Risk Factors for Musculoskeletal Disorders in Korean Farmers: Survey on Occupational Diseases in 2020 and 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Statistical Methods
2.2.1. Review on the ROSE Resampling Strategy
2.2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, J.; Kim, J.; Youn, K.; Lee, M. A study on the prevalence and characteristics of occupational diseases in Korean farmers. Surv. Res. 2023, 24, 27–41. [Google Scholar] [CrossRef]
- Lee, S.-J. The Occupational Diseases of Agricultural Workers. Hanyang Med. Rev. 2010, 30, 305–312. [Google Scholar] [CrossRef]
- Akbar, K.A.; Try, P.; Viwattanakulvanid, P.; Kallawicha, K. Work-Related Musculoskeletal Disorders Among Farmers in the Southeast Asia Region: A Systematic Review. Saf. Health Work 2023, 14, 243–249. [Google Scholar] [CrossRef]
- Holmberg, S.; Stiernström, E.L.; Thelin, A.; Svärdsudd, K. Musculoskeletal symptoms among farmers and non-farmers: A population-based study. Int. J. Occup. Environ. Health 2002, 8, 339–345. [Google Scholar] [CrossRef]
- Lee, M.; Kim, K.; Choi, D. Factors Affecting Musculoskeletal Symptoms among Korean Farmers: Focusing on the Sociodemographic Characteristics. J. Agric. Med. Community Health 2022, 47, 255–267. [Google Scholar]
- Lee, S.-H.; Lee, J.-Y.; Cho, Y.-C. Musculoskeletal Disorder Symptoms and Related Factors among Male Workers in Small-scale Manufacturing Industries. J. Korea Acad.-Ind. Coop. Soc. 2012, 13, 4025–4035. [Google Scholar] [CrossRef]
- Min, D.; Baek, S.; Park, H.W.; Lee, S.A.; Moon, J.; Yang, J.E.; Kim, K.S.; Kim, J.Y.; Kang, E.K. Prevalence and Characteristics of Musculoskeletal Pain in Korean Farmers. Ann. Rehabil. Med. 2016, 40, 1–13. [Google Scholar] [CrossRef]
- Osborne, A.; Blake, C.; Fullen, B.M.; Meredith, D.; Phelan, J.; McNamara, J.; Cunningham, C. Risk factors for musculoskeletal disorders among farm owners and farm workers: A systematic review. Am. J. Ind. Med. 2012, 55, 376–389. [Google Scholar] [CrossRef]
- Szeszenia-Dąbrowska, N.; Świątkowska, B.; Wilczyńska, U. Occupational diseases among farmers in Poland. Med. Pr. 2016, 67, 163–171. [Google Scholar] [CrossRef]
- Karttunen, J.P.; Rautiainen, R.H. Distribution and characteristics of occupational injuries and diseases among farmers: A retrospective analysis of workers’ compensation claims. Am. J. Ind. Med. 2013, 56, 856–869. [Google Scholar] [CrossRef]
- Menardi, G.; Torelli, N. Training and assessing classification rules with unbalanced data. Data Min. Knowl. Discov. 2012, 28, 92–122. [Google Scholar] [CrossRef]
- King, G.; Zeng, L. Logistic Regression in Rare Events Data. Political Anal. 2001, 9, 137–163. [Google Scholar] [CrossRef]
- Hand, D.J.; Vinciotti, V. Choosing k for two-class nearest neighbour classifiers with unbalanced classes. Pattern Recognit. Lett. 2003, 24, 1555–1562. [Google Scholar] [CrossRef]
