Conservative Management of Acute Sports-Related Concussions: A Narrative Review
Abstract
:1. Introduction
1.1. Conservative Management Is Proactive in Nature
1.2. Conservative Principles in Pain Management
1.3. Central Sensitization and Conservative Management
“Central sensitization is where the CNS can change, distort, or amplify pain, increasing its degree, duration, and spatial extent in a manner that no longer directly reflects the specific qualities of peripheral noxious stimuli, but rather the particular functional states of circuits in the CNS… This does not mean that the pain is not real, just that it is not activated by noxious stimuli”.[6]
1.4. Applying the Conservate Care Paradigm in Concussion Injuries
“Sport-related concussion is a traumatic brain injury caused by a direct blow to the head, neck or body resulting in an impulsive force being transmitted to the brain that occurs in sports and exercise-related activities. This initiates a neurotransmitter and metabolic cascade, with possible axonal injury, blood flow change, and inflammation affecting the brain. Symptoms and signs may present immediately, or evolve over minutes or hours, and commonly resolve within days, but may be prolonged”.[20]
2. Persistent Post-Concussive Symptoms (PPCS) and Prolonged Recovery
2.1. Defining PPCS
2.2. The Epidemiology of PCSS
2.3. The Epidemiology of Prolonged Symptoms
2.4. Controversies in the Prevalence of Prolonged Symptoms in Athletes vs. Non-Athletes
- Age: Athletes tend to be younger than the general population.
- Health: The physical and mental health of athletes tends to be better than the general population.
- Access to care: Most athletes have access to athletic professionals who have basic training in concussion treatment.
- Supplements: Many athletes take supplements that may be neuroprotective, such as creatine.
- Severity of injury: SRCs tend to be less severe than injuries that involve polytrauma, such as in motor vehicle accidents.
2.5. Risk Factors of Prolonged Recovery
2.6. The Time-Course Pattern of Symptom Recovery
3. Central Sensitization and Symptom Chronification in Concussions
3.1. The Neurobiological Sequence of Central Sensitization
3.2. Central Sensitization and Chronic Pain
3.3. Central Sensitivity Syndromes
4. Potential Targets for Conservative Interventions for Acute Concussions
- Peripheral sensitization;
- Cerebral metabolic dysfunction;
- Neuroinflammation;
- Glymphatic system dysfunction;
- Pain catastrophizing.
4.1. Reducing Peripheral Sensitization
4.1.1. Exercise
4.1.2. Analgesics
4.1.3. Cold Therapy
4.1.4. Physical Therapy
4.1.5. Sensory Protection
4.2. Addressing Cerebral Metabolic Dysfunction
4.2.1. Mitochondrial Support
4.2.2. Exercise
4.2.3. Deep Breathing
4.2.4. Cold Therapy
4.3. Decreasing Neuroinflammation
4.3.1. Nutraceuticals
4.3.2. Dietary Changes
4.3.3. Exercise
4.3.4. Stress Reduction
4.4. Optimizing Glymphatic System Functioning
4.4.1. Circadian Therapy
4.4.2. Omega Oils
4.4.3. Exercise and Deep Breathing
4.5. Pain Catastrophizing
4.5.1. Mindfulness, Meditation, and Deep Breathing
4.5.2. Coaching
4.5.3. Exercise
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bober, S. Conservative Management of Sports Injuries 2nd Edition. J. Can. Chiropr. Assoc. 2009, 53, 216–217. [Google Scholar]
- Treede, R.-D.; Rief, W.; Barke, A.; Aziz, Q.; Bennett, M.I.; Benoliel, R.; Cohen, M.; Evers, S.; Finnerup, N.B.; First, M.B.; et al. Chronic Pain as a Symptom or a Disease: The IASP Classification of Chronic Pain for the International Classification of Diseases (ICD-11). Pain 2019, 160, 19. [Google Scholar] [CrossRef] [PubMed]
- Hainline, B.; Derman, W.; Vernec, A.; Budgett, R.; Deie, M.; Dvořák, J.; Harle, C.; Herring, S.A.; McNamee, M.; Meeuwisse, W.; et al. International Olympic Committee Consensus Statement on Pain Management in Elite Athletes. Br. J. Sports Med. 2017, 51, 1245–1258. [Google Scholar] [CrossRef]
- Clauw, D.J.; Essex, M.N.; Pitman, V.; Jones, K.D. Reframing Chronic Pain as a Disease, Not a Symptom: Rationale and Implications for Pain Management. Postgrad. Med. 2019, 131, 185–198. [Google Scholar] [CrossRef] [PubMed]
- Igolnikov, I.; Gallagher, R.M.; Hainline, B. Sport-Related Injury and Pain Classification. Handb. Clin. Neurol. 2018, 158, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J. Central Sensitization: Implications for the Diagnosis and Treatment of Pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef]
- Nijs, J.; Lahousse, A.; Kapreli, E.; Bilika, P.; Saraçoğlu, İ.; Malfliet, A.; Coppieters, I.; De Baets, L.; Leysen, L.; Roose, E.; et al. Nociplastic Pain Criteria or Recognition of Central Sensitization? Pain Phenotyping in the Past, Present and Future. J. Clin. Med. 2021, 10, 3203. [Google Scholar] [CrossRef]
- Winslow, J.J.; Jackson, M.; Getzin, A.; Costello, M. Rehabilitation of a Young Athlete With Extension-Based Low Back Pain Addressing Motor-Control Impairments and Central Sensitization. J. Athl. Train. 2018, 53, 168–173. [Google Scholar] [CrossRef]
- Steinmetz, A.; Hacke, F.; Delank, K.-S. Pressure Pain Thresholds and Central Sensitization in Relation to Psychosocial Predictors of Chronicity in Low Back Pain. Diagnostics 2023, 13, 786. [Google Scholar] [CrossRef]
- Li, W.; Gong, Y.; Liu, J.; Guo, Y.; Tang, H.; Qin, S.; Zhao, Y.; Wang, S.; Xu, Z.; Chen, B. Peripheral and Central Pathological Mechanisms of Chronic Low Back Pain: A Narrative Review. J. Pain Res. 2021, 14, 1483–1494. [Google Scholar] [CrossRef]
- Bilika, P.; Nijs, J.; Fandridis, E.; Dimitriadis, Z.; Strimpakos, N.; Kapreli, E. In the Shoulder or in the Brain? Behavioral, Psychosocial and Cognitive Characteristics of Unilateral Chronic Shoulder Pain with Symptoms of Central Sensitization. Healthcare 2022, 10, 1658. [Google Scholar] [CrossRef] [PubMed]
- Rankin, J.; Rudy-Froese, B.; Hoyt, C.; Ramsahoi, K.; Gareau, L.; Howatt, W.; Carlesso, L. Quantitative Sensory Testing Protocols to Evaluate Central and Peripheral Sensitization in Knee OA: A Scoping Review. Pain Med. Malden Mass. 2022, 23, 526–557. [Google Scholar] [CrossRef] [PubMed]
- San-Antolín, M.; Rodríguez-Sanz, D.; Becerro-de-Bengoa-Vallejo, R.; Losa-Iglesias, M.E.; Casado-Hernández, I.; López-López, D.; Calvo-Lobo, C. Central Sensitization and Catastrophism Symptoms Are Associated with Chronic Myofascial Pain in the Gastrocnemius of Athletes. Pain Med. Malden Mass. 2020, 21, 1616–1625. [Google Scholar] [CrossRef] [PubMed]
- Coombes, B.K.; Bisset, L.; Vicenzino, B. Management of Lateral Elbow Tendinopathy: One Size Does Not Fit All. J. Orthop. Sports Phys. Ther. 2015, 45, 938–949. [Google Scholar] [CrossRef] [PubMed]
- Raney, E.B.; Thankam, F.G.; Dilisio, M.F.; Agrawal, D.K. Pain and the Pathogenesis of Biceps Tendinopathy. Am. J. Transl. Res. 2017, 9, 2668–2683. [Google Scholar] [PubMed]
- Ferrillo, M.; Giudice, A.; Marotta, N.; Fortunato, F.; Di Venere, D.; Ammendolia, A.; Fiore, P.; de Sire, A. Pain Management and Rehabilitation for Central Sensitization in Temporomandibular Disorders: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 12164. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, S.; Shiina, T.; Kobayashi, S.; Hirata, K. Central Sensitization in Migraine: A Narrative Review. J. Pain Res. 2022, 15, 2673–2682. [Google Scholar] [CrossRef]
