COMPAR-EU Recommendations on Self-Management Interventions in Type 2 Diabetes Mellitus
Abstract
:1. Summary of Recommendations
1.1. Recommendation for SMIs vs. UC
1.2. Recommendations for selected SMI vs. UC
- -
- Monitoring techniques led by peers delivered in groups, with or without professional support;
- -
- Emotional-based behavioural techniques led by peers delivered remotely, with or without professional support;
- -
- Monitoring, action-based behavioural techniques, and shared decision making delivered in groups;
- -
- Monitoring, action-based and emotional-based behavioural techniques, and social support led by peers with or without professionals delivered remotely;
- -
- Emotional-based behavioural techniques and social support delivered in groups
- -
- Action-based behavioural techniques, social support led by peers and professionals;
- -
- Education delivered in groups and remotely;
- -
- Monitoring techniques and social support delivered remotely;
- -
- Monitoring and action-based behavioural techniques, shared decision making, and social support, delivered in groups;
- -
- Monitoring and emotional-based behavioural techniques delivered remotely.
1.3. What Do These Recommendations Mean?
2. Introduction
3. Materials and Methods
3.1. Structured Question, Outcome Prioritisation, and Decision Thresholds
3.2. Systematic Review Evidence
3.2.1. Effectiveness
3.2.2. Values and Preferences
3.2.3. Resource Use and Cost-Effectiveness
3.2.4. Contextual Factors
3.3. Certainty Assessment and Selection of the Interventions
Prioritisation of Interventions
3.4. Evidence to Recommendations
4. Results
4.1. Recommendation for All SMI vs. UC
4.1.1. Summary of the Evidence
Evidence of Effects
Values and Preferences
Resources Required and Cost-Effectiveness
Equity
Acceptability and Feasibility
4.1.2. Justification of Recommendation
4.2. Recommendations for Selected SMI vs. UC
4.2.1. Summary of the Evidence
Evidence of Effects
Values and Preferences
Resources Required and Cost-Effectiveness
Equity
Acceptability and Feasibility
4.2.2. Justification of Recommendations
5. Discussion
5.1. Main Findings
5.2. Our Results in Context of Previous Research
5.3. Limitations and Strengths
5.4. Implications for Practice and Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas in International Diabetes Federation, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Grady, P.A.; Gough, L.L. Self-management: A comprehensive approach to management of chronic conditions. Am. J. Public Health 2014, 104, e25–e31. [Google Scholar] [CrossRef]
- Barlow, J.; Wright, C.; Sheasby, J.; Turner, A.; Hainsworth, J. Self-management approaches for people with chronic conditions: A review. Patient Educ. Couns. 2002, 48, 177–187. [Google Scholar] [CrossRef]
- Bodenheimer, T.; Lorig, K.; Holman, H.; Grumbach, K. Patient Self-management of Chronic Disease in Primary Care. JAMA 2002, 288, 2469–2475. [Google Scholar] [CrossRef] [PubMed]
- Orrego, C.; Ballester, M.; Heymans, M.; Camus, E.; Groene, O.; Nino de Guzman, E.; Pardo-Hernandez, H.; Sunol, R.; Group, C.E. Talking the same language on patient empowerment: Development and content validation of a taxonomy of self-management interventions for chronic conditions. Health Expect. 2021, 24, 1626–1638. [Google Scholar] [CrossRef]
- Tattersall, R. The expert patient: A new approach to chronic disease management for the twenty-first century. Clin. Med. 2002, 2, 227. [Google Scholar] [CrossRef] [PubMed]
- Khunti, K.; Gray, L.J.; Skinner, T.; Carey, M.E.; Realf, K.; Dallosso, H.; Fisher, H.; Campbell, M.; Heller, S.; Davies, M.J. Effectiveness of a diabetes education and self management programme (DESMOND) for people with newly diagnosed type 2 diabetes mellitus: Three year follow-up of a cluster randomised controlled trial in primary care. BMJ 2012, 344, e2333. [Google Scholar] [CrossRef] [PubMed]
