Grip Strength as an Indicator of Health in Elderly Females
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Approval for Human Experiments
2.3. Anthropometry
2.4. Grip Strength Assessment
2.5. Evaluation of Walking Capacity: 10-m (10-m) Walk Test
2.6. 30-s (30-s) Chair Stand Test
2.7. Coordination Test: Figure-of-8 Walk Test
2.8. Questionnaire Data-Physical Activity (General)
- Non-exercise group: less than two sessions per week or low-intensity activity
- Exercise group: three or more sessions per week of moderate-to-vigorous intensity
2.9. Sarcopenia Definition
2.10. Obesity Definition
2.11. Statistical Analysis
3. Results
3.1. Demographic Characteristics of the Subjects
3.2. Association of Exercise and Obesity
3.3. Association of Hand Grip Strength and Obesity
3.4. Association of Hand Grip Strength and Body Fat
3.5. Association of Gait and Obesity
3.6. Differences in Walking Capacity, Coordination, Grip Strength, Body Fat, and BMI Between the Exercise and Non-Exercise Groups
3.7. Correlation of Walking Capacity, Coordination, Grip Strength, Body Fat, and BMI
3.8. Differences in Walking Capacity, Coordination, 30-s Chair Stand Test, Body Weight, Body Fat, and BMI Between the Normal and Sarcopenia Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuh, D.; Bassey, E.J.; Butterworth, S.; Hardy, R.; Wadsworth, M.E.J.; The Musculoskeletal Study Team. Grip strength, postural control, and functional leg power in a representative cohort of British men and women: Associations with physical activity, health status, and socioeconomic conditions. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Musalek, C.; Kirchengast, S. Grip Strength as an Indicator of Health-Related Quality of Life in Old Age-A Pilot Study. Int. J. Environ. Res. Public. Health 2017, 14, 1447. [Google Scholar] [CrossRef] [PubMed]
- Palacios, R. The future of global ageing. Int. J. Epidemiol. 2002, 31, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.-L.; Walston, J.D.; Fried, L.P.; Beamer, B.A. Prediction of risk of falling, physical disability, and frailty by rate of decline in grip strength: The women’s health and aging study. Arch. Intern. Med. 2011, 171, 1119–1121. [Google Scholar] [CrossRef]
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef]
- Mesinovic, J.; McMillan, L.B.; Shore-Lorenti, C.; De Courten, B.; Ebeling, P.R.; Scott, D. Metabolic Syndrome and Its Associations with Components of Sarcopenia in Overweight and Obese Older Adults. J. Clin. Med. 2019, 8, 145. [Google Scholar] [CrossRef]
- Lou, N.; Chi, C.-H.; Chen, X.-D.; Zhou, C.-J.; Wang, S.-L.; Zhuang, C.-L.; Shen, X. Sarcopenia in overweight and obese patients is a predictive factor for postoperative complication in gastric cancer: A prospective study. Eur. J. Surg. Oncol. 2017, 43, 188–195. [Google Scholar] [CrossRef]
- Nakanishi, S.; Iwamoto, M.; Shinohara, H.; Iwamoto, H.; Kaneto, H. Significance of body mass index for diagnosing sarcopenia is equivalent to slow gait speed in Japanese individuals with type 2 diabetes: Cross-sectional study using outpatient clinical data. J. Diabetes Investig. 2021, 12, 417–424. [Google Scholar] [CrossRef]