- Chawla, N.V. C4.5 and imbalanced data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure. ICML 2003, 3, 36. [Google Scholar]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Torgo, L. Data Mining with R: Learning with Case Studies, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2016. [Google Scholar]
- Kuhn, M. Caret: Classification and Regression Training. Astrophys. Source Code Libr. 2015, ascl-1505. [Google Scholar]
- McCarthy, K.; Zabar, B.; Weiss, G. Does cost-sensitive learning beat sampling for classifying rare classes? In Proceedings of the 1st International Workshop on Utility-Based Data Mining, Chicago, IL, USA, 21 August 2005; pp. 69–77. [Google Scholar]
- Lee, S.S. Noisy replication in skewed binary classification. Comput. Stat. Data Anal. 2000, 34, 165–191. [Google Scholar] [CrossRef]
- Chawla, N.; Bowyer, K.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. arXiv 2002, arXiv:1106.1813. [Google Scholar] [CrossRef]
- Haibo, H.; Yang, B.; Garcia, E.A.; Shutao, L. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 1322–1328. [Google Scholar]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Taylor & Francis: Oxfordshire, UK, 1994. [Google Scholar]
- Douzas, G.; Bacao, F.; Last, F. Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE. Inf. Sci. 2018, 465, 1–20. [Google Scholar] [CrossRef]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Lunardon, N.; Menardi, G.; Torelli, N. ROSE: A Package for Binary Imbalanced Learning. R J. 2014, 6, 79. [Google Scholar] [CrossRef]
- Bowman, A.W.; Azzalini, A.; Bowman, A.W.; Azzalini, A. Software. In Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar] [CrossRef]
- Sokolova, M.; Japkowicz, N.; Szpakowicz, S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1015–1021. [Google Scholar]
- Nagelkerke, N.J.D. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Greggi, C.; Visconti, V.V.; Albanese, M.; Gasperini, B.; Chiavoghilefu, A.; Prezioso, C.; Persechino, B.; Iavicoli, S.; Gasbarra, E.; Iundusi, R.; et al. Work-Related Musculoskeletal Disorders: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 3964. [Google Scholar] [CrossRef]
- Tonelli, S.; Culp, K.; Donham, K. Work-related musculoskeletal disorders in senior farmers: Safety and health considerations. Workplace Health Saf. 2014, 62, 333–341. [Google Scholar] [CrossRef]
- Xiao, H.; McCurdy, S.A.; Stoecklin-Marois, M.T.; Li, C.S.; Schenker, M.B. Agricultural work and chronic musculoskeletal pain among Latino farm workers: The MICASA study. Am. J. Ind. Med. 2013, 56, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Gjesdal, S.; Bratberg, E.; Mæland, J.G. Gender differences in disability after sickness absence with musculoskeletal disorders: Five-year prospective study of 37,942 women and 26,307 men. BMC Musculoskelet. Disord. 2011, 12, 37. [Google Scholar] [CrossRef]
- Lee, H.; Cho, S.Y.; Kim, J.S.; Yoon, S.Y.; Kim, B.I.; An, J.M.; Kim, K.B. Difference in health status of Korean farmers according to gender. Ann. Occup. Environ. Med. 2019, 31, 7. [Google Scholar] [CrossRef]