- Frosch, D.L.; Uy, V.; Ochoa, S.; Mangione, C.M. Evaluation of a behavior support intervention for patients with poorly controlled diabetes. Arch. Intern. Med. 2011, 171, 2011–2017. [Google Scholar] [CrossRef]
- Chrvala, C.A.; Sherr, D.; Lipman, R.D. Diabetes self-management education for adults with type 2 diabetes mellitus: A systematic review of the effect on glycemic control. Patient Educ. Couns. 2016, 99, 926–943. [Google Scholar] [CrossRef]
- Umpierre, D.; Ribeiro, P.A.; Kramer, C.K.; Leitao, C.B.; Zucatti, A.T.; Azevedo, M.J.; Gross, J.L.; Ribeiro, J.P.; Schaan, B.D. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: A systematic review and meta-analysis. JAMA 2011, 305, 1790–1799. [Google Scholar] [CrossRef]
- Steinsbekk, A.; Rygg, L.; Lisulo, M.; Rise, M.B.; Fretheim, A. Group based diabetes self-management education compared to routine treatment for people with type 2 diabetes mellitus. A systematic review with meta-analysis. BMC Health Serv. Res. 2012, 12, 213. [Google Scholar] [CrossRef]
- De Jongh, T.; Gurol-Urganci, I.; Vodopivec-Jamsek, V.; Car, J.; Atun, R. Mobile phone messaging for facilitating self-management of long-term illnesses. Cochrane Database Syst. Rev. 2012. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Ivers, N.M.; Grimshaw, J.M.; Moher, D.; Turner, L.; Galipeau, J.; Halperin, I.; Vachon, B.; Ramsay, T.; Manns, B.; et al. Effectiveness of quality improvement strategies on the management of diabetes: A systematic review and meta-analysis. Lancet 2012, 379, 2252–2261. [Google Scholar] [CrossRef] [PubMed]
- Deakin, T.A.; McShane, C.E.; Cade, J.E.; Williams, R. Group based training for self-management strategies in people with type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2005. [Google Scholar] [CrossRef]
- Odgers-Jewell, K.; Ball, L.; Kelly, J.; Isenring, E.; Reidlinger, D.; Thomas, R. Effectiveness of group-based self-management education for individuals with Type 2 diabetes: A systematic review with meta-analyses and meta-regression. Diabet. Med. 2017, 34, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Cochran, J.; Conn, V.S. Meta-analysis of quality of life outcomes following diabetes self-management training. Diabetes Educ. 2008, 34, 815–823. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee 5. Facilitating behavior change and well-being to improve health outcomes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45, S60–S82. [Google Scholar] [CrossRef] [PubMed]
- Horigan, G.; Davies, M.; Findlay-White, F.; Chaney, D.; Coates, V. Reasons why patients referred to diabetes education programmes choose not to attend: A systematic review. Diabet. Med. 2017, 34, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Ballester, M.; Orrego, C.; Heijmans, M.; Alonso-Coello, P.; Versteegh, M.M.; Mavridis, D.; Groene, O.; Immonen, K.; Wagner, C.; Canelo-Aybar, C.; et al. Comparing the effectiveness and cost-effectiveness of self-management interventions in four high-priority chronic conditions in Europe (COMPAR-EU): A research protocol. BMJ Open 2020, 10, e034680. [Google Scholar] [CrossRef]
- Alonso-Coello, P.; Schünemann, H.J.; Moberg, J.; Brignardello-Petersen, R.; Akl, E.A.; Davoli, M.; Treweek, S.; Mustafa, R.A.; Rada, G.; Rosenbaum, S.; et al. GRADE Evidence to Decision (EtD) frameworks: A systematic and transparent approach to making well informed healthcare choices. 1: Introduction. BMJ 2016, 353, i2016. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Coello, P.; Oxman, A.D.; Moberg, J.; Brignardello-Petersen, R.; Akl, E.A.; Davoli, M.; Treweek, S.; Mustafa, R.A.; Vandvik, P.O.; Meerpohl, J.; et al. GRADE Evidence to Decision (EtD) frameworks: A systematic and transparent approach to making well informed healthcare choices. 2: Clinical practice guidelines. BMJ 2016, 353, 2089. [Google Scholar] [CrossRef] [PubMed]