- Chen, L.-K.; Liu, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Bahyah, K.S.; Chou, M.-Y.; Chen, L.-Y.; Hsu, P.-S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian Working Group for Sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Cumming, R.G.; Salkeld, G.; Thomas, M.; Szonyi, G. Prospective study of the impact of fear of falling on activities of daily living, SF-36 scores, and nursing home admission. J. Gerontol. A Biol. Sci. Med. Sci. 2000, 55, M299–M305. [Google Scholar] [CrossRef]
- Iannuzzi-Sucich, M.; Prestwood, K.M.; Kenny, A.M. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M772–M777. [Google Scholar] [CrossRef] [PubMed]
- Leveille, S.G.; Bean, J.; Bandeen-Roche, K.; Jones, R.; Hochberg, M.; Guralnik, J.M. Musculoskeletal pain and risk for falls in older disabled women living in the community. J. Am. Geriatr. Soc. 2002, 50, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, T.; Guralnik, J.M.; Foley, D.; Masaki, K.; Leveille, S.; Curb, J.D.; White, L. Midlife hand grip strength as a predictor of old age disability. JAMA 1999, 281, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Cesari, M.; Fielding, R.A.; Pahor, M.; Goodpaster, B.; Hellerstein, M.; Van Kan, G.A.; Anker, S.D.; Rutkove, S.; Vrijbloed, J.W.; Isaac, M.; et al. Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. J. Cachexia Sarcopenia Muscle 2012, 3, 181–190. [Google Scholar] [CrossRef]
- Sallinen, J.; Stenholm, S.; Rantanen, T.; Heliövaara, M.; Sainio, P.; Koskinen, S. Hand-grip strength cut points to screen older persons at risk for mobility limitation. J. Am. Geriatr. Soc. 2010, 58, 1721–1726. [Google Scholar] [CrossRef]
- Sayer, A.A.; Syddall, H.E.; Martin, H.J.; Dennison, E.M.; Roberts, H.C.; Cooper, C. Is grip strength associated with health-related quality of life? Findings from the Hertfordshire Cohort Study. Age Ageing 2006, 35, 409–415. [Google Scholar] [CrossRef]
- Taekema, D.G.; Gussekloo, J.; Maier, A.B.; Westendorp, R.G.; de Craen, A.J. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 2010, 39, 331–337. [Google Scholar] [CrossRef]
- Chun, S.-W.; Kim, W.; Choi, K.H. Comparison between grip strength and grip strength divided by body weight in their relationship with metabolic syndrome and quality of life in the elderly. PLoS ONE 2019, 14, e0222040. [Google Scholar] [CrossRef]
- Tomkinson, G.R.; Kidokoro, T.; Dufner, T.; Noi, S.; Fitzgerald, J.S.; Mcgrath, R.P. Temporal trends in handgrip strength for older Japanese adults between 1998 and 2017. Age Ageing 2020, 49, 634–639. [Google Scholar] [CrossRef]
- Zamboni, M.; Mazzali, G.; Fantin, F.; Rossi, A.; Di Francesco, V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 388–395. [Google Scholar] [CrossRef]
- Bowden, M.G.; Balasubramanian, C.K.; Behrman, A.L.; Kautz, S.A. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabil Neural Repair. 2008, 22, 672–675. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.M.; Fritz, S.L.; Krotish, D.E. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. J. Geriatr. Phys. Ther. 2013, 36, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Kuh, D.; Hardy, R.; Mortality Review Group; on behalf of the FALCon and HALCyon study teams. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef] [PubMed]