- Baek, S.; Park, J.; Kyoung Kang, E.; Kim, G.; Kim, H.; Park, H.W. Association Between Ergonomic Burden Assessed Using 20-Item Agricultural Work-Related Ergonomic Risk Questionnaire and Shoulder, Low Back, and Leg Pain in Korean Farmers. J. Agromedicine 2023, 28, 532–544. [Google Scholar] [CrossRef]
- Lizer, S.K.; Petrea, R.E. Health and safety needs of older farmers: Part II. Agricultural injuries. Aaohn J. 2008, 56, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Walker-Bone, K.; Palmer, K.T. Musculoskeletal disorders in farmers and farm workers. Occup. Med. 2002, 52, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Brackbill, R.M.; Cameron, L.L.; Behrens, V. Prevalence of chronic diseases and impairments among US farmers, 1986–1990. Am. J. Epidemiol. 1994, 139, 1055–1065. [Google Scholar] [CrossRef] [PubMed]
- Kee, D.; Haslam, R. Prevalence of work-related musculoskeletal disorders in agriculture workers in Korea and preventative interventions. Work 2019, 64, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Bernard, B.P. Musculoskeletal Disorders and Workplace Factors: A Critical Review of Epidemiologic Evidence for Work-Related Musculoskeletal Disorders of the Neck, Upper Extremity, and Low Back; The National Institute for Occupational Safety and Health: Washington, DC, USA, 1997. [Google Scholar]
- Hong, C.; Lee, C.G.; Song, H. Characteristics of lumbar disc degeneration and risk factors for collapsed lumbar disc in Korean farmers and fishers. Ann. Occup. Environ. Med. 2021, 33, e16. [Google Scholar] [CrossRef]
- Park, K.H.; Baek, S.; Kang, E.K.; Park, H.W.; Kim, G.; Kim, S.H. The Association Between Sagittal Plane Alignment and Disc Space Narrowing of Lumbar Spine in Farmers. Ann. Rehabil. Med. 2021, 45, 294–303. [Google Scholar] [CrossRef]
- Meyers, J.M.; Faucett, J.; Tejeda, D.G.; Kabashima, J.; Miles, J.A.; Janowitz, I.; Duraj, V.; Smith, R.; Weber, E. High Risk Tasks for Musculoskeletal Disorders in Agricultural Field Work. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2000, 44, 616–619. [Google Scholar] [CrossRef]
- Allread, W.G.; Wilkins, J.R., 3rd; Waters, T.R.; Marras, W.S. Physical demands and low-back injury risk among children and adolescents working on farms. J. Agric. Saf. Health 2004, 10, 257–274. [Google Scholar] [CrossRef]
- Lee, J.; Oh, Y.-G.; Yoo, S.-H.; Suh, K. Vulnerability assessment of rural aging community for abandoned farmlands in South Korea. Land. Use Policy 2021, 108, 105544. [Google Scholar] [CrossRef]
- Shivakumar, M.; Welsh, V.; Bajpai, R.; Helliwell, T.; Mallen, C.; Robinson, M.; Shepherd, T. Musculoskeletal disorders and pain in agricultural workers in Low- and Middle-Income Countries: A systematic review and meta-analysis. Rheumatol. Int. 2024, 44, 235–247. [Google Scholar] [CrossRef]
- Fox, J.; Monette, G. Generalized Collinearity Diagnostics. J. Am. Stat. Assoc. 1992, 87, 178–183. [Google Scholar] [CrossRef]