- Kureshi, S.; Stowe, C.; Francis, J.; Djalilian, H. Circadian Therapy Interventions for Glymphatic Dysfunction in Concussions Injuries: A Narrative Review. Sci. Prog. 2023, 106, 368504231189536. [Google Scholar] [CrossRef]
- Harmon, K.G.; Drezner, J.A.; Gammons, M.; Guskiewicz, K.M.; Halstead, M.; Herring, S.A.; Kutcher, J.S.; Pana, A.; Putukian, M.; Roberts, W.O. American Medical Society for Sports Medicine Position Statement: Concussion in Sport. Br. J. Sports Med. 2013, 47, 15–26. [Google Scholar] [CrossRef]
- Patricios, J.S.; Schneider, K.J.; Dvorak, J.; Ahmed, O.H.; Blauwet, C.; Cantu, R.C.; Davis, G.A.; Echemendia, R.J.; Makdissi, M.; McNamee, M.; et al. Consensus Statement on Concussion in Sport: The 6th International Conference on Concussion in Sport-Amsterdam, October 2022. Br. J. Sports Med. 2023, 57, 695–711. [Google Scholar] [CrossRef]
- Cortez, M.M.; Millsap, L.; Rea, N.A.; Sciarretta, C.; Brennan, K.C. Photophobia and Allodynia in Persistent Post-Traumatic Headache Are Associated with Higher Disease Burden. Cephalalgia Int. J. Headache 2021, 41, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Navratilova, E.; Rau, J.; Oyarzo, J.; Tien, J.; Mackenzie, K.; Stratton, J.; Remeniuk, B.; Schwedt, T.; Anderson, T.; Dodick, D.; et al. CGRP-Dependent and Independent Mechanisms of Acute and Persistent Post-Traumatic Headache Following Mild Traumatic Brain Injury in Mice. Cephalalgia Int. J. Headache 2019, 39, 1762–1775. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Zhang, Y. Preclinical Studies of Posttraumatic Headache and the Potential Therapeutics. Cells 2022, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Neumann, K.D.; Broshek, D.K.; Newman, B.T.; Druzgal, T.J.; Kundu, B.K.; Resch, J.E. Concussion: Beyond the Cascade. Cells 2023, 12, 2128. [Google Scholar] [CrossRef] [PubMed]
- Wingerson, M.J.; Magliato, S.N.; Smulligan, K.L.; Wilson, J.C.; Little, C.C.; Howell, D.R. Predicting Time to Evaluation After Pediatric Concussion: Factors Affecting Specialty Concussion Care. Orthop. J. Sports Med. 2023, 11, 23259671231186430. [Google Scholar] [CrossRef]
- Bock, S.; Grim, R.; Barron, T.F.; Wagenheim, A.; Hu, Y.E.; Hendell, M.; Deitch, J.; Deibert, E. Factors Associated with Delayed Recovery in Athletes with Concussion Treated at a Pediatric Neurology Concussion Clinic. Childs Nerv. Syst. Chns Off. J. Int. Soc. Pediatr. Neurosurg. 2015, 31, 2111–2116. [Google Scholar] [CrossRef]
- Cassimatis, M.; Orr, R.; Fyffe, A.; Browne, G. Early Injury Evaluation Following Concussion Is Associated with Improved Recovery Time in Children and Adolescents. J. Sci. Med. Sport 2021, 24, 1235–1239. [Google Scholar] [CrossRef]
- Eagle, S.R.; Puligilla, A.; Fazio-Sumrok, V.; Kegel, N.; Collins, M.W.; Kontos, A.P. Association of Time to Initial Clinic Visit with Prolonged Recovery in Pediatric Patients with Concussion. J. Neurosurg. Pediatr. 2020, 26, 165–170. [Google Scholar] [CrossRef]
- Kontos, A.P.; Jorgensen-Wagers, K.; Trbovich, A.M.; Ernst, N.; Emami, K.; Gillie, B.; French, J.; Holland, C.; Elbin, R.J.; Collins, M.W. Association of Time Since Injury to the First Clinic Visit With Recovery Following Concussion. JAMA Neurol. 2020, 77, 435–440. [Google Scholar] [CrossRef]
- Pratile, T.; Marshall, C.; DeMatteo, C. Examining How Time from Sport-Related Concussion to Initial Assessment Predicts Return-to-Play Clearance. Phys. Sportsmed. 2022, 50, 132–140. [Google Scholar] [CrossRef]
- McCrory, P.; Meeuwisse, W.; Dvořák, J.; Aubry, M.; Bailes, J.; Broglio, S.; Cantu, R.C.; Cassidy, D.; Echemendia, R.J.; Castellani, R.J.; et al. Consensus Statement on Concussion in Sport-the 5th International Conference on Concussion in Sport Held in Berlin, October 2016. Br. J. Sports Med. 2017, 51, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Harmon, K.G.; Clugston, J.R.; Dec, K.; Hainline, B.; Herring, S.; Kane, S.F.; Kontos, A.P.; Leddy, J.J.; McCrea, M.; Poddar, S.K.; et al. American Medical Society for Sports Medicine Position Statement on Concussion in Sport. Br. J. Sports Med. 2019, 53, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Auxéméry, Y.; Gayraud, F. Post-Concussion Syndrome: Still Forgotten? From the Disappearance of the DSM-5 to a Multidisciplinary Consultation. L’Encephale 2021, 47, 491–494. [Google Scholar] [CrossRef] [PubMed]
- Boake, C.; McCauley, S.R.; Levin, H.S.; Pedroza, C.; Contant, C.F.; Song, J.X.; Brown, S.A.; Goodman, H.; Brundage, S.I.; Diaz-Marchan, P.J. Diagnostic Criteria for Postconcussional Syndrome After Mild to Moderate Traumatic Brain Injury. J. Neuropsychiatry Clin. Neurosci. 2005, 17, 350–356. [Google Scholar] [CrossRef]
- Heslot, C.; Azouvi, P.; Perdrieau, V.; Granger, A.; Lefèvre-Dognin, C.; Cogné, M. A Systematic Review of Treatments of Post-Concussion Symptoms. J. Clin. Med. 2022, 11, 6224. [Google Scholar] [CrossRef] [PubMed]
- WHO. The ICD-10 Classification of Mental and Behavioural Disorders: Clinical Descriptions and Diagnostic Guidelines; World Health Organization: Geneva, Switzerland, 1992; ISBN 978-92-4-154422-1. [Google Scholar]
- Zimmerman, K.A.; Cournoyer, J.; Lai, H.; Snider, S.B.; Fischer, D.; Kemp, S.; Karton, C.; Hoshizaki, T.B.; Ghajari, M.; Sharp, D.J. The Biomechanical Signature of Loss of Consciousness: Computational Modelling of Elite Athlete Head Injuries. Brain 2022, 146, 3063–3078. [Google Scholar] [CrossRef] [PubMed]
- Hou, R.; Moss-Morris, R.; Peveler, R.; Mogg, K.; Bradley, B.P.; Belli, A. When a Minor Head Injury Results in Enduring Symptoms: A Prospective Investigation of Risk Factors for Postconcussional Syndrome after Mild Traumatic Brain Injury. J. Neurol. Neurosurg. Psychiatry 2012, 83, 217–223. [Google Scholar] [CrossRef]
- Theadom, A.; Parag, V.; Dowell, T.; McPherson, K.; Starkey, N.; Barker-Collo, S.; Jones, K.; Ameratunga, S.; Feigin, V.L. Persistent Problems 1 Year after Mild Traumatic Brain Injury: A Longitudinal Population Study in New Zealand. Br. J. Gen. Pract. 2016, 66, e16–e23. [Google Scholar] [CrossRef]
- Nelson, L.D.; Temkin, N.R.; Dikmen, S.; Barber, J.; Giacino, J.T.; Yuh, E.; Levin, H.S.; McCrea, M.A.; Stein, M.B.; Mukherjee, P.; et al. Recovery After Mild Traumatic Brain Injury in Patients Presenting to US Level I Trauma Centers. JAMA Neurol. 2019, 76, 1049–1059. [Google Scholar] [CrossRef]
- Machamer, J.; Temkin, N.; Dikmen, S.; Nelson, L.D.; Barber, J.; Hwang, P.; Boase, K.; Stein, M.B.; Sun, X.; Giacino, J.; et al. Symptom Frequency and Persistence in the First Year after Traumatic Brain Injury: A TRACK-TBI Study. J. Neurotrauma 2022, 39, 358–370. [Google Scholar] [CrossRef]