- Strand, B.H.; Bergland, A.; Jørgensen, L.; Schirmer, H.; Emaus, N.; Cooper, R. Do More Recent Born Generations of Older Adults Have Stronger Grip? A Comparison of Three Cohorts of 66- to 84-Year-Olds in the Tromso Study. J. Gerontol. A Biol. Sci. Med. Sci. 2019, 74, 528–533. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, T.; Park, J.-C.; Kim, Y.H. Usefulness of hand grip strength to estimate other physical fitness parameters in older adults. Sci. Rep. 2022, 12, 17496. [Google Scholar] [CrossRef]
- Koivunen, K.; Portegijs, E.; Karavirta, L.; Rantanen, T. Comparing the associations between muscle strength, walking speed, and mortality in community-dwelling older adults of two birth cohorts born 28 years apart. Geroscience 2023, 46, 1575–1588. [Google Scholar] [CrossRef]
- Koivunen, K.; Sillanpää, E.; Munukka, M.; Portegijs, E.; Rantanen, T. Cohort Differences in Maximal Physical Performance: A Comparison of 75- and 80-Year-Old Men and Women Born 28 Years Apart. J. Gerontol. A Biol. Sci. Med. Sci. 2021, 76, 1251–1259. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef]
- Langhammer, B.; Stanghelle, J.K. The Senior Fitness Test. J. Physiother. 2015, 61, 163. [Google Scholar] [CrossRef]
- Yun, H.; Kim, C.; Ahn, J.; Schlenk, E.A. Effects of a self-determination theory-based physical activity programme for postmenopausal women with rheumatoid arthritis: A randomized controlled trial. Int. J. Nurs. Pract. 2023, 29, e13199. [Google Scholar] [CrossRef]
- Shinkai, S.; Fujita, K.; Fujiwara, Y.; Kumagai, S.; Amano, H.; Yoshida, H.; Wang, D.G.; Watanabe, S. Prevalence and characteristics of different types of homeboundness among community-living older adults. Nihon Koshu Eisei Zasshi 2005, 52, 443–455. [Google Scholar] [PubMed]
- Patrizio, E.; Calvani, R.; Marzetti, E.; Cesari, M. Physical Functional Assessment in Older Adults. J. Frailty Aging 2021, 10, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, W.; Lee, M.; Ko, N.; Kim, E.; Ishikawa-Takata, K.; Park, J. The association of locomotive and non-locomotive physical activity measured by an accelerometer with functional fitness in healthy elderly men: A pilot study. J. Exerc. Nutrition Biochem. 2018, 22, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Goldie, P.A.; Matyas, T.A.; Evans, O.M. Deficit and change in gait velocity during rehabilitation after stroke. Arch. Phys. Med. Rehabil. 1996, 77, 1074–1082. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Schapira, M.; Soriano, E.R.; Varela, M.; Kaplan, R.; Camera, L.A.; Mayorga, L.M. Gait velocity as a single predictor of adverse events in healthy seniors aged 75 years and older. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1304–1309. [Google Scholar] [CrossRef]
- Purser, J.L.; Weinberger, M.; Cohen, H.J.; Pieper, C.F.; Morey, M.C.; Li, T.; Williams, G.R.; Lapuerta, P. Walking speed predicts health status and hospital costs for frail elderly male veterans. J. Rehabil. Res. Dev. 2005, 42, 535–546. [Google Scholar] [CrossRef]
- Rabadi, M.H.; Blau, A. Admission ambulation velocity predicts length of stay and discharge disposition following stroke in an acute rehabilitation hospital. Neurorehabil Neural Repair. 2005, 19, 20–26. [Google Scholar] [CrossRef]
- Dong, K.; Meng, S.; Guo, Z.; Zhang, R.; Xu, P.; Yuan, E.; Lian, T. The Effects of Transcranial Direct Current Stimulation on Balance and Gait in Stroke Patients: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 650925. [Google Scholar] [CrossRef]