MSDs’ prevalence | ||||
No | Yes | |||
Predictor | Category | n (%) | n (%) | p-value |
Total | - | 27,578 (94.0) | 1765 (6.0) | - |
Sex | Male (ref) | 13,623 (95.0) | 718 (5.0) | <0.0001 |
Female | 13,955 (93.0) | 1047 (7.0) | ||
Age, yrs | <50 (ref) | 903 (98.9) | 10 (1.1) | <0.00001 |
50–59 | 2820 (97.2) | 80 (2.8) | ||
60–69- | 7760 (95.1) | 398 (4.9) | ||
70 | 16,095 (92.6) | 1277 (7.4) | ||
FAP, months | 0–5 (ref) | 1822 (93.1) | 135 (6.9) | 0.0889 |
6–12 | 25,756 (94.0) | 1630 (6.0) | ||
Pesticide | No (ref) | 4491 (94.6) | 254 (5.4) | 0.0362 |
Yes | 23,087 (93.9) | 1511 (6.1) | ||
Types of farming | Rice (ref) | 10,521 (93.6) | 784 (6.4) | 0.0921 |
Dry field | 12,126 (94.1) | 763 (5.9) | ||
Orchard | 2587 (94.9) | 139 (5.1) | ||
Greenhouse | 1063 (94.2) | 65 (5.8) | ||
Livestock | 281 (95.2) | 14 (4.8) | ||
Income, US dollars | <3799 (ref) | 9329 (93.1) | 690 (6.9) | <0.0001 |
3800–14,999 | 10,568 (93.9) | 680 (6.1) | ||
15,000–37,999 | 5656 (94.9) | 302 (5.1) | ||
38,000 | 2025 (95.6) | 93 (4.4) | ||
Neck | No (ref) | 13,324 (94.5) | 770 (5.5) | 0.0001 |
Yes | 14,254 (93.5) | 995 (6.5) | ||
Arms | No (ref) | 15,924 (94.4) | 952 (5.6) | 0.0017 |
Yes | 11,654 (93.5) | 813 (6.5) | ||
Wrists | No (ref) | 9649 (94.2) | 589 (5.8) | 0.1671 |
Yes | 17,929 (93.8) | 1176 (6.2) | ||
Waist | No (ref) | 5631 (95.3) | 279 (4.7) | <0.0001 |
Yes | 21,947 (93.7) | 1486 (6.3) | ||
Knees | No (ref) | 6710 (94.9) | 361 (5.1) | 0.0003 |
Yes | 20,868 (93.7) | 1403 (6.3) | ||
Lifting: 10–19, kg | No (ref) | 15,091 (93.3) | 1086 (6.7) | <0.0001 |
Yes | 12,487 (94.8) | 679 (5.2) | ||
Lifting: 20, kg | No (ref) | 18.752 (93.7) | 1265 (6.3) | 0.0013 |
Yes | 8826 (94.6) | 500 (5.4) |
Predictor | Category | Raw | Synthetic | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Under | Over | Both | ROSE | ||||||||
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
Sex | Female | 1.31 (1.17, 1.45) | <0.0001 | 1.42 (1.22, 1.64) | <0.0001 | 1.42 (1.22, 1.64) | <0.0001 | 1.42 (1.22, 1.64) | <0.0001 | 1.32 (1.26, 1.39) | <0.0001 |
Age, yrs Ref: <50 | 50–59 | 2.51 (1.30, 4.87) | <0.0001 | 1.93 (0.92, 4.06) | <0.0001 | 1.93 (0.92, 4.06) | <0.0001 | 1.93 (0.92, 4.06) | <0.0001 | 2.63 (2.05, 3.38) | <0.0001 |
60–69 | 4.43 (2.35, 8.33) | 3.40 (1.68, 6.88) | 3.40 (1.68, 6.88) | 3.40 (1.68, 6.88) | 4.55 (3.59, 5.77) | ||||||
70 | 6.64 (3.54, 12.5) | 4.69 (2.32, 9.45) | 4.69 (2.32, 9.45) | 4.69 (2.32, 9.45) | 6.69 (5.28, 8.47) | ||||||
FAP Ref: 0–5 | 6–12 | 0.79 (0.66, 0.95) | 0.0151 | 0.84 (0.64, 1.09) | 0.1923 | 0.84 (0.64, 1.09) | 0.1923 | 0.84 (0.64, 1.09) | 0.1923 | 0.88 (0.80, 0.96) | 0.0053 |
Pesticide | Yes | 1.24 (1.08, 1.43) | 0.0020 | 1.27 (1.04, 1.54) | 0.0165 | 1.27 (1.04, 1.54) | 0.0165 | 1.27 (1.04, 1.54) | 0.0165 | 1.23 (1.15, 1.32) | <0.0001 |
Types of farming | Dry field | 0.88 (0.79, 0.98) | 0.0429 | 0.78 (0.67, 0.90) | 0.0208 | 0.78 (0.67, 0.90) | 0.0208 | 0.78 (0.67, 0.90) | 0.0208 | 0.86 (0.81, 0.90) | <0.0001 |