- Lyons, T.W.; Mannix, R.; Tang, K.; Yeates, K.O.; Sangha, G.; Burns, E.C.; Beer, D.; Dubrovsky, A.S.; Gagnon, I.; Gravel, J.; et al. Paediatric Post-Concussive Symptoms: Symptom Clusters and Clinical Phenotypes. Br. J. Sports Med. 2022, 56, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Bretzin, A.C.; Esopenko, C.; D’Alonzo, B.A.; Wiebe, D.J. Clinical Recovery Timelines After Sport-Related Concussion in Men’s and Women’s Collegiate Sports. J. Athl. Train. 2022, 57, 678–687. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.W.; Broglio, S.P.; Katz, B.P.; Perkins, S.M.; LaPradd, M.; Zhou, W.; McCrea, M.A. Characteristics and Outcomes of Athletes With Slow Recovery From Sports-Related Concussion. Neurology 2023, 100, e1510–e1519. [Google Scholar] [CrossRef] [PubMed]
- Comper, P.; Foster, E.; Chandra, T.; Langer, L.; Wiseman-Hakes, C.; Mochizuki, G.; Ruttan, L.; Lawrence, D.W.; Inness, E.L.; Gladstone, J.; et al. The Toronto Concussion Study: A Prospective Investigation of Characteristics in a Cohort of Adults from the General Population Seeking Care Following Acute Concussion, 2016–2020. Front. Neurol. 2023, 14, 1152504. [Google Scholar] [CrossRef] [PubMed]
- Mikolic, A.; Panenka, W.J.; Iverson, G.L.; Cotton, E.; Burke, M.J.; Silverberg, N.D. Litigation, Performance Validity Testing, and Treatment Outcomes in Adults With Mild Traumatic Brain Injury. J. Head Trauma Rehabil. 2023. [Google Scholar] [CrossRef] [PubMed]
- Kerr, Z.Y.; Zuckerman, S.L.; Wasserman, E.B.; Vander Vegt, C.B.; Yengo-Kahn, A.; Buckley, T.A.; Solomon, G.S.; Sills, A.K.; Dompier, T.P. Factors Associated with Post-Concussion Syndrome in High School Student-Athletes. J. Sci. Med. Sport 2018, 21, 447–452. [Google Scholar] [CrossRef]
- Cuff, S.; Maki, A.; Feiss, R.; Young, J.; Shi, J.; Hautmann, A.; Yang, J. Risk Factors for Prolonged Recovery from Concussion in Young Patients. Br. J. Sports Med. 2022, 56, 1345–1352. [Google Scholar] [CrossRef]
- Martin, A.K.; Petersen, A.J.; Sesma, H.W.; Koolmo, M.B.; Ingram, K.M.; Slifko, K.B.; Nguyen, V.N.; Doss, R.C.; Linabery, A.M. Learning and Attention Deficit/Hyperactivity Disorders as Risk Factors for Prolonged Concussion Recovery in Children and Adolescents. J. Int. Neuropsychol. Soc. JINS 2022, 28, 109–122. [Google Scholar] [CrossRef]
- Langer, L.; Levy, C.; Bayley, M. Increasing Incidence of Concussion: True Epidemic or Better Recognition? J. Head Trauma Rehabil. 2020, 35, E60–E66. [Google Scholar] [CrossRef]
- Nolan, K.E.; Caccese, J.B.; Kontos, A.P.; Buckley, T.A.; Garcia, G.-G.P.; Port, N.; Broglio, S.P.; McAllister, T.W.; McCrea, M.; Pasquina, P.F.; et al. Primary and Secondary Risk Factors Associated With Concussion Symptom Clusters in Collegiate Athletes: Results From the NCAA-DoD Grand Alliance CARE Consortium. Orthop. J. Sports Med. 2023, 11, 23259671231163581. [Google Scholar] [CrossRef]
- Cassimatis, M.; Orr, R.; Fyffe, A.; Browne, G. Association of Sleep Disturbance With Neurocognition, Symptom Severity, and Recovery in Pediatric Concussion: A 10-Year Retrospective Analysis of a Tertiary Referral Concussion Clinic. J. Head Trauma Rehabil. 2023, 38, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.; Johnson, A.M.; Fischer, L.K.; MacKenzie, H.M. Two Symptoms to Triage Acute Concussions: Using Decision Tree Modeling to Predict Prolonged Recovery After a Concussion. Am. J. Phys. Med. Rehabil. 2022, 101, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Kinney, A.R.; Anderson, D.; Stearns-Yoder, K.A.; Brenner, L.A.; Forster, J.E. Risk and Recovery among High School Athletes Who Sustained at Least One Sports-Related Concussion. Concussion 2020, 5, CNC72. [Google Scholar] [CrossRef] [PubMed]
- Wäljas, M.; Iverson, G.L.; Lange, R.T.; Hakulinen, U.; Dastidar, P.; Huhtala, H.; Liimatainen, S.; Hartikainen, K.; Öhman, J. A Prospective Biopsychosocial Study of the Persistent Post-Concussion Symptoms Following Mild Traumatic Brain Injury. J. Neurotrauma 2015, 32, 534–547. [Google Scholar] [CrossRef]
- Afroz, S.; Arakaki, R.; Iwasa, T.; Oshima, M.; Hosoki, M.; Inoue, M.; Baba, O.; Okayama, Y.; Matsuka, Y. CGRP Induces Differential Regulation of Cytokines from Satellite Glial Cells in Trigeminal Ganglia and Orofacial Nociception. Int. J. Mol. Sci. 2019, 20, 711. [Google Scholar] [CrossRef] [PubMed]
- Staniszewski, K.; Lygre, H.; Bifulco, E.; Kvinnsland, S.; Willassen, L.; Helgeland, E.; Berge, T.; Rosén, A. Temporomandibular Disorders Related to Stress and HPA-Axis Regulation. Pain Res. Manag. 2018, 2018, 7020751. [Google Scholar] [CrossRef]
- Bowen, A.J.; Huang, Y.W.; Chen, J.Y.; Pauli, J.L.; Campos, C.A.; Palmiter, R.D. Topographic Representation of Current and Future Threats in the Mouse Nociceptive Amygdala. Nat. Commun. 2023, 14, 196. [Google Scholar] [CrossRef]
- Nguyen, T.; Nguyen, N.; Cochran, A.G.; Smith, J.A.; Al-Juboori, M.; Brumett, A.; Saxena, S.; Talley, S.; Campbell, E.M.; Obukhov, A.G.; et al. Repeated Closed-Head Mild Traumatic Brain Injury-Induced Inflammation Is Associated with Nociceptive Sensitization. J. Neuroinflamm. 2023, 20, 196. [Google Scholar] [CrossRef]
- Robayo, L.E.; Govind, V.; Vastano, R.; Felix, E.R.; Fleming, L.; Cherup, N.P.; Widerström-Noga, E. Multidimensional Pain Phenotypes after Traumatic Brain Injury. Front. Pain Res. 2022, 3, 947562. [Google Scholar] [CrossRef]
- Kumar, R.G.; Ornstein, K.A.; Corrigan, J.D.; Sayko Adams, R.; Dams-O’Connor, K. Association between Lifetime History of Traumatic Brain Injury, Prescription Opioid Use, and Persistent Pain: A Nationally Representative Study. J. Neurotrauma 2021, 38, 2284–2290. [Google Scholar] [CrossRef]
- Ofek, H.; Defrin, R. The Characteristics of Chronic Central Pain after Traumatic Brain Injury. Pain 2007, 131, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Volcheck, M.M.; Graham, S.M.; Fleming, K.C.; Mohabbat, A.B.; Luedtke, C.A. Central Sensitization, Chronic Pain, and Other Symptoms: Better Understanding, Better Management. Cleve. Clin. J. Med. 2023, 90, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Kuisell, C.; Ploutz-Snyder, R.; Williams, D.A.; Voepel-Lewis, T.; Hutchinson, R.J.; Dudding, K.M.; Bridges, C.; Lavoie Smith, E.M. Adolescents and Young Adults with Sickle Cell Disease: Nociplastic Pain and Pain Catastrophizing as Predictors of Pain Interference and Opioid Consumption. Clin. J. Pain 2023, 39, 326–333. [Google Scholar] [CrossRef]
- Tham, S.W.; Palermo, T.M.; Chrisman, S.; Groenewald, C.B. Prescription Opioid Misuse and Sports-Related Concussion among High School Students in the United States. J. Head Trauma Rehabil. 2021, 36, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Ilie, G.; Mann, R.E.; Hamilton, H.; Adlaf, E.M.; Boak, A.; Asbridge, M.; Rehm, J.; Cusimano, M.D. Substance Use and Related Harms Among Adolescents With and Without Traumatic Brain Injury. J. Head Trauma Rehabil. 2015, 30, 293–301. [Google Scholar] [CrossRef]
- Harte, S.E.; Harris, R.E.; Clauw, D.J. The Neurobiology of Central Sensitization. J. Appl. Biobehav. Res. 2018, 23, e12137. [Google Scholar] [CrossRef]
- Leddy, J.J.; Burma, J.S.; Toomey, C.M.; Hayden, A.; Davis, G.A.; Babl, F.E.; Gagnon, I.; Giza, C.C.; Kurowski, B.G.; Silverberg, N.D.; et al. Rest and Exercise Early after Sport-Related Concussion: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2023, 57, 762–770. [Google Scholar] [CrossRef]