- Brach, J.S.; VanSwearingen, J.M.; Newman, A.B.; Kriska, A.M. Identifying early decline of physical function in community-dwelling older women: Performance-based and self-report measures. Phys. Ther. 2002, 82, 320–328. [Google Scholar] [CrossRef]
- De Rekeneire, N.; Visser, M.; Peila, R.; Nevitt, M.C.; Cauley, J.A.; Tylavsky, F.A.; Simonsick, E.M.; Harris, T.B. Is a fall just a fall: Correlates of falling in healthy older persons. The Health, Aging and Body Composition Study. J. Am. Geriatr. Soc. 2003, 51, 841–846. [Google Scholar] [CrossRef]
- Maki, B.E. Gait changes in older adults: Predictors of falls or indicators of fear. J. Am. Geriatr. Soc. 1997, 45, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Hardy, S.E.; Perera, S.; Roumani, Y.F.; Chandler, J.M.; Studenski, S.A. Improvement in usual gait speed predicts better survival in older adults. J. Am. Geriatr. Soc. 2007, 55, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.K. Exploring how peak leg power and usual gait speed are linked to late-life disability: Data from the National Health and Nutrition Examination Survey (NHANES), 1999–2002. Am. J. Phys. Med. Rehabil. 2006, 85, 650–658. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Wallace, D.; Chandler, J.M.; Duncan, P.W.; Rooney, E.; Fox, M.; Guralnik, J.M. Physical performance measures in the clinical setting. J. Am. Geriatr. Soc. 2003, 51, 314–322. [Google Scholar] [CrossRef]
- Martín-Ponce, E.; Hernández-Betancor, I.; González-Reimers, E.; Hernández-Luis, R.; Martínez-Riera, A.; Santolaria, F. Prognostic value of physical function tests: Hand grip strength and six-minute walking test in elderly hospitalized patients. Sci. Rep. 2014, 4, 7530. [Google Scholar] [CrossRef]
- Lapi, F.; Aprile, P.L.; Cricelli, I.; Vetrano, D.L.; Cricelli, C. How to support general practitioners to better detect sarcopenia among older adults: A nested case-control analysis. Eur. Geriatr. Med. 2024, 15, 677–680. [Google Scholar] [CrossRef]
- Picca, A.; Coelho-Junior, H.J.; Calvani, R.; Marzetti, E.; Vetrano, D.L. Biomarkers shared by frailty and sarcopenia in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 73, 101530. [Google Scholar] [CrossRef]
- Vetrano, D.L.; Landi, F.; Volpato, S.; Corsonello, A.; Meloni, E.; Bernabei, R.; Onder, G. Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: Results from the CRIME study. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 1154–1161. [Google Scholar] [CrossRef]
- Hallage, T.; Krause, M.P.; Haile, L.; Miculis, C.P.; Nagle, E.F.; Reis, R.S.; Da Silva, S.G. The effects of 12 weeks of step aerobics training on functional fitness of elderly women. J. Strength. Cond. Res. 2010, 24, 2261–2266. [Google Scholar] [CrossRef]
- Hasegawa, R.; Islam, M.M.; Lee, S.C.; Koizumi, D.; Rogers, M.E.; Takeshima, N. Threshold of lower body muscular strength necessary to perform ADL independently in community-dwelling older adults. Clin. Rehabil. 2008, 22, 902–910. [Google Scholar] [CrossRef]
Characteristics | Women (n = 521) | ||
---|---|---|---|
Mean | Standard Deviation | ||
Age (years) | 79.87 | ± | 6.64 |
Height (cm) | 154.28 | ± | 5.35 |
Body weight (kg) | 58.97 | ± | 7.34 |
Body fat (%) | 33.99 | ± | 7.40 |
Normal (n = 121) | 23.76 | ± | 6.38 |
Obesity (n = 400) | 37.09 | ± | 4.21 |
Body mass index (kg/m2) | 24.72 | ± | 2.84 |
Grip strength (kg) | 22.28 | ± | 4.68 |
