Recruitment of research participants through the Internet. Comput. Inf. Nurs. 2004, 22, 289–297. [Google Scholar] [CrossRef]
- DataReportal—Global Digital Insights. Digital 2025: Iraq. Available online: https://datareportal.com/reports/digital-2025-iraq?utm_source=chatgpt.com (accessed on 2 April 2025).
Parameters | Males | Females | ||
---|---|---|---|---|
Median (Q1–Q3) | Range | Median (Q1–Q3) | Range | |
Height (cm) | 174.0 (170.0–178.0) | 155–193 | 157 (154–161) | 154–176 |
Age (year) | 28.57 (22.72–40.68) | 18–70 | 34.79 (24.33–45.92) | 18–67 |
FEV1 (Liter) | 3.98 (3.67–4.42) | 2.42–6.23 | 2.91 (2.63–3.19) | 1.70–5.04 |
FVC (Liter) | 4.64 (4.22–5.17) | 2.68–7.78 | 3.18 (2.85–3.63) | 1.92–6.24 |
FEV1/FVC% | 0.86 (0.83–0.89) | 0.72–1.00 | 0.90 (0.85–0.96) | 0.71–1.00 |
FEF25–75% (L/S) | 4.44 (3.94–5.03) | 2.31–8.52 | 3.55 (3.00–4.08) | 1.77–6.11 |
FEV1 | Mean Sigma Nu | −28.1570 + (6.8055 × log(height)) − (0.8566 × log(age)) + Mspline (age) exp (−1.8308 − (0.1192 × log(age)) + Sspline (age)) − 2.3096 + (0.3956 × log(age)) |
FVC | Mean sigma nu | exp (−8.37157 + (2.05757 × log(height)) − (0.20888 × log(age)) exp (−2.14143) − 1.8044 |
FEV1/FVC | Mean sigma nu | 1.458485 − (0.111511 × log(height) − (0.007171 × log(age))+ Mspline (age) exp ((−3.39125 + 0.15846 × (log(age)) + Ssplie (age)) 0.4028 − (0.4593 × log(age)) |
FEF25–75 | Mean sigma nu | exp ((−4.20476 + (1.23963 × log(height) − (0.20600 × log(age)) + Mspline (age)) exp (−2.42013 + (0.18673 × log(age)) + Sspline (age)) −4.8567 + 1.0254 × log(age) |
FEV1 | Mean Sigma Nu | −24.46931 + (5.85935 × log(height)) − (0.65217 × log(age)) + Mspline (age) exp (−2.8156 + (0.1647 × log(age)) + (Sspline (age)) −2.2930 + (0.2341 × log(age)) |
FVC | Mean sigma nu | exp (−11.26749 + (2.61061 × log(height)) − (0.22545 × log(age)) exp (−2.08730) −1.8645 |
FEV1/FVC | Mean sigma nu | exp (1.968086 − (0.416269 × log(height)) + (0.009565 × log(age))+ Mspline (age) exp (−3.7224 + (0.3145 × (log(age)) + Sspline (age)) 1 |
FEF25–75 | Mean sigma nu Tau | exp (−3.5388 + (1.0490 × log(height)) − (0.1505 × log(age)) + Mspline (age)) exp (−3.9378 + (0.6482 × log(age)) + Sspline −7.711 + (1.956 × log(age)) exp (0.6736 + (0.637 × log(age)) |
Median | Q1–Q3 | Minimum | Maximum | |
---|---|---|---|---|
Males N = 164 (47.7%) | ||||
Age | 23.94 | 20.96–30.22 | 18.02 | 67.46 |
Height | 171.00 | 168.00–176.00 | 155 | 190 |
FEV1 | 4.08 | 3.73–4.53 | 2.43 | 5.83 |
FVC | 4.81 | 4.28–5.31 | 2.68 | 7.17 |
FEV1/FVC | 0.86 | 0.83–0.89 | 64 | 100 |
FEF25–75% | 4.64 | 4.16–5.48 | 2.46 | 8.52 |
Females N = 180 (52.3%) | ||||
Age | 29.00 | 22.07–44.85 | 18.00 | 69.9 |
Height | 159.00 | 154.00–162.00 | 115 | 176 |
FEV1 | 2.90 | 2.55–3.20 | 1.51 | 5.04 |
FVC | 3.29 | 2.85–3.68 | 1.69 | 6.24 |
FEV1/FVC | 0.88 | 0.85–0.93 | 57.8 | 100 |
FEF25–75% | 3.39 | 2.94–4.00 | 1.71 | 5.32 |
Parameters | Predicted Value | Predicted Percent | Z-Score |
---|---|---|---|
Males N = 164 | |||
FEV1 | 4.10 (3.82–4.36) | 102.66% (95.10–107.56) | 0.06 (0.99) |
FVC | 4.67 (4.34–5.04) | 103.94% (94.84–110.35) | 0.08 (1.07) |
FEV1/FVC | 0.86 (0.85–0.87) | 99.36% (96.46–103.56) | −0.05 (1.09) |
FEF25–75% | 4.53 (4.27–4.76) | 105.24% (92.21–121.84) | 0.10 (1.31) |
Females N = 180 | |||
FEV1 | 3.02 (2.65–3.22) | 97.19% (88.60–106.45) | −0.31 (1.20) |
FVC | 3.32 (2.87–3.64) | 98.56% (89.70–107.22) | −0.22 (1.25) |