- Grool, A.M.; Aglipay, M.; Momoli, F.; Meehan, W.P.; Freedman, S.B.; Yeates, K.O.; Gravel, J.; Gagnon, I.; Boutis, K.; Meeuwisse, W.; et al. Association Between Early Participation in Physical Activity Following Acute Concussion and Persistent Postconcussive Symptoms in Children and Adolescents. Jama 2016, 316, 2504–2514. [Google Scholar] [CrossRef]
- Cook, N.E.; Huebschmann, N.A.; Iverson, G.L. Safety and Tolerability of an Innovative Virtual Reality-Based Deep Breathing Exercise in Concussion Rehabilitation: A Pilot Study. Dev. Neurorehabilitation 2021, 24, 222–229. [Google Scholar] [CrossRef]
- Al-Husseini, A.; Fazel Bakhsheshi, M.; Gard, A.; Tegner, Y.; Marklund, N. Shorter Recovery Time in Concussed Elite Ice Hockey Players by Early Head-and-Neck Cooling: A Clinical Trial. J. Neurotrauma 2022, 40, 1075–1085. [Google Scholar] [CrossRef]
- Acabchuk, R.L.; Brisson, J.M.; Park, C.L.; Babbott-Bryan, N.; Parmelee, O.A.; Johnson, B.T. Therapeutic Effects of Meditation, Yoga, and Mindfulness-Based Interventions for Chronic Symptoms of Mild Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Appl. Psychol. Health Well-Being 2021, 13, 34–62. [Google Scholar] [CrossRef] [PubMed]
- Barlow, K.M.; Esser, M.J.; Veidt, M.; Boyd, R. Melatonin as a Treatment after Traumatic Brain Injury: A Systematic Review and Meta-Analysis of the Pre-Clinical and Clinical Literature. J. Neurotrauma 2019, 36, 523–537. [Google Scholar] [CrossRef]
- Cassimatis, M.; Browne, G.; Orr, R. The Utility of Melatonin for the Treatment of Sleep Disturbance After Traumatic Brain Injury: A Scoping Review. Arch. Phys. Med. Rehabil. 2022, 104, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.M.; Zynda, A.J.; Sabatino, M.J.; Jo, C.; Ellis, H.B.; Dimeff, R.J. A Pilot Randomized Controlled Trial of Docosahexaenoic Acid for the Treatment of Sport-Related Concussion in Adolescents. Clin. Pediatr. 2022, 61, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Kumar, A.; Sharma, R.; Khurana, L.; Jain, S.; Sharma, S.; Kumar, D.; Sharma, S. Optimal Vitamin D Level Ameliorates Neurological Outcome and Quality of Life after Traumatic Brain Injury: A Clinical Perspective. Int. J. Neurosci. 2023, 133, 417–425. [Google Scholar] [CrossRef]
- Zhao, J.; Levy, D. The Sensory Innervation of the Calvarial Periosteum Is Nociceptive and Contributes to Headache-like Behavior. Pain 2014, 155, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Benromano, T.; Defrin, R.; Ahn, A.H.; Zhao, J.; Pick, C.G.; Levy, D. Mild Closed Head Injury Promotes a Selective Trigeminal Hypernociception: Implications for the Acute Emergence of Post-Traumatic Headache. Eur. J. Pain Lond. Engl. 2015, 19, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Daiutolo, B.V.; Tyburski, A.; Clark, S.W.; Elliott, M.B. Trigeminal Pain Molecules, Allodynia, and Photosensitivity Are Pharmacologically and Genetically Modulated in a Model of Traumatic Brain Injury. J. Neurotrauma 2016, 33, 748–760. [Google Scholar] [CrossRef]
- Tyburski, A.L.; Cheng, L.; Assari, S.; Darvish, K.; Elliott, M.B. Frequent Mild Head Injury Promotes Trigeminal Sensitivity Concomitant with Microglial Proliferation, Astrocytosis, and Increased Neuropeptide Levels in the Trigeminal Pain System. J. Headache Pain 2017, 18, 16. [Google Scholar] [CrossRef]
- Lal, A.; Kolakowsky-Hayner, S.A.; Ghajar, J.; Balamane, M. The Effect of Physical Exercise After a Concussion: A Systematic Review and Meta-Analysis. Am. J. Sports Med. 2018, 46, 743–752. [Google Scholar] [CrossRef]
- Manojlović, D.; Kopše, E.I. The Effectiveness of Aerobic Exercise for Pain Management in Patients with Fibromyalgia. Eur. J. Transl. Myol. 2023, 33, 11423. [Google Scholar] [CrossRef] [PubMed]
- Leddy, J.J.; Haider, M.N.; Ellis, M.J.; Mannix, R.; Darling, S.R.; Freitas, M.S.; Suffoletto, H.N.; Leiter, J.; Cordingley, D.M.; Willer, B. Early Subthreshold Aerobic Exercise for Sport-Related Concussion: A Randomized Clinical Trial. JAMA Pediatr. 2019, 173, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Burian, M.; Geisslinger, G. COX-Dependent Mechanisms Involved in the Antinociceptive Action of NSAIDs at Central and Peripheral Sites. Pharmacol. Ther. 2005, 107, 139–154. [Google Scholar] [CrossRef]
- Jóźwiak-Bebenista, M.; Nowak, J.Z. Paracetamol: Mechanism of Action, Applications and Safety Concern. Acta Pol. Pharm. 2014, 71, 11–23. [Google Scholar] [PubMed]
- Fregoso, G.; Wang, A.; Tseng, K.; Wang, J. Transition from Acute to Chronic Pain: Evaluating Risk for Chronic Postsurgical Pain. Pain Physician 2019, 22, 479–488. [Google Scholar] [PubMed]
- Pak, D.J.; Yong, R.J.; Kaye, A.D.; Urman, R.D. Chronification of Pain: Mechanisms, Current Understanding, and Clinical Implications. Curr. Pain Headache Rep. 2018, 22, 9. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, T.; Farrokhyar, F.; McGrath, P.; Sulowski, C.; Sobhi, G.; DeMatteo, C.; Giglia, L.; Singh, S.K. The Use of Ibuprofen and Acetaminophen for Acute Headache in the Postconcussive Youth: A Pilot Study. Paediatr. Child Health 2017, 22, 2–6. [Google Scholar] [CrossRef]
- Ledoux, A.-A.; Tang, K.; Freedman, S.B.; Gravel, J.; Boutis, K.; Yeates, K.O.; Mannix, R.C.; Richer, L.R.; Bell, M.J.; Zemek, R.L.; et al. Early Analgesic Administration and Headache Presence 7 Days Post-Concussion in Children. CJEM 2022, 24, 876–884. [Google Scholar] [CrossRef]
- Hatefi, F.; Kazemi, M.; Manglian, P.; Shahi Moridi, D.; Heydari, S.; Hasani, H. The Effects of Cold Compress and Transcutaneous Electrical Nerve Stimulation on the Pain Associated with Chest Tube Removal among Patients with Coronary Bypass Grafting. J. Cardiothorac. Surg. 2023, 18, 186. [Google Scholar] [CrossRef]
- Walter, A.; Finelli, K.; Bai, X.; Johnson, B.; Neuberger, T.; Seidenberg, P.; Bream, T.; Hallett, M.; Slobounov, S. Neurobiological Effect of Selective Brain Cooling after Concussive Injury. Brain Imaging Behav. 2018, 12, 891–900. [Google Scholar] [CrossRef]
- Gard, A.; Tegner, Y.; Bakhsheshi, M.F.; Marklund, N. Selective Head-Neck Cooling after Concussion Shortens Return-to-Play in Ice Hockey Players. Concussion Lond. Engl. 2021, 6, CNC90. [Google Scholar] [CrossRef] [PubMed]
- Merezhinskaya, N.; Mallia, R.K.; Park, D.; Millian-Morell, L.; Barker, F.M. Photophobia Associated with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 2021, 98, 891–900. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Green, K. Application of Colored Filters in Patients Post-Traumatic Brain Injury: A Review. NeuroRehabilitation 2022, 50, 321–330. [Google Scholar] [CrossRef]
- Abusamak, M.; Alrawashdeh, H.M. Post-Concussion Syndrome Light Sensitivity: A Case Report and Review of the Literature. Neuro-Ophthalmol. Aeolus Press 2022, 46, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.A.; Theodoroff, S.M.; Edmonds, C.; Martinez, I.; Myers, P.J.; Zaugg, T.L.; Goodworth, M.-C. Sound Tolerance Conditions (Hyperacusis, Misophonia, Noise Sensitivity, and Phonophobia): Definitions and Clinical Management. Am. J. Audiol. 2022, 31, 513–527. [Google Scholar] [CrossRef]