Normal (n = 384) | 24.31 | ± | 3.33 |
Sarcopenia (n = 137) | 16.58 | ± | 2.86 |
10 m gait (s) | 7.05 | ± | 3.31 |
Unstandardized Coefficients | Standardized Coefficients | t (p) | F (p) | R2 | ||
---|---|---|---|---|---|---|
B | SE | β | ||||
(Constant) | 39.119 | 1.562 | 25.038 (0.001) | 11.235 (0.001 ***) | 0.146 | |
Grip strength | −0.230 | 0.069 | −0.146 | −3.352 (0.001) |
Exercise (353) | Mean | SD | t (p) | |
---|---|---|---|---|
Non-Exercise (168) | ||||
Walking capacity (10 m walk test) | Exercise | 6.81 s | 2.82 | −2.437 (0.015) * |
Non-exercise | 7.53 s | 4.11 | ||
Coordination test (figure-of-8 walk test) | Exercise | 20.60 s | 4.07 | −4.857 (0.001) ** |
Non-exercise | 22.88 s | 5.40 | ||
Grip strength | Exercise | 22.63 kg | 4.49 | 2.514 (0.012) * |
Non-exercise | 21.53 kg | 4.98 | ||
Body fat | Exercise | 33.48% | 7.35 | −2.323 (0.021) * |
Non-exercise | 35.08% | 7.39 | ||
BMI | Exercise | 24.56 kg/m2 | 2.81 | −1.913 (0.056) |
Non-exercise | 25.06 kg/m2 | 2.86 |
Walking Capacity | Coordination Test | Grip Strength | Body Fat | BMI | ||
---|---|---|---|---|---|---|
Walking capacity (10 m walk test) | Pearson correlation | 1 | ||||
Sig. (2-tailed) | ||||||
Number | 521 | |||||
Coordination test (figure-of-8 walk test) | Pearson correlation | 0.273 ** | 1 | |||
Sig. (2-tailed) | 0.000 | |||||
Number | 521 | 521 | ||||
Grip strength | Pearson correlation | −0.131 ** | −0.307 ** | 1 | ||
Sig. (2-tailed) | 0.003 | 0.000 | ||||
Number | 521 | 521 | 521 | |||
Body fat | Pearson correlation | 0.115 ** | 0.166 ** | −0.146 ** | 1 | |
Sig. (2-tailed) | 0.009 | 0.000 | 0.001 | |||
Number | 521 | 521 | 521 | 521 | ||
BMI | Pearson correlation | 0.115 ** | 0.132 ** | 0.022 | 0.582 ** | 1 |
Sig. (2-tailed) | 0.008 | 0.003 | 0.620 | 0.000 | ||
Number | 521 | 521 | 521 | 521 | 521 |
Normal (384) | Mean | SD | t (p) | |
---|---|---|---|---|
Sarcopenia (137) | ||||
Walking capacity (10 m walk test) | Normal | 6.84 s | 3.59 | −2.440 (0.015) * |
Sarcopenia | 7.64 s | 2.26 | ||
Coordination test (figure-of-8 walk test) | Normal | 20.57 s | 4.03 | −5.592 (0.000) *** |
Sarcopenia | 23.47 s | 5.57 | ||
30-s Chair stand test | Normal | 19.08 repetition | 4.58 | 5.059 (0.000) *** |
Sarcopenia | 16.63 repetition | 5.53 | ||
Body weight | Normal | 59.50 kg | 7.04 | 2.777 (0.006) ** |
Sarcopenia | 57.49 kg | 7.96 | ||
Body fat | Normal | 33.57% | 7.36 | −2.194 (0.029) * |
Sarcopenia | 35.18% | 7.41 | ||
BMI | Normal | 24.57 kg/m2 | 2.87 | 0.397 (0.691) |
Sarcopenia | 24.64 kg/m2 | 2.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.; Kim, D.; Jeong, H.-S.; Jang, S. Grip Strength as an Indicator of Health in Elderly Females. Healthcare 2025, 13, 1127. https://doi.org/10.3390/healthcare13101127
Park H, Kim D, Jeong H-S, Jang S. Grip Strength as an Indicator of Health in Elderly Females. Healthcare. 2025; 13(10):1127. https://doi.org/10.3390/healthcare13101127
Chicago/Turabian StylePark, Hyeok, Daeyeol Kim, Han-Seong Jeong, and Sujeong Jang. 2025. "Grip Strength as an Indicator of Health in Elderly Females" Healthcare 13, no. 10: 1127. https://doi.org/10.3390/healthcare13101127
APA StylePark, H., Kim, D., Jeong, H.-S., & Jang, S. (2025). Grip Strength as an Indicator of Health in Elderly Females. Healthcare, 13(10), 1127. https://doi.org/10.3390/healthcare13101127