FEV1/FVC | 0.90 (0.89–0.91) | 97.95% (93.95–103.38) | −0.12 (0.56) |
FEF25–75% | 3.57 (3.28–3.72) | 96.01% (84.94–110.68) | −0.27 (1.20) |
Parameters | Equations | Predicted-V | Predicted-P | Z-Score |
---|---|---|---|---|
FEV1 | ISE | 4.10 (3.82–4.36) | 102.66% (95.10–107.56) | 0.06 (0.99) |
GLI-C | 4.22 (3.95–4.49) | 98.54% (91.73–103.94) | −0.10 (0.87) | |
GLI-O | 3.93 (3.68–4.19) | 105.77% (98.46–111.57) | 0.52 (0.95) | |
GLI-N | 3.92 (3.67–4.21) | 105.67% (98.66–111.87) | 0.47 (0.87) | |
FVC | ISE | 4.67 (4.34–5.04) | 103.94% (94.84–110.35) | 0.08 (1.07) |
GLI-C | 4.98 (4.74–5.32) | 94.87% (88.32–103.64) | −0.33 (0.93) | |
GLI-O | 4.58 (4.37–4.90) | 103.03% (95.92–112.55) | 0.38 (1.07) | |
GLI-N | 4.56 (4.27–4.87) | 103.25% (96.57–113.39) | 0.36 (0.90) | |
FEV1/FVC | ISE | 0.86 (0.85–0.87) | 99.36% (96.46–103.56) | −0.05 (1.09) |
GLI-C | 0.85 (0.83–0.86) | 101.57% (98.97–106.37) | 0.38 (0.86) | |
GLI-O | 0.86 (0.84–0.87) | 100.49% (97.92–105.25) | 0.26 (0.92) | |
GLI-N | 0.86 (0.84–0.86) | 100.61% (98.05–105.45) | 0.29 (0.92) | |
FEF25–75% | ISE | 4.53 (4.27–4.76) | 105.24% (92.21–121.84) | 0.10 (1.31) |
GLI-C | 4.54 (4.19–4.85) | 107.29% (93.85–124.74) | 0.29 (0.81) | |
GLI-O | 4.31 (3.97–4.60) | 113.15% (98.96–131.54) | 0.51 (0.83) | |
GLI-N | NA | NA | NA |
Parameters | Equation | Predicted-V | Predicted-P | Z-Score |
---|---|---|---|---|
FEV1 | ISE | 3.02 (2.65–3.22) | 97.19% (88.60–106.45) | −0.31 (1.20) |
GLI-C | 3.01 (2.65–3.23) | 96.61% (89.11–106.85) | −0.06 (1.38) | |
GLI-O | 2.80 (2.47–3.01) | 103.70% (95.65–114.15) | 0.53 (1.48) | |
GLI-N | 2.81 (2.48–3.03) | 102.95% (94.66–113.93) | 0.44 (1.43) | |
FVC | ISE | 3.32 (2.87–3.64) | 98.56% (89.70–107.22) | −0.22 (1.25) |
GLI-C | 3.49 (3.18–3.77) | 91.91% (82.97–102.02) | −0.41 (1.38) | |
GLI-O | 3.22 (2.92–3.47) | 99.90% (90.18–110.88) | 0.25 (1.56) | |
GLI-N | 3.22 (2.89–3.48) | 99.68% (90.72–111.31) | 0.22 (1.47) | |
FEV1/FVC | ISE | 0.90 (0.89–0.91) | 97.95% (93.95–103.38) | −0.12 (0.56) |
GLI-C | 0.85 (0.82–0.88) | 104.68% (98.93–108.61) | 0.69 (1.16) | |
GLI-O | 0.86 (0.82–0.89) | 103.57% (97.89–107.46) | 0.57 (1.24) | |
GLI-N | 0.86 (0.82–0.89) | 103.56% (98.10–107.33) | 0.57 (1.21) | |
FEF25–75% | ISE | 3.57 (3.28–3.72) | 96.01% (84.94–110.68) | −0.27 (1.20) |
GLI-C | 3.48 (2.82–3.74) | 103.51% (90.55–120.26) | 0.29 (0.81) | |
GLI-O | 3.30 (2.68–3.55) | 109.15% (95.49–126.82) | 0.42 (0.82) | |
GLI-N | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsajri, A.; Al-Qerem, W.; Noor, D.A.M.; Judith, E. The Development of Population-Specific Spirometric Reference Equations for Iraqi Adults. Healthcare 2025, 13, 1254. https://doi.org/10.3390/healthcare13111254
Alsajri A, Al-Qerem W, Noor DAM, Judith E. The Development of Population-Specific Spirometric Reference Equations for Iraqi Adults. Healthcare. 2025; 13(11):1254. https://doi.org/10.3390/healthcare13111254
Chicago/Turabian StyleAlsajri, Alaa, Walid Al-Qerem, Dzul Azri Mohamed Noor, and Eberhardt Judith. 2025. "The Development of Population-Specific Spirometric Reference Equations for Iraqi Adults" Healthcare 13, no. 11: 1254. https://doi.org/10.3390/healthcare13111254
APA StyleAlsajri, A., Al-Qerem, W., Noor, D. A. M., & Judith, E. (2025). The Development of Population-Specific Spirometric Reference Equations for Iraqi Adults. Healthcare, 13(11), 1254. https://doi.org/10.3390/healthcare13111254