- Giza, C.C.; Hovda, D.A. The New Neurometabolic Cascade of Concussion. Neurosurgery 2014, 75 (Suppl. 4), S24–S33. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.M.; Hines-Lanham, A.; Stratton, C.; Mehos, C.J.; McCurdy, K.E.; Pinkowski, N.J.; Zhang, H.; Shuttleworth, C.W.; Morton, R.A. Spreading Depolarizations Occur in Mild Traumatic Brain Injuries and Are Associated with Postinjury Behavior. eNeuro 2019, 6, 1–17. [Google Scholar] [CrossRef]
- Howell, D.R.; Southard, J. The molecular pathophysiology of concussion. Clin. Sports Med. 2021, 40, 39–51. [Google Scholar] [CrossRef]
- Hubbard, W.B.; Joseph, B.; Spry, M.; Vekaria, H.J.; Saatman, K.E.; Sullivan, P.G. Acute Mitochondrial Impairment Underlies Prolonged Cellular Dysfunction after Repeated Mild Traumatic Brain Injuries. J. Neurotrauma 2019, 36, 1252–1263. [Google Scholar] [CrossRef]
- Ahluwalia, M.; Kumar, M.; Ahluwalia, P.; Rahimi, S.; Vender, J.R.; Raju, R.P.; Hess, D.C.; Baban, B.; Vale, F.L.; Dhandapani, K.M.; et al. Rescuing Mitochondria in Traumatic Brain Injury and Intracerebral Hemorrhages—A Potential Therapeutic Approach. Neurochem. Int. 2021, 150, 105192. [Google Scholar] [CrossRef]
- Dolan, E.; Gualano, B.; Rawson, E.S. Beyond Muscle: The Effects of Creatine Supplementation on Brain Creatine, Cognitive Processing, and Traumatic Brain Injury. Eur. J. Sport Sci. 2019, 19, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.P.; Droste, J.-N.; Giessing, J.; Kreider, R.B. Role of Creatine Supplementation in Conditions Involving Mitochondrial Dysfunction: A Narrative Review. Nutrients 2022, 14, 529. [Google Scholar] [CrossRef]
- Forbes, S.C.; Cordingley, D.M.; Cornish, S.M.; Gualano, B.; Roschel, H.; Ostojic, S.M.; Rawson, E.S.; Roy, B.D.; Prokopidis, K.; Giannos, P.; et al. Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022, 14, 921. [Google Scholar] [CrossRef] [PubMed]
- Sakellaris, G.; Nasis, G.; Kotsiou, M.; Tamiolaki, M.; Charissis, G.; Evangeliou, A. Prevention of Traumatic Headache, Dizziness and Fatigue with Creatine Administration. A Pilot Study. Acta Paediatr. 2008, 97, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Sakellaris, G.; Kotsiou, M.; Tamiolaki, M.; Kalostos, G.; Tsapaki, E.; Spanaki, M.; Spilioti, M.; Charissis, G.; Evangeliou, A. Prevention of Complications Related to Traumatic Brain Injury in Children and Adolescents with Creatine Administration: An Open Label Randomized Pilot Study. J. Trauma 2006, 61, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Rippee, M.; Chen, J.; Taylor, M. The Ketogenic Diet in the Treatment of Post-Concussion Syndrome—A Feasibility Study. Front. Nutr. 2020, 7, 160. [Google Scholar] [CrossRef]
- Ryan, T.; Nagle, S.; Daly, E.; Pearce, A.J.; Ryan, L. A Potential Role Exists for Nutritional Interventions in the Chronic Phase of Mild Traumatic Brain Injury, Concussion and Sports-Related Concussion: A Systematic Review. Nutrients 2023, 15, 3726. [Google Scholar] [CrossRef]
- Demers-Marcil, S.; Coles, J.P. Cerebral Metabolic Derangements Following Traumatic Brain Injury. Curr. Opin. Anaesthesiol. 2022, 35, 562–569. [Google Scholar] [CrossRef]
- Pierce, J.D.; Gupte, R.; Thimmesch, A.; Shen, Q.; Hiebert, J.B.; Brooks, W.M.; Clancy, R.L.; Diaz, F.J.; Harris, J.L. Ubiquinol Treatment for TBI in Male Rats: Effects on Mitochondrial Integrity, Injury Severity, and Neurometabolism. J. Neurosci. Res. 2018, 96, 1080–1092. [Google Scholar] [CrossRef]
- Gezen-Ak, D.; Alaylıoğlu, M.; Yurttaş, Z.; Çamoğlu, T.; Şengül, B.; İşler, C.; Yaşar Kına, Ü.; Keskin, E.; Atasoy, İ.L.; Kafardar, A.M.; et al. Vitamin D Receptor Regulates Transcription of Mitochondrial DNA and Directly Interacts with Mitochondrial DNA and TFAM. J. Nutr. Biochem. 2023, 116, 109322. [Google Scholar] [CrossRef]
- Araújo de Lima, L.; Oliveira Cunha, P.L.; Felicio Calou, I.B.; Tavares Neves, K.R.; Facundo, H.T.; Socorro de Barros Viana, G. Effects of Vitamin D (VD3) Supplementation on the Brain Mitochondrial Function of Male Rats, in the 6-OHDA-Induced Model of Parkinson’s Disease. Neurochem. Int. 2022, 154, 105280. [Google Scholar] [CrossRef] [PubMed]
- Leddy, J.J.; Haider, M.N.; Ellis, M.; Willer, B.S. Exercise Is Medicine for Concussion. Curr. Sports Med. Rep. 2018, 17, 262–270. [Google Scholar] [CrossRef]
- Li, F.; Lu, L.; Shang, S.; Chen, H.; Wang, P.; Haidari, N.A.; Chen, Y.-C.; Yin, X. Cerebral Blood Flow and Its Connectivity Deficits in Mild Traumatic Brain Injury at the Acute Stage. Neural Plast. 2020, 2020, 2174371. [Google Scholar] [CrossRef]
- Urell, C.; Emtner, M.; Hedenström, H.; Tenling, A.; Breidenskog, M.; Westerdahl, E. Deep Breathing Exercises with Positive Expiratory Pressure at a Higher Rate Improve Oxygenation in the Early Period after Cardiac Surgery—A Randomised Controlled Trial. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2011, 40, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, H.; Zhang, H.; Zhang, P.; Zhang, M.; Feng, H.; Duan, X.; Liu, W.; Wang, X.; Sun, Z. Effect of Breathing Exercises on Oxidative Stress Biomarkers in Humans: A Systematic Review and Meta-Analysis. Front. Med. 2023, 10, 1121036. [Google Scholar] [CrossRef] [PubMed]
- Blaya, M.; Truettner, J.; Zhao, W.; Bramlett, H.; Dietrich, W.D. Mild Hyperthermia Aggravates Glucose Metabolic Consequences in Repetitive Concussion. Int. J. Mol. Sci. 2020, 21, 609. [Google Scholar] [CrossRef]
- Ji, R.-R.; Nackley, A.; Huh, Y.; Terrando, N.; Maixner, W. Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology 2018, 129, 343–366. [Google Scholar] [CrossRef]
- Mehkri, Y.; Hanna, C.; Sriram, S.; Lucke-Wold, B.; Johnson, R.D.; Busl, K. Calcitonin Gene-Related Peptide and Neurologic Injury: An Emerging Target for Headache Management. Clin. Neurol. Neurosurg. 2022, 220, 107355. [Google Scholar] [CrossRef]
- Close, L.N.; Eftekhari, S.; Wang, M.; Charles, A.C.; Russo, A.F. Cortical Spreading Depression as a Site of Origin for Migraine: Role of CGRP. Cephalalgia 2019, 39, 428–434. [Google Scholar] [CrossRef]
- La Fountaine, M.F.; Hohn, A.N.; Leahy, C.L.; Weir, J.P.; Testa, A.J. Observations from a Prospective Small Cohort Study Suggest That CGRP Genes Contribute to Acute Posttraumatic Headache Burden after Concussion. Front. Neurol. 2022, 13, 947524. [Google Scholar] [CrossRef]
- Ashina, H.; Iljazi, A.; Al-Khazali, H.M.; Do, T.P.; Eigenbrodt, A.K.; Larsen, E.L.; Andersen, A.M.; Hansen, K.J.; Bräuner, K.B.; Chaudhry, B.A.; et al. CGRP-Induced Migraine-like Headache in Persistent Post-Traumatic Headache Attributed to Mild Traumatic Brain Injury. J. Headache Pain 2022, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Ashina, H.; Dodick, D.W. Post-Traumatic Headache: Pharmacologic Management and Targeting CGRP Signaling. Curr. Neurol. Neurosci. Rep. 2022, 22, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Saadatmand, K.; Khan, S.; Hassan, Q.; Hautamaki, R.; Ashouri, R.; Lua, J.; Doré, S. Benefits of Vitamin D Supplementation to Attenuate TBI Secondary Injury? Transl. Neurosci. 2021, 12, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yang, X.; Wang, Y.; Zhou, C. Vitamin D Protects against Traumatic Brain Injury via Modulating TLR4/MyD88/NF-κB Pathway-Mediated Microglial Polarization and Neuroinflammation. BioMed Res. Int. 2022, 2022, 3363036. [Google Scholar] [CrossRef]