- Puhan, M.A.; Schünemann, H.J.; Murad, M.H.; Li, T.; Brignardello-Petersen, R.; Singh, J.A.; Kessels, A.G.; Guyatt, G.H. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ 2014, 349. [Google Scholar] [CrossRef] [PubMed]
- Brignardello-Petersen, R.; Bonner, A.; Alexander, P.E.; Siemieniuk, R.A.; Furukawa, T.A.; Rochwerg, B.; Hazlewood, G.S.; Alhazzani, W.; Mustafa, R.A.; Murad, M.H.; et al. Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J. Clin. Epidemiol. 2018, 93, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Brignardello-Petersen, R.; Murad, M.H.; Walter, S.D.; McLeod, S.; Carrasco-Labra, A.; Rochwerg, B.; Schünemann, H.J.; Tomlinson, G.; Guyatt, G.H.; Group, G.W.; et al. GRADE approach to rate the certainty from a network meta-analysis: Avoiding spurious judgments of imprecision in sparse networks. J. Clin. Epidemiol. 2019, 105, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Brignardello-Petersen, R.; Mustafa, R.A.; Siemieniuk, R.A.; Murad, M.H.; Agoritsas, T.; Izcovich, A.; Schünemann, H.J.; Guyatt, G.H.; GRADE Working Group. GRADE approach to rate the certainty from a network meta-analysis: Addressing incoherence. J. Clin. Epidemiol. 2019, 108, 77–85. [Google Scholar] [CrossRef]
- Brignardello-Petersen, R.; Izcovich, A.; Rochwerg, B.; Florez, I.D.; Hazlewood, G.; Alhazanni, W.; Yepes-Nuñez, J.; Santesso, N.; Guyatt, G.H.; Schünemann, H.J. GRADE approach to drawing conclusions from a network meta-analysis using a partially contextualised framework. BMJ 2020, 371, m3900. [Google Scholar] [CrossRef]
- Nino de Guzman, E.; Martinez Garcia, L.; Gonzalez, A.; Heijmans, M.; Huaringa, J.; Immonen, K.; Ninov, L.; Orrego-Villagran, C.; Perez-Bracchiglione, J.; Salas-Gama, K.; et al. The perspectives of patients and their caregivers on self-management interventions for chronic conditions: A protocol for a mixed-methods overview [version 2; peer review: 2 approved]. F1000Research 2021, 9, 120. [Google Scholar] [CrossRef]
- Niño de Guzmán Quispe, E.; Martínez García, L.; Orrego Villagrán, C.; Heijmans, M.; Sunol, R.; Fraile-Navarro, D.; Pérez-Bracchiglione, J.; Ninov, L.; Salas-Gama, K.; Viteri García, A.; et al. The perspectives of patients with chronic diseases and their caregivers on self-management interventions: A scoping review of reviews. Patient-Patient-Centered Outcomes Res. 2021, 14, 719–740. [Google Scholar] [CrossRef]
- Song, Y.; Beltran Puerta, J.; Medina-Aedo, M.; Canelo-Aybar, C.; Valli, C.; Ballester, M.; Rocha, C.; Garcia, M.L.; Salas-Gama, K.; Kaloteraki, C.; et al. Self-Management Interventions for Adults Living with Type II Diabetes to Improve Patient-Important Outcomes: An Evidence Map. Healthcare 2023, 11, 3156. [Google Scholar] [CrossRef]
- Skivington, K.; Matthews, L.; Simpson, S.A.; Craig, P.; Baird, J.; Blazeby, J.M.; Boyd, K.A.; Craig, N.; French, D.P.; McIntosh, E.; et al. A new framework for developing and evaluating complex interventions: Update of Medical Research Council guidance. BMJ 2021, 374, n2061. [Google Scholar] [CrossRef]
- Pigott, T.; Shepperd, S. Identifying, documenting, and examining heterogeneity in systematic reviews of complex interventions. J. Clin. Epidemiol. 2013, 66, 1244–1250. [Google Scholar] [CrossRef]
