The Effect of Home-Based Robotic Rehabilitation on Individuals with Disabilities in Community Settings: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Equipment
2.3. Procedure and Intervention
2.4. Clinical Aseessment
2.5. Statistical Analysis
3. Results
3.1. Participants Characteristics
3.2. Clinical Assessment of Subjects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- 2023 Registered Disabled Population Statistics Report. 2024. Available online: https://www.mohw.go.kr/boardDownload.es?bid=0027&list_no=1481120&seq=2 (accessed on 19 April 2024).
- Cruise, C.M.; Lee, M.H. Delivery of rehabilitation services to people aging with a disability. Phys. Med. Rehabil. Clin. 2005, 16, 267–284. [Google Scholar] [CrossRef]
- Gibson, J.; O’Connor, R. Access to health care for disabled people: A systematic review. Soc. Care Neurodisability 2010, 1, 21–31. [Google Scholar] [CrossRef]
- Candio, P.; Violato, M.; Luengo-Fernandez, R.; Leal, J. Cost-effectiveness of home-based stroke rehabilitation across Europe: A modelling study. Health Policy 2022, 126, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Shields, G.E.; Rowlandson, A.; Dalal, G.; Nickerson, S.; Cranmer, H.; Capobianco, L.; Doherty, P. Cost-effectiveness of home-based cardiac rehabilitation: A systematic review. Heart 2023, 109, 913–920. [Google Scholar] [CrossRef]
- Stephenson, S.; Wiles, R. Advantages and Disadvantages of the Home Setting for Therapy: Views of Patients and Therapists. Br. J. Occup. Ther. 2000, 63, 59–64. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Zheng, K.; Dodakian, L.; See, J.; Zhou, R.; Chiu, N.; Augsburger, R.; McKenzie, A.; Cramer, S.C. A qualitative study on user acceptance of a home-based stroke telerehabilitation system. Top. Stroke Rehabil. 2020, 27, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Akbari, A.; Haghverd, F.; Behbahani, S. Robotic home-based rehabilitation systems design: From a literature review to a conceptual framework for community-based remote therapy during COVID-19 pandemic. Front. Robot. AI 2021, 8, 612331. [Google Scholar] [CrossRef] [PubMed]
- Lo, K.; Stephenson, M.; Lockwood, C. The economic cost of robotic rehabilitation for adult stroke patients: A systematic review. JBI Database Syst. Rev. Implement. Rep. 2019, 17, 520–547. [Google Scholar] [CrossRef] [PubMed]
- Hesse, S.; Mehrholz, J.; Werner, C. Robot-assisted upper and lower limb rehabilitation after stroke: Walking and arm/hand function. Dtsch. Ärzteblatt Int. 2008, 105, 330. [Google Scholar] [CrossRef]
- Mehrholz, J.; Pohl, M.; Kugler, J.; Elsner, B. The improvement of walking ability following stroke: A systematic review and network meta-analysis of randomized controlled trials. Dtsch. Ärzteblatt Int. 2018, 115, 639. [Google Scholar] [CrossRef]
- Mazibuko, S.M.; Nadasan, T.; Govender, P. Public-private partnership models for rehabilitation service delivery: A scoping review. S. Afr. J. Physiother. 2023, 79, 1856. [Google Scholar] [CrossRef] [PubMed]
- Fugl-Meyer, A.R.; Jääskö, L.; Leyman, I.; Olsson, S.; Steglind, S. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 1975, 7, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Berg, K. Measuring Balance in the Elderly: Development and Validation of an Instrument. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1992. [Google Scholar]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Peters, D.M.; Fritz, S.L.; Krotish, D.E. Assessing the reliability and validity of a shorter walk test compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. J. Geriatr. Phys. Ther. 2013, 36, 24–30. [Google Scholar] [CrossRef]