- Scrimgeour, A.G.; Condlin, M.L.; Loban, A.; DeMar, J.C. Omega-3 Fatty Acids and Vitamin D Decrease Plasma T-Tau, GFAP, and UCH-L1 in Experimental Traumatic Brain Injury. Front. Nutr. 2021, 8, 685220. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, Z.; Rafiee, P.; Fotouhi, A.; Haghighi, S.; Rasekh Magham, R.; Ahmadi, Z.S.; Djalali, M.; Zareei, M.; Razeghi Jahromi, S.; Shahemi, S.; et al. The Effects of Vitamin D Supplementation on Interictal Serum Levels of Calcitonin Gene-Related Peptide (CGRP) in Episodic Migraine Patients: Post Hoc Analysis of a Randomized Double-Blind Placebo-Controlled Trial. J. Headache Pain 2020, 21, 22. [Google Scholar] [CrossRef] [PubMed]
- Jung, E.; Ro, Y.S.; Park, J.H.; Moon, S.B.; Lee, S.G.W.; Park, G.J.; Ryu, H.H.; Shin, S.D. Vitamin D Deficiency and Prognosis after Traumatic Brain Injury with Intracranial Injury: A Multi-Center Observational Study. J. Neurotrauma 2022, 39, 1408–1416. [Google Scholar] [CrossRef]
- Lee, J.M.; Jeong, S.W.; Kim, M.Y.; Park, J.B.; Kim, M.S. The Effect of Vitamin D Supplementation in Patients with Acute Traumatic Brain Injury. World Neurosurg. 2019, 126, e1421–e1426. [Google Scholar] [CrossRef]
- Kalayci, M.; Unal, M.M.; Gul, S.; Acikgoz, S.; Kandemir, N.; Hanci, V.; Edebali, N.; Acikgoz, B. Effect of Coenzyme Q10 on Ischemia and Neuronal Damage in an Experimental Traumatic Brain-Injury Model in Rats. BMC Neurosci. 2011, 12, 75. [Google Scholar] [CrossRef]
- Dahri, M.; Tarighat-Esfanjani, A.; Asghari-Jafarabadi, M.; Hashemilar, M. Oral Coenzyme Q10 Supplementation in Patients with Migraine: Effects on Clinical Features and Inflammatory Markers. Nutr. Neurosci. 2019, 22, 607–615. [Google Scholar] [CrossRef]
- Sazali, S.; Badrin, S.; Norhayati, M.N.; Idris, N.S. Coenzyme Q10 Supplementation for Prophylaxis in Adult Patients with Migraine—A Meta-Analysis. BMJ Open 2021, 11, e039358. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Karkhaneh, A.; Kheirollahi, A.; Emamgholipour, S.; Rafiee, M.H. The Effect of Melatonin on Gene Expression of Calcitonin Gene-Related Peptide and Some Proinflammatory Mediators in Patients with Pure Menstrual Migraine. Acta Neurol. Belg. 2017, 117, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, S.; Askari, G.; Khorvash, F.; Tarrahi, M.J.; Amani, R. Effects of Curcumin Supplementation on Clinical Features and Inflammation, in Migraine Patients: A Double-Blind Controlled, Placebo Randomized Clinical Trial. Int. J. Prev. Med. 2021, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zheng, S.; Lai, J.; Ye, D.; Huang, Q.; Wu, Z.; Chen, X.; Wang, S. Omega-3 Polyunsaturated Fatty Acids Protect Neurological Function After Traumatic Brain Injury by Suppressing Microglial Transformation to the Proinflammatory Phenotype and Activating Exosomal NGF/TrkA Signaling. Mol. Neurobiol. 2023, 60, 5592–5606. [Google Scholar] [CrossRef]
- Zhang, E.; Wan, X.; Yang, L.; Wang, D.; Chen, Z.; Chen, Y.; Liu, M.; Zhang, G.; Wu, J.; Han, H.; et al. Omega-3 Polyunsaturated Fatty Acids Alleviate Traumatic Brain Injury by Regulating the Glymphatic Pathway in Mice. Front. Neurol. 2020, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.R.; Armistead-Jehle, P.; Eltman, N.R.; Heath, K.M.; Cifu, D.X.; Swanson, R.L. Brain Injury: How Dietary Patterns Impact Long-Term Outcomes. Curr. Phys. Med. Rehabil. Rep. 2023, 11, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Tabor, J.B.; McCrea, M.A.; Meier, T.B.; Emery, C.A.; Debert, C.T. Hiding in Plain Sight: Factors Influencing the Neuroinflammatory Response to Sport-Related Concussion. Neurotrauma Rep. 2022, 3, 200–206. [Google Scholar] [CrossRef]
- Kip, E.; Parr-Brownlie, L.C. Healthy Lifestyles and Wellbeing Reduce Neuroinflammation and Prevent Neurodegenerative and Psychiatric Disorders. Front. Neurosci. 2023, 17, 1092537. [Google Scholar] [CrossRef]
- Yu, J.; Zhu, H.; Taheri, S.; Mondy, W.; Perry, S.; Kindy, M.S. Impact of Nutrition on Inflammation, Tauopathy, and Behavioral Outcomes from Chronic Traumatic Encephalopathy. J. Neuroinflamm. 2018, 15, 277. [Google Scholar] [CrossRef]
- McGeown, J.P.; Hume, P.A.; Theadom, A.; Quarrie, K.L.; Borotkanics, R. Nutritional Interventions to Improve Neurophysiological Impairments Following Traumatic Brain Injury: A Systematic Review. J. Neurosci. Res. 2021, 99, 573–603. [Google Scholar] [CrossRef]
- Miller, S.M.; Zynda, A.J.; Sabatino, M.J.; Ellis, H.B.; Dimeff, R. Docosahexaenoic acid (DHA) for the treatment of pediatric sport-related concussion: Results of a feasibility trial. Orthop. J. Sports Med. 2019, 7, 2325967119S00004. [Google Scholar] [CrossRef]
- Heileson, J.L.; Anzalone, A.J.; Carbuhn, A.F.; Askow, A.T.; Stone, J.D.; Turner, S.M.; Hillyer, L.M.; Ma, D.W.L.; Luedke, J.A.; Jagim, A.R.; et al. The Effect of Omega-3 Fatty Acids on a Biomarker of Head Trauma in NCAA Football Athletes: A Multi-Site, Non-Randomized Study. J. Int. Soc. Sports Nutr. 2021, 18, 65. [Google Scholar] [CrossRef] [PubMed]
- Patch, C.S.; Hill-Yardin, E.L.; Lewis, M.; Ryan, L.; Daly, E.; Pearce, A.J. The More, the Better: High-Dose Omega-3 Fatty Acids Improve Behavioural and Molecular Outcomes in Preclinical Models in Mild Brain Injury. Curr. Neurol. Neurosci. Rep. 2021, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Aghakhani, N. Relationship between Mild Traumatic Brain Injury and the Gut Microbiome: A Scoping Review. J. Neurosci. Res. 2022, 100, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, H.; Liang, J.; Huang, J.; Chen, N. Exercise Suppresses Neuroinflammation for Alleviating Alzheimer’s Disease. J. Neuroinflamm. 2023, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Rafie, F.; Khaksari, M.; Amiresmaili, S.; Soltani, Z.; Pourranjbar, M.; Shirazpour, S.; Jafari, E. Protective Effects of Early Exercise on Neuroinflammation, and Neurotoxicity Associated by Traumatic Brain Injury: A Behavioral and Neurochemical Approach. Int. J. Neurosci. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, V.N.; Sahbaie, P.; Shi, X.; Irvine, K.-A.; Yeomans, D.C.; Clark, J.D. Effect of Voluntary Exercise on Endogenous Pain Control Systems and Post-Traumatic Headache in Mice. J. Pain 2023, 24, 1859–1874. [Google Scholar] [CrossRef]
- Singaravelu Jaganathan, K.; Sullivan, K.A. Traumatic Brain Injury Rehabilitation: An Exercise Immunology Perspective. Exerc. Immunol. Rev. 2022, 28, 90–97. [Google Scholar]
- Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and Neuroinflammation: A Systematic Review of the Effects of Stress on Microglia and the Implications for Mental Illness. Psychopharmacology 2016, 233, 1637–1650. [Google Scholar] [CrossRef]
- Diez, G.G.; Anitua, E.; Castellanos, N.; Vázquez, C.; Galindo-Villardón, P.; Alkhraisat, M.H. The Effect of Mindfulness on the Inflammatory, Psychological and Biomechanical Domains of Adult Patients with Low Back Pain: A Randomized Controlled Clinical Trial. PLoS ONE 2022, 17, e0276734. [Google Scholar] [CrossRef]
- Lovette, B.C.; Kanaya, M.R.; Bannon, S.M.; Vranceanu, A.-M.; Greenberg, J. “Hidden Gains”? Measuring the Impact of Mindfulness-Based Interventions for People with Mild Traumatic Brain Injury: A Scoping Review. Brain Inj. 2022, 36, 1059–1070. [Google Scholar] [CrossRef] [PubMed]