- Bowen, M.E.; Cavanaugh, K.L.; Wolff, K.; Davis, D.; Gregory, R.P.; Shintani, A.; Eden, S.; Wallston, K.; Elasy, T.; Rothman, R.L. The diabetes nutrition education study randomized controlled trial: A comparative effectiveness study of approaches to nutrition in diabetes self-management education. Patient Educ. Couns. 2016, 99, 1368–1376. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Morgano, G.P.; Mbuagbaw, L.; Santesso, N.; Xie, F.; Brozek, J.L.; Siebert, U.; Bognanni, A.; Wiercioch, W.; Piggott, T.; Darzi, A.J.; et al. Defining decision thresholds for judgments on health benefits and harms using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Evidence to Decision (EtD) frameworks: A protocol for a randomised methodological study (GRADE-THRESHOLD). BMJ Open 2022, 12, e053246. [Google Scholar] [PubMed]
- Jacob, C. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Sawilowsky, S.S. New effect size rules of thumb. J. Mod. Appl. Stat. Methods 2009, 8, 26. [Google Scholar] [CrossRef]
- Tsokani, S.; Seitidis, G.; Mavridis, D. Component network meta-analysis in a nutshell. BMJ Evid.-Based Med. 2023, 28, 183–186. [Google Scholar] [CrossRef]
- Tsokani, S.; Seitidis, G.; Christogiannis, C.; Kontouli, K.-M.; Nikolakopoulos, S.; Zevgiti, S.; Orrego, C.; Ballester, M.; Suñol, R.; Heijmans, M.; et al. Exploring the Effectiveness of Self-Management Interventions in Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Healthcare 2024, 12, 27. [Google Scholar] [CrossRef]
- Salanti, G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: Many names, many benefits, many concerns for the next generation evidence synthesis tool. Res. Synth. Methods 2012, 3, 80–97. [Google Scholar] [CrossRef]
- Zhang, Y.; Alonso-Coello, P.; Guyatt, G.H.; Yepes-Nuñez, J.J.; Akl, E.A.; Hazlewood, G.; Pardo-Hernandez, H.; Etxeandia-Ikobaltzeta, I.; Qaseem, A.; Williams, J.W., Jr.; et al. GRADE Guidelines: 19. Assessing the certainty of evidence in the importance of outcomes or values and preferences—Risk of bias and indirectness. J. Clin. Epidemiol. 2019, 111, 94–104. [Google Scholar] [CrossRef]
- Hayes, A.J.; Leal, J.; Gray, A.; Holman, R.; Clarke, P. UKPDS outcomes model 2: A new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia 2013, 56, 1925–1933. [Google Scholar] [CrossRef]
- de Groot, S.; Santi, I.; Bakx, P.; Wouterse, B.; van Baal, P. Informal Care Costs According to Age and Proximity to Death to Support Cost-Effectiveness Analyses. PharmacoEconomics 2023, 41, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Börsch-Supan, A.; Brandt, M.; Hunkler, C.; Kneip, T.; Korbmacher, J.; Malter, F.; Schaan, B.; Stuck, S.; Zuber, S. Data resource profile: The Survey of Health, Ageing and Retirement in Europe (SHARE). Int. J. Epidemiol. 2013, 42, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Mokri, H.; Kvamme, I.; De Vries, L.; Versteegh, M.; Van Baal, P. Future medical and non-medical costs and their impact on the cost-effectiveness of life-prolonging interventions: A comparison of five European countries. Eur. J. Health Econ. 2023, 24, 701–715. [Google Scholar] [CrossRef] [PubMed]
- Noordman, J.; Meurs, M.; Poortvliet, R.; Rusman, T.; Orrego-Villagran, C.; Ballester, M.; Ninov, L.; de Guzmán, E.N.; Alonso-Coello, P.; Groene, O.; et al. Contextual factors for the successful implementation of self-management interventions for chronic diseases: A qualitative review of reviews. Chronic Illness 2023, 17423953231153337. [Google Scholar] [CrossRef] [PubMed]
- Wensing, M. The Tailored Implementation in Chronic Diseases (TICD) project: Introduction and main findings. Implement. Sci. 2017, 12, 5. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, M.; Shemilt, I.; Pregno, S.; Vale, L.; Oxman, A.D.; Lord, J.; Sisk, J.; Ruiz, F.; Hill, S.; Guyatt, G.H.; et al. GRADE guidelines: 10. Considering resource use and rating the quality of economic evidence. J. Clin. Epidemiol. 2013, 66, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Rücker, G.; Schwarzer, G. Ranking treatments in frequentist network meta-analysis works without resampling methods. BMC Med. Res. Methodol. 2015, 15, 1–9. [Google Scholar] [CrossRef]