- Zarit, S.H.; Reever, K.E.; Bach-Peterson, J. Relatives of the Impaired Elderly: Correlates of Feelings of Burden. Gerontologist 1980, 20, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Yoon, E.; Robinson, M. Psychometric Properties of the Korean Version of the Zarit Burden Interview (K-ZBI): Preliminary Analyses. J. Soc. Work Res. Eval. 2005, 6, 75. [Google Scholar]
- Choi, Y.S.; Kim, D.J.; Lee, K.Y.; Park, Y.S.; Cho, K.J.; Lee, J.H.; Rhim, H.Y.; Shin, B.J. How does chronic back pain influence quality of life in Koreans: A cross-sectional study. Asian Spine J. 2014, 8, 346. [Google Scholar] [CrossRef] [PubMed]
- Bachner, Y.; O’rourke, N. Reliability generalization of responses by care providers to the Zarit Burden Interview. Aging Ment. Health 2007, 11, 678–685. [Google Scholar] [CrossRef]
- Cheak-Zamora, N.C.; Wyrwich, K.W.; McBride, T.D. Reliability and validity of the SF-12v2 in the medical expenditure panel survey. Qual. Life Res. 2009, 18, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Stein, J.; Bishop, L.; Gillen, G.; Helbok, R. A pilot study of robotic-assisted exercise for hand weakness after stroke. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–4. [Google Scholar]
- Bertani, R.; Melegari, C.; De Cola, M.C.; Bramanti, A.; Bramanti, P.; Calabro, R.S. Effects of robot-assisted upper limb rehabilitation in stroke patients: A systematic review with meta-analysis. Neurol. Sci. 2017, 38, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, L.; Ridgel, A.L.; Thota, A.; Samame, B.; Alberts, J.L. Effects of combined robotic therapy and repetitive-task practice on upper-extremity function in a patient with chronic stroke. Am. J. Occup. Ther. 2008, 62, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chou, W.; Hong, R.-B.; Lee, J.-H.; Chang, J.-H. Home-based rehabilitation versus hospital-based rehabilitation for stroke patients in post-acute care stage: Comparison on the quality of life. J. Formos. Med. Assoc. 2023, 122, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chair, S.Y.; Thompson, D.R.; Twinn, S.F. Effects of home-based rehabilitation on health-related quality of life and psychological status in Chinese patients recovering from acute myocardial infarction. Heart Lung 2012, 41, 15–25. [Google Scholar] [CrossRef]
- Elrod, C.S.; DeJong, G. Determinants of utilization of physical rehabilitation services for persons with chronic and disabling conditions: An exploratory study. Arch. Phys. Med. Rehabil. 2008, 89, 114–120. [Google Scholar] [CrossRef]
- Emerson, E.; Fortune, N.; Llewellyn, G.; Stancliffe, R. Loneliness, social support, social isolation and wellbeing among working age adults with and without disability: Cross-sectional study. Disabil. Health J. 2021, 14, 100965. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.; Gonçalves, C.; Oliveira, H.; Ribeiro, R.; Fonseca, C. Health-related outcomes of structured home-based rehabilitation programs among older adults: A systematic literature review. Heliyon 2024, 10, e35351. [Google Scholar] [CrossRef]
- Bloem, B.R.; Dorsey, E.R.; Okun, M.S. The Coronavirus Disease 2019 Crisis as Catalyst for Telemedicine for Chronic Neurological Disorders. JAMA Neurol. 2020, 77, 927–928. [Google Scholar] [CrossRef]