- Simon, D.W.; McGeachy, M.; Bayır, H.; Clark, R.S.B.; Loane, D.J.; Kochanek, P.M. Neuroinflammation in the Evolution of Secondary Injury, Repair, and Chronic Neurodegeneration after Traumatic Brain Injury. Nat. Rev. Neurol. 2017, 13, 171–191. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Bae, Y.J.; Kim, J.S.; Jung, W.S.; Choi, J.W.; Roh, T.H.; You, N.; Kim, S.-H.; Han, M. Glymphatic System Evaluation Using Diffusion Tensor Imaging in Patients with Traumatic Brain Injury. Neuroradiology 2023, 65, 551–557. [Google Scholar] [CrossRef]
- Iliff, J.J.; Chen, M.J.; Plog, B.A.; Zeppenfeld, D.M.; Soltero, M.; Yang, L.; Singh, I.; Deane, R.; Nedergaard, M. Impairment of Glymphatic Pathway Function Promotes Tau Pathology after Traumatic Brain Injury. J. Neurosci. 2014, 34, 16180–16193. [Google Scholar] [CrossRef] [PubMed]
- Ishida, K.; Yamada, K.; Nishiyama, R.; Hashimoto, T.; Nishida, I.; Abe, Y.; Yasui, M.; Iwatsubo, T. Glymphatic System Clears Extracellular Tau and Protects from Tau Aggregation and Neurodegeneration. J. Exp. Med. 2022, 219, e20211275. [Google Scholar] [CrossRef] [PubMed]
- Ruchika, F.N.U.; Shah, S.; Neupane, D.; Vijay, R.; Mehkri, Y.; Lucke-Wold, B. Understanding the Molecular Progression of Chronic Traumatic Encephalopathy in Traumatic Brain Injury, Aging and Neurodegenerative Disease. Int. J. Mol. Sci. 2023, 24, 1847. [Google Scholar] [CrossRef] [PubMed]
- Piantino, J.; Schwartz, D.L.; Luther, M.; Newgard, C.; Silbert, L.; Raskind, M.; Pagulayan, K.; Kleinhans, N.; Iliff, J.; Peskind, E. Link between Mild Traumatic Brain Injury, Poor Sleep, and Magnetic Resonance Imaging: Visible Perivascular Spaces in Veterans. J. Neurotrauma 2021, 38, 2391–2399. [Google Scholar] [CrossRef]
- Piantino, J.A.; Iliff, J.J.; Lim, M.M. The Bidirectional Link Between Sleep Disturbances and Traumatic Brain Injury Symptoms: A Role for Glymphatic Dysfunction? Biol. Psychiatry 2022, 91, 478–487. [Google Scholar] [CrossRef]
- Hablitz, L.M.; Plá, V.; Giannetto, M.; Vinitsky, H.S.; Stæger, F.F.; Metcalfe, T.; Nguyen, R.; Benrais, A.; Nedergaard, M. Circadian Control of Brain Glymphatic and Lymphatic Fluid Flow. Nat. Commun. 2020, 11, 4411. [Google Scholar] [CrossRef]
- Hughes, C.; Hunt, K.; Cox, B.; Raybon, J.; Lopez, R.M. Sleep Dysfunction in Adolescents With Prolonged Postconcussion Symptoms: A Reciprocal Coupling of Traumatic Brain Injury and Sleep-Related Problems. J. Sport Rehabil. 2022, 31, 809–814. [Google Scholar] [CrossRef]
- Blaney, N.A.; Trbovich, A.; Ernst, N.; Eagle, S.R.; Collins, M.W.; Kontos, A.P. Influence of Sleep Dysfunction on Concussion Assessment Outcomes Among Adolescent Athletes After Concussion and Healthy Controls. Clin. J. Sport Med. Off. J. Can. Acad. Sport Med. 2021, 31, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Macnow, T.; Curran, T.; Tolliday, C.; Martin, K.; McCarthy, M.; Ayturk, D.; Babu, K.M.; Mannix, R. Effect of Screen Time on Recovery From Concussion: A Randomized Clinical Trial. JAMA Pediatr. 2021, 175, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Raikes, A.C.; Dailey, N.S.; Shane, B.R.; Forbeck, B.; Alkozei, A.; Killgore, W.D.S. Daily Morning Blue Light Therapy Improves Daytime Sleepiness, Sleep Quality, and Quality of Life Following a Mild Traumatic Brain Injury. J. Head Trauma Rehabil. 2020, 35, E405–E421. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tian, Y.; Qin, C.; Meng, L.; Feng, R.; Xu, S.; Zhai, Y.; Liang, D.; Zhang, R.; Tian, H.; et al. Impaired Glymphatic Drainage Underlying Obstructive Sleep Apnea Is Associated with Cognitive Dysfunction. J. Neurol. 2023, 270, 2204–2216. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Walsh, H.; Anssari, N.; Ferreira, I.; Tartaglia, M.C. Post-Concussion Syndrome and Sleep Apnea: A Retrospective Study. J. Clin. Med. 2020, 9, 691. [Google Scholar] [CrossRef] [PubMed]
- Yokoi-Shimizu, K.; Yanagimoto, K.; Hayamizu, K. Effect of Docosahexaenoic Acid and Eicosapentaenoic Acid Supplementation on Sleep Quality in Healthy Subjects: A Randomized, Double-Blinded, Placebo-Controlled Trial. Nutrients 2022, 14, 4136. [Google Scholar] [CrossRef]
- Bhardwaj, K.; Verma, N.; Trivedi, R.; Bhardwaj, S. Effect of Essential Fatty Acid Blend on Circadian Variations of Ambulatory Blood Pressure in Patients with Essential Hypertension and Coronary Artery Disease Risk Markers. J. Hum. Hypertens. 2022, 36, 289–298. [Google Scholar] [CrossRef] [PubMed]
- von Holstein-Rathlou, S.; Petersen, N.C.; Nedergaard, M. Voluntary Running Enhances Glymphatic Influx in Awake Behaving, Young Mice. Neurosci. Lett. 2018, 662, 253–258. [Google Scholar] [CrossRef]
- He, X.-F.; Liu, D.-X.; Zhang, Q.; Liang, F.-Y.; Dai, G.-Y.; Zeng, J.-S.; Pei, Z.; Xu, G.-Q.; Lan, Y. Voluntary Exercise Promotes Glymphatic Clearance of Amyloid Beta and Reduces the Activation of Astrocytes and Microglia in Aged Mice. Front. Mol. Neurosci. 2017, 10, 144. [Google Scholar] [CrossRef]
- Kollmeier, J.M.; Gürbüz-Reiss, L.; Sahoo, P.; Badura, S.; Ellebracht, B.; Keck, M.; Gärtner, J.; Ludwig, H.-C.; Frahm, J.; Dreha-Kulaczewski, S. Deep Breathing Couples CSF and Venous Flow Dynamics. Sci. Rep. 2022, 12, 2568. [Google Scholar] [CrossRef]
- Naugle, K.M.; Carey, C.; Evans, E.; Saxe, J.; Overman, R.; White, F.A. The Role of Deficient Pain Modulatory Systems in the Development of Persistent Post-Traumatic Headaches Following Mild Traumatic Brain Injury: An Exploratory Longitudinal Study. J. Headache Pain 2020, 21, 138. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.; Mace, R.A.; Funes, C.J.; Silverberg, N.D.; Iverson, G.L.; Caplan, D.N.; Vranceanu, A.-M. Pain Catastrophizing and Limiting Behavior Mediate the Association Between Anxiety and Postconcussion Symptoms. Psychosomatics 2020, 61, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Bech, N.H.; Sierevelt, I.N.; de Rooij, A.; Kerkhoffs, G.M.M.J.; Haverkamp, D. The Influence of Pain Catastrophizing and Central Sensitization on the Reported Pain after Hip Arthroscopy. Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2021, 29, 2837–2842. [Google Scholar] [CrossRef] [PubMed]
- Campbell, C.M.; Buenaver, L.F.; Finan, P.; Bounds, S.C.; Redding, M.; McCauley, L.; Robinson, M.; Edwards, R.R.; Smith, M.T. Sleep, Pain Catastrophizing, and Central Sensitization in Knee Osteoarthritis Patients With and Without Insomnia. Arthritis Care Res. 2015, 67, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Balasch-Bernat, M.; Dueñas, L.; Aguilar-Rodríguez, M.; Falla, D.; Schneebeli, A.; Navarro-Bosch, M.; Lluch, E.; Barbero, M. The Spatial Extent of Pain Is Associated with Pain Intensity, Catastrophizing and Some Measures of Central Sensitization in People with Frozen Shoulder. J. Clin. Med. 2021, 11, 154. [Google Scholar] [CrossRef] [PubMed]
- Chaput, G.; Lajoie, S.P.; Naismith, L.M.; Lavigne, G. Pain Catastrophizing Correlates with Early Mild Traumatic Brain Injury Outcome. Pain Res. Manag. 2016, 2016, 2825856. [Google Scholar] [CrossRef]