- Seitidis, G.; Tsokani, S.; Christogiannis, C.; Kontouli, K.M.; Fyraridis, A.; Nikolakopoulos, S.; Veroniki, A.A.; Mavridis, D. Graphical tools for visualizing the results of network meta-analysis of multicomponent interventions. Res. Synth. Methods 2023, 14, 382–395. [Google Scholar] [CrossRef]
- Lian, J.; McGhee, S.; Chau, J.; Wong, C.K.; Lam, C.L.; Wong, W.C. Systematic review on the cost-effectiveness of self-management education programme for type 2 diabetes mellitus. Diabetes Res. Clin. Pract. 2017, 127, 21–34. [Google Scholar] [CrossRef]
- Ellis, K.; Mulnier, H.; Forbes, A. Perceptions of insulin use in type 2 diabetes in primary care: A thematic synthesis. BMC Fam. Pract. 2018, 19, 70. [Google Scholar] [CrossRef]
- Ng, C.J.; Lai, P.S.; Lee, Y.; Azmi, S.A.; Teo, C.H. Barriers and facilitators to starting insulin in patients with type 2 diabetes: A systematic review. Int. J. Clin. Pract. 2015, 69, 1050–1070. [Google Scholar] [CrossRef]
- Brundisini, F.; Vanstone, M.; Hulan, D.; DeJean, D.; Giacomini, M. Type 2 diabetes patients’ and providers’ differing perspectives on medication nonadherence: A qualitative meta-synthesis. BMC Health Serv. Res. 2015, 15, 516. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Das, S.R.; Gibbons, C.H.; et al. Introduction and methodology: Standards of care in diabetes—2023. Diabetes Care 2023, 46, S1–S4. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2020, 41, 255–323. [Google Scholar]
- Pillay, J.; Armstrong, M.J.; Butalia, S.; Donovan, L.E.; Sigal, R.J.; Vandermeer, B.; Chordiya, P.; Dhakal, S.; Hartling, L.; Nuspl, M.; et al. Behavioral programs for type 2 diabetes mellitus: A systematic review and network meta-analysis. Ann. Intern. Med. 2015, 163, 848–860. [Google Scholar] [CrossRef]
- Lee, P.A.; Greenfield, G.; Pappas, Y. The impact of telehealth remote patient monitoring on glycemic control in type 2 diabetes: A systematic review and meta-analysis of systematic reviews of randomised controlled trials. BMC Health Serv. Res. 2018, 18, 495. [Google Scholar] [CrossRef]
- Pal, K.; Eastwood, S.V.; Michie, S.; Farmer, A.J.; Barnard, M.L.; Peacock, R.; Wood, B.; Inniss, J.D.; Murray, E. Computer-based diabetes self-management interventions for adults with type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2013. [Google Scholar] [CrossRef]
- Erlen, J.A.; Tamres, L.K.; Reynolds, N.; Golin, C.E.; Rosen, M.I.; Remien, R.H.; Banderas, J.W.; Schneiderman, N.; Wagner, G.; Bangsberg, D.R.; et al. Assessing usual care in clinical trials. West. J. Nurs. Res. 2015, 37, 288–298. [Google Scholar] [CrossRef]
- Yorganci, E.; Evans, C.J.; Johnson, H.; Barclay, S.; Murtagh, F.E.; Yi, D.; Gao, W.; Pickles, A.; Koffman, J. Understanding usual care in randomised controlled trials of complex interventions: A multi-method approach. Palliat. Med. 2020, 34, 667–679. [Google Scholar] [CrossRef]
Population | Intervention | Comparison | Critical Outcomes |
---|---|---|---|
Adult patients (>18 years) with T2DM | SMIs | Usual care (UC) 1 Any SMIs |
|
COMPAR-EU Taxonomy Components | |||||
---|---|---|---|---|---|
SMIs’ Examples | Type of Support Technique | Type of Recipient | Type of Provider | Delivery Methods | |
Exercise programme where trainers tailored routines according to patients’ inputs | Educational (sharing information and skills training) | Action-based behavioural techniques (goal setting and develop action planning) | Individual | Physio- therapist | 27 face-to- face sessions |