- Mihai, E.E.; Popescu, M.N.; Beiu, C.; Gheorghe, L.; Berteanu, M. Tele-Rehabilitation Strategies for a Patient with Post-stroke Spasticity: A Powerful Tool Amid the COVID-19 Pandemic. Cureus 2021, 13, e19201. [Google Scholar] [CrossRef]
Characteristic | Elbow | Knee | Total | p-Value |
---|---|---|---|---|
No. of patients | 5 | 15 | 20 | |
Sex | 0.672 | |||
Male | 4 | 10 | 14 | |
Female | 1 | 5 | 6 | |
Age (yr) | 45 (41–65) | 56 (36–68) | 55 (40–68) | 0.866 |
Time since injury (yr) | 8 (2.5–10.0) | 15 (4.0–26.0) | 10 (3.25–24.0) | 0.054 |
Injury type | ||||
Ischemic stroke | 1 | 3 | 4 | |
Hemorrhagic stroke | 3 | 6 | 9 | |
Cerebral palsy | 0 | 3 | 3 | |
Spinal cord injury | 1 | 0 | 1 | |
Avascular necrosis of femoral head | 0 | 1 | 1 | |
Kennedy’s disease | 0 | 1 | 1 | |
Hereditary spastic paraplegia | 0 | 1 | 1 | |
Neurological level | ||||
Hemiparesis | 3 | 5 | 8 | |
Paraplegia | 0 | 1 | 1 | |
Quadriparesis | 2 | 9 | 11 | |
Modified Rankin Scale | 4 (3–4) | 4 (2–4) | 3 (2–4) | 0.142 |
Modified Ashworth Scale | 0.195 | |||
0 | 1 | 6 | 7 | |
1 | 2 | 8 | 10 | |
2 | 2 | 1 | 3 |
Elbow | Knee | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | p-Value | Pre | Post | p-Value | Pre | Post | p-Value | |
MRC | 3 (2.25–3.75) | 3.5 (2.75–3.50) | 0.317 | 3 (2.5–3.5) | 3.5 (2.5–3.5) | 0.317 | 3 (2.5–3.5) | 3.5 (2.5–3.5) | 0.166 |
FMA-UE | 37 (23.5–51.0) | 45 (28.0–58.5) | 0.043 * | ||||||
BBS | 12 (4–44) | 17 (4–38) | 0.192 | ||||||
TUG | 20.46 (14.00–46.50) | 20.17 (13.33–41.83) | 0.093 | ||||||
10 mWT | 18.83 (14.27–37.64) | 20.54 (12.12–31.20) | 0.575 | ||||||
ZBI | 56 (31.75–63.00) | 44.50 (28.00–60.25) | 0.581 | 29 (24.25–46.00) | 22.5 (15.00–26.25) | 0.002 * | 33 (24.75–48.50) | 24 (18.50–35.25) | 0.003 * |
PCS | 29.66 (28.31–33.75) | 35.93 (22.58–41.32) | 0.686 | 33.62 (24.55–38.96) | 31.65 (26.14–35.13) | 0.507 | 31.73 (26.65–38.03) | 31.65 (24.67–38.72) | 0.845 |
MCS | 54.73 (35.27–57.69) | 48.74 (31.47–59.77) | 0.686 | 57.90 (40.59–64.02) | 60.29 (50.09–66.66) | 0.249 | 55.03 (40.45–63.30) | 54.65 (44.70–65.68) | 0.472 |
PCS_c | 55.18 (35.94–56.24) | 44.46 (41.72–50.62) | 0.465 | 53.07 (45.33–55.00) | 49.75 (35.12–53.23) | 0.311 | 53.31 (45.33–55.51) | 49.27 (40.54–52.63) | 0.193 |
MCS_c | 44.20 (32.16–49.35) | 38.51 (31.82–53.00) | 1.000 | 52.47(47.03–58.15) | 60.59 (53.84–62.52) | 0.046 * | 50.95 (44.20–56.76) | 58.10 (41.81–61.24) | 0.093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lee, E.; Hong, S.; Shin, S.; Ryu, B. The Effect of Home-Based Robotic Rehabilitation on Individuals with Disabilities in Community Settings: A Pilot Study. Healthcare 2025, 13, 78. https://doi.org/10.3390/healthcare13010078
Lee J, Lee E, Hong S, Shin S, Ryu B. The Effect of Home-Based Robotic Rehabilitation on Individuals with Disabilities in Community Settings: A Pilot Study. Healthcare. 2025; 13(1):78. https://doi.org/10.3390/healthcare13010078
Chicago/Turabian StyleLee, Joonhwan, Eunyoung Lee, Seokjoon Hong, Sunyi Shin, and Byungju Ryu. 2025. "The Effect of Home-Based Robotic Rehabilitation on Individuals with Disabilities in Community Settings: A Pilot Study" Healthcare 13, no. 1: 78. https://doi.org/10.3390/healthcare13010078
APA StyleLee, J., Lee, E., Hong, S., Shin, S., & Ryu, B. (2025). The Effect of Home-Based Robotic Rehabilitation on Individuals with Disabilities in Community Settings: A Pilot Study. Healthcare, 13(1), 78. https://doi.org/10.3390/healthcare13010078