- Hassan, A.; Brooks, B.L.; McArthur, B.A.; Beauchamp, M.H.; Craig, W.; Doan, Q.; Zemek, R.; Yeates, K.O. Dynamic Relations Between Psychological Resilience and Post-Concussion Symptoms in Children With Mild Traumatic Brain Injury Versus Orthopedic Injury: An A-CAP Study. J. Neurotrauma 2023, 41, 135–146. [Google Scholar] [CrossRef]
- Bunt, S.C.; Meredith-Duliba, T.; Didehhani, N.; Hynan, L.S.; LoBue, C.; Stokes, M.; Miller, S.M.; Bell, K.; Batjer, H.; Cullum, C.M. Resilience and Recovery from Sports Related Concussion in Adolescents and Young Adults. J. Clin. Exp. Neuropsychol. 2021, 43, 677–688. [Google Scholar] [CrossRef]
- Conti, Y.; Vatine, J.-J.; Levy, S.; Levin Meltz, Y.; Hamdan, S.; Elkana, O. Pain Catastrophizing Mediates the Association Between Mindfulness and Psychological Distress in Chronic Pain Syndrome. Pain Pract. Off. J. World Inst. Pain 2020, 20, 714–723. [Google Scholar] [CrossRef]
- Jones, M.I.; Parker, J.K. Mindfulness Mediates the Relationship between Mental Toughness and Pain Catastrophizing in Cyclists. Eur. J. Sport Sci. 2018, 18, 872–881. [Google Scholar] [CrossRef]
- Day, M.A.; Ward, L.C.; Thorn, B.E.; Burns, J.; Ehde, D.M.; Barnier, A.J.; Mattingley, J.B.; Jensen, M.P. Mechanisms of Mindfulness Meditation, Cognitive Therapy, and Mindfulness-Based Cognitive Therapy for Chronic Low Back Pain. Clin. J. Pain 2020, 36, 740–749. [Google Scholar] [CrossRef]
- Bagheri, S.; Naderi, A.; Mirali, S.; Calmeiro, L.; Brewer, B.W. Adding Mindfulness Practice to Exercise Therapy for Female Recreational Runners With Patellofemoral Pain: A Randomized Controlled Trial. J. Athl. Train. 2021, 56, 902–911. [Google Scholar] [CrossRef] [PubMed]
- Gmuca, S.; Weiss, P.F.; McGill, M.; Xiao, R.; Ward, M.; Nelson, M.; Sherry, D.D.; Cronholm, P.F.; Gerber, J.S.; Palermo, T.M.; et al. The Feasibility and Acceptability of Resilience Coaching for Adolescent Chronic Musculoskeletal Pain: A Single-Arm Pilot Trial. Children 2022, 9, 1432. [Google Scholar] [CrossRef] [PubMed]
- Curran, D.; Lauzon, J.; Quon, D.; Marshall, S. Feasibility of an Interactive Coaching App to Enhance Post-Concussion Outpatient Care. Front. Med. Technol. 2021, 3, 660540. [Google Scholar] [CrossRef] [PubMed]
- McCarty, C.A.; Zatzick, D.; Stein, E.; Wang, J.; Hilt, R.; Rivara, F.P. Collaborative Care for Adolescents With Persistent Postconcussive Symptoms: A Randomized Trial. Pediatrics 2016, 138, e20160459. [Google Scholar] [CrossRef]
- Ponsford, J.; Lee, N.K.; Wong, D.; McKay, A.; Haines, K.; Alway, Y.; Downing, M.; Furtado, C.; O’Donnell, M.L. Efficacy of Motivational Interviewing and Cognitive Behavioral Therapy for Anxiety and Depression Symptoms Following Traumatic Brain Injury. Psychol. Med. 2016, 46, 1079–1090. [Google Scholar] [CrossRef]
- Bombardier, C.H.; Bell, K.R.; Temkin, N.R.; Fann, J.R.; Hoffman, J.; Dikmen, S. The Efficacy of a Scheduled Telephone Intervention for Ameliorating Depressive Symptoms during the First Year after Traumatic Brain Injury. J. Head Trauma Rehabil. 2009, 24, 230–238. [Google Scholar] [CrossRef]
- Kami, K.; Tajima, F.; Senba, E. Brain Mechanisms of Exercise-Induced Hypoalgesia: To Find a Way Out from “Fear-Avoidance Belief.”. Int. J. Mol. Sci. 2022, 23, 2886. [Google Scholar] [CrossRef]
Author | Study Design * | Summary of Findings |
---|---|---|
Bock, et al. (2015) [26] | RS, n = 366 | Treatment in <7 days results in significantly shorter recovery time (p < 0.05). |
Cassimatis, et al. (2021) [27] | RS, n = 341 | Late treatment (>28 days) results in 3× longer recovery time compared to early treatment (<14 days) (148 vs. 39 days, 95% CI: 30.7–46.7). |
Eagle, et al. (2020) [28] | RS, n = 218 | Prolonged recovery is 10× greater (OR = 9.8) when seen 8–20 days after recovery vs. <7 days. |
Kontos, et al. (2020) [29] | RS, n = 162 | An early treatment (<7 days) group recovered 20 days sooner than those seen late (8–20 days). |
Pratile, et al. (2022) [30] | CS, n = 1213 | Treatment in <10 days recovered in 23.5 days vs. 37.1 days for those assessed in 10–30 days. |
Intervention | Target * | Author, Study Details ** | Summary of Findings |
---|---|---|---|
Early Exercise | PS, CN, NI, GO, PC | Leddy, et al. (2023) [68]; MA (n = 9432) | Early physical activity and prescribed exercise improved recovery by a mean of −4.64 days (95% CI −6.69, –2.59). |
Grool, et al. (2016) [69]; CS (n = 2413) | Early participation (<7 days) in physical activity compared with no physical activity was associated with lower risk of PPCS (413 [24.6%] patients vs. 320 [43.5%] patients; RR, 0.75 [95% CI, 0.70–0.80]). | ||
Deep Breathing | CN, NI, GO, PC | Cook et al. (2021) [70]; P (n = 15) | Following deep breathing exercises, participants reported significant reduction in stress (r = 0.57), tension (r = 0.73), fatigue (r = 0.73), and confusion (r = 0.67), with large effect sizes. |
Cold Therapy | PS, CN | Al-Husseini, et al. (2022) [71], RCT (n = 132) | The proportion of players with prolonged symptoms (>14 days) was 24.7% in the cold therapy intervention group and 43.7% in controls (p < 0.05) |
Mindfulness | NI, PC | Acabchuk, et al. (2021) [72], MA (n = 532) | Meditation, yoga, and mindfulness-based interventions lead to significant improvement of overall symptoms compared to controls (d = 0.41; 95% CI [0.04, 0.77]; τ2 = 0.06). |
Melatonin | NI, GO | Barlow, et al. (2019) [73], MA (n = 15) | Meta-analysis of pre-clinical data showed a positive effect of melatonin on neurobehavioral outcome (SMD = 1.51 (95% CI: 1.06–1.96)), neurological status (SMD = 1.35 (95% CI: 0.83–1.88)), and cognition (SMD = 1.16 (95% CI: 0.4–1.92)) after TBI. |
Cassimatis, et al. (2022) [74], MA (n = 251) | Eight of nine mTBI studies reported positive sleep outcomes after melatonin treatment, with significant improvements in subjective sleep quality, objective sleep efficiency, and total sleep, and reductions in self-reported fatigue, anxiety, and depressive symptoms. | ||
Omega oils | NI, GO | Miller, et al. (2022) [75], RCT (n = 40) | In SRCs, the treatment group took 2 g of docosahexaenoic acid (DHA) daily for 12 weeks. The DHA group were symptom-free earlier than the placebo group (11.0 vs. 16.0 days, p = 0.08) and had a shorter RTP time (14.0 vs. 19.5 days, p = 0.12). |
Vitamin D | CN, NI | Sharma, et al. (2020) [76], RCT (n = 35) | In moderate to severe TBI, Vitamin D bolus in the acute period showed significant improvements in cognitive and physiological outcomes. Inflammatory markers were also significantly decreased in the treatment group (IL-6 p = 0.08, TNF-α p = 0.02). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kureshi, S.; Mendizabal, M.; Francis, J.; Djalilian, H.R. Conservative Management of Acute Sports-Related Concussions: A Narrative Review. Healthcare 2024, 12, 289. https://doi.org/10.3390/healthcare12030289
Kureshi S, Mendizabal M, Francis J, Djalilian HR. Conservative Management of Acute Sports-Related Concussions: A Narrative Review. Healthcare. 2024; 12(3):289. https://doi.org/10.3390/healthcare12030289
Chicago/Turabian StyleKureshi, Sohaib, Maria Mendizabal, John Francis, and Hamid R. Djalilian. 2024. "Conservative Management of Acute Sports-Related Concussions: A Narrative Review" Healthcare 12, no. 3: 289. https://doi.org/10.3390/healthcare12030289