Carbohydrate gram counting training using online resources, with individualised carbohydrate gram goals [34] | Educational (sharing information including previously designed material) | Action-based behavioural techniques (goal setting and develop action planning) | Individual | Dietician-certified diabetes educator | 3 face-to-face sessions |
Outcome | Number of Participants (Studies) | Anticipated Absolute Effects (95% CI) Difference | Certainty | Plain Language Statement |
---|---|---|---|---|
Glycated haemoglobin | 58,621 (335 RCTs) | MD 0.39 % lower (0.45 lower to 0.34 lower) | Very low a | SMIs may have a marginal beneficial effect b on glycated haemoglobin, but the evidence is very uncertain |
Long-term complications inferred from blood pressure: | ||||
Systolic blood pressure | 31,526 (173 RCTs) | MD 4.29 mmHg lower (2.11 lower to 1.49 lower) | Low c | SMIs may have a marginal beneficial effect d on systolic blood pressure |
Diastolic blood pressure | 29,047 (154 RCTs) | MD 1.12 mmHg lower (1.53 lower to 0.73 lower) | Low e | SMIs may have a marginal beneficial effect f on diastolic blood pressure |
Long-term complications inferred from lipid profile: | ||||
Triglycerides | 17,462 (128 RCTs) | MD 0.12 mmol/L lower (0.20 lower to 0.03 lower) | Very Low g | SMIs may have a marginal beneficial effect h on triglycerides, but the evidence is very uncertain |
Low-density lipoprotein | 21,140 (123 RCTs) | MD 1.91 mg/dL lower (3.29 lower to 0.53 lower) | Very Low i | SMIs may have a marginal beneficial effect j on low-density lipoprotein, but the evidence is very uncertain |
Weight management: | ||||
Body Mass Index | 29,494 (174 RCTs) | MD 0.26 kg/m2 lower (0.41 lower to 0.12 lower) | Very Low k | SMIs may have a marginal beneficial effect l on body mass index, but the evidence is very uncertain |
Waist size | 9500 (65 RCTs) | MD 1.23 cm lower (1.92 lower to 0.66 lower) | Low m | SMIs may have a marginal beneficial effect n on waist size reduction |
Weight | 16,124 (96 RCTs) | MD 0.89 Kg lower (1.37 lower to 0.42 lower) | Low o | SMIs may have a marginal beneficial effect p on weight management |
Quality of Life | 10,169 (63 RCTs) | SMD 0.18 SD higher (0.03 higher to 0.34 higher) | Low q | SMIs may have a marginal beneficial effect r on quality of life |
Psychological distress | 5481 (26 RCTs) | SMD 0.31 SD lower (1.17 lower to 0.55 higher) | Low s | SMIs may have a marginal beneficial effect t on psychological distress |
Hypoglycaemia | 1788 (6 RCTs) | Rate Ratio 0.89 (0.56 to 1.42) | Very Low u | SMIs may have a marginal beneficial effect v on hypoglycaemia events, but the evidence is very uncertain |
Outcomes | Mean Difference | Certainty | Plain Language Statement |
---|---|---|---|
QALYs (1 model; lifetime) | 0.006 more QALYs per person (0.013 fewer to 0.034 more) | Low a,b | The intervention may have little to no effect on QALYs |
Total costs without treatment costs (EUR 2020) (1 model; lifetime) | 67 EUR more per person (839 fewer to 994 more) | Very Lowb | The evidence on the incremental cost per person is uncertain |
Headroom (1 model; lifetime) | 218 EUR (0 to 1360) | Lowa,b | The intervention may cost up to 218 EUR per person and still be considered cost-effective c |
SMIs for T2DM | Large Beneficial | Moderate Beneficial | Small Beneficial | Marginal to No Effect |
---|---|---|---|---|
Monitoring techniques lead by peers delivered in groups | It may decrease systolic blood pressure levels, but the evidence is very uncertain | It may decrease HbA1c levels | - | It may result in little to no effect on waist size, body mass index, and diastolic blood pressure, but the evidence is very uncertain |
Lowa | Very Low b,d | Low c,d | - | Very Low b,d |
Emotional-based behavioural techniques lead by peers delivered remotely | It may decrease HbA1c levels | - | It may result in a slight decrease in hypoglycaemic events | - |
Low a | Low c,d | - | Low c,d | - |
Monitoring and action-based behavioural techniques and shared decision making, and social support delivered in groups | - | - | It may result in a slight decrease in HbA1c levels | - |
Low a | - | - | Low c,d | - |
Monitoring, action-based and emotional-based behavioural techniques, and social support led by peers delivered remotely | - | It may decrease diastolic blood pressure | It may result in a slight decrease in HbA1c levels and psychological distress, but the evidence is very uncertain | It may result in little to no effect on systolic blood pressure and weight reduction |
Low a | Low c,d | Very Low | Low c,d | |
Emotional-based behavioural techniques and social support delivered in groups | It may decrease HbA1clevels | - | - | It may result in little to no effect on triglycerides and LDL |
Low a | Low c,d | - | - | Low c,d |
Action-based behavioural techniques, social support led by peers and professionals | It may decrease HbA1c levels | - | - | It may result in little to no effect on BMI, but the evidence is very uncertain |
Low a | Low c,d | - | - | Very Low c,e |
Education delivered in groups and remotely | - | It may decrease HbA1c levels | - | - |
Low a | Low c,d | - | ||
Monitoring techniques and social support delivered remotely | - | - | It may result in a slight decrease in HbA1c levels | It may result in little to no effect on BMI, weight, triglycerides, and LDL Low c,d |
Low a | Low c,d | It may result in little to no effect on systolic blood pressure and diastolic blood pressure Very Low | ||
Monitoring and action-based behavioural techniques, shared decision making and social support, delivered in groups | - | - | It may result in a slight decrease in HbA1c levels | - |
Low a | Low c,d | |||
Monitoring and emotional-based behavioural techniques delivered remotely | - | - | It may result in a slight decrease in HbA1c levels | - |
Low a | Low c,d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltran, J.; Valli, C.; Medina-Aedo, M.; Canelo-Aybar, C.; Niño de Guzmán, E.; Song, Y.; Orrego, C.; Ballester, M.; Suñol, R.; Noordman, J.; et al. COMPAR-EU Recommendations on Self-Management Interventions in Type 2 Diabetes Mellitus. Healthcare 2024, 12, 483. https://doi.org/10.3390/healthcare12040483
Beltran J, Valli C, Medina-Aedo M, Canelo-Aybar C, Niño de Guzmán E, Song Y, Orrego C, Ballester M, Suñol R, Noordman J, et al. COMPAR-EU Recommendations on Self-Management Interventions in Type 2 Diabetes Mellitus. Healthcare. 2024; 12(4):483. https://doi.org/10.3390/healthcare12040483
Chicago/Turabian StyleBeltran, Jessica, Claudia Valli, Melixa Medina-Aedo, Carlos Canelo-Aybar, Ena Niño de Guzmán, Yang Song, Carola Orrego, Marta Ballester, Rosa Suñol, Janneke Noordman, and et al. 2024. "COMPAR-EU Recommendations on Self-Management Interventions in Type 2 Diabetes Mellitus" Healthcare 12, no. 4: 483. https://doi.org/10.3390/healthcare12040483
APA StyleBeltran, J., Valli, C., Medina-Aedo, M., Canelo-Aybar, C., Niño de Guzmán, E., Song, Y., Orrego, C., Ballester, M., Suñol, R., Noordman, J., Heijmans, M., Seitidis, G., Tsokani, S., Kontouli, K. -M., Christogiannis, C., Mavridis, D., Graaf, G. d., Groene, O., Grammatikopoulou, M. G., ... Alonso-Coello, P. (2024). COMPAR-EU Recommendations on Self-Management Interventions in Type 2 Diabetes Mellitus. Healthcare, 12(4), 483. https://doi.org/10.3390/healthcare12040483