Orchard | 0.83 (0.68, 1.01) | 0.87 (0.66, 1.15) | 0.87 (0.66, 1.15) | 0.87 (0.66, 1.15) | 0.80 (0.73, 0.88) | ||||||
Greenhouse | 1.12 (0.86, 1.46) | 0.93 (0.65, 1.34) | 0.93 (0.65, 1.34) | 0.93 (0.65, 1.34) | 1.12 (0.99, 1.28) | ||||||
Livestock | 1.16 (0.67, 2.01) | 1.25 (0.59, 2.68) | 1.25 (0.59, 2.68) | 1.25 (0.59, 2.68) | 1.06 (0.81, 1.38) | ||||||
Income, US dollars Ref: <3800 | 3800–14,999 | 0.93 (0.83, 1.04) | 0.4436 | 1.05 (0.89, 1.23) | 0.8459 | 1.05 (0.89, 1.23) | 0.8459 | 1.05 (0.89, 1.23) | 0.8459 | 0.90 (0.86, 0.96) | 0.0010 |
15,000–37,999 | 0.90 (0.77, 1.04) | 0.96 (0.78, 1.18) | 0.96 (0.78, 1.18) | 0.96 (0.78, 1.18) | 0.92 (0.85, 0.99) | ||||||
38,000 | 0.90 (0.71, 1.14) | 1.00 (0.73, 1.38) | 1.00 (0.73, 1.38) | 1.00 (0.73, 1.38) | 0.85 (0.76, 0.95) | ||||||
Neck | Yes | 1.22 (1.08, 1.38) | 0.0015 | 1.19 (1.00, 1.42) | 0.0447 | 1.19 (1.00, 1.42) | 0.0447 | 1.19 (1.00, 1.42) | 0.0447 | 1.20 (1.13, 1.28) | <0.0001 |
Arms | Yes | 1.14 (1.01, 1.29) | 0.0336 | 1.11 (0.94, 1.32) | 0.2219 | 1.11 (0.94, 1.32) | 0.2219 | 1.11 (0.94, 1.32) | 0.2219 | 1.19 (1.12, 1.26) | <0.0001 |
Wrists | Yes | 0.93 (0.82, 1.06) | 0.2877 | 0.95 (0.80, 1.15) | 0.6204 | 0.95 (0.80, 1.15) | 0.6204 | 0.95 (0.80, 1.15) | 0.6204 | 0.94 (0.89, 1.00) | 0.0642 |
Waist | Yes | 1.26 (1.07, 1.49) | 0.0046 | 1.42 (1.22, 1.64) | 0.1529 | 1.42 (1.22, 1.64) | 0.1529 | 1.42 (1.22, 1.64) | 0.1529 | 1.27 (1.18, 1.38) | <0.0001 |
Knees | Yes | 1.05 (0.91, 1.22) | 0.4906 | 1.93 (0.92, 4.06) | 0.2692 | 1.93 (0.92, 4.06) | 0.2692 | 1.93 (0.92, 4.06) | 0.2692 | 1.05 (0.98, 1.13) | 0.1657 |
Lifting: 10–19 kg | Yes | 0.78 (0.68, 0.90) | 0.0006 | 3.40 (1.68, 6.88) | 0.0022 | 3.40 (1.68, 6.88) | 0.0022 | 3.40 (1.68, 6.88) | 0.0022 | 0.74 (0.69, 0.79) | <0.0001 |
Lifting: 20 kg | Yes | 1.15 (0.98, 1.34) | 0.0828 | 4.69 (2.32, 9.45) | 0.4183 | 4.69 (2.32, 9.45) | 0.4183 | 4.69 (2.32, 9.45) | 0.4183 | 1.17 (1.09, 1.26) | <0.0001 |
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Measures | Nagelkerke’s R-square | 0.029 | 0.075 | 0.064 | 0.065 | 0.074 | |||||
Sensitivity | 0 | 0.679 | 0.657 | 0.659 | 0.671 | ||||||
Precision | - | 0.077 | 0.080 | 0.079 | 0.079 | ||||||
F1 score | - | 0.069 | 0.071 | 0.071 | 0.070 | ||||||
Accuracy | 0.940 | 0.508 | 0.524 | 0.518 | 0.508 | ||||||
AUC | 0.619 | 0.615 | 0.618 | 0.615 | 0.618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Youn, K.; Park, J. Risk Factors for Musculoskeletal Disorders in Korean Farmers: Survey on Occupational Diseases in 2020 and 2022. Healthcare 2024, 12, 2026. https://doi.org/10.3390/healthcare12202026
Kim J, Youn K, Park J. Risk Factors for Musculoskeletal Disorders in Korean Farmers: Survey on Occupational Diseases in 2020 and 2022. Healthcare. 2024; 12(20):2026. https://doi.org/10.3390/healthcare12202026
Chicago/Turabian StyleKim, Jinheum, Kanwoo Youn, and Jinwoo Park. 2024. "Risk Factors for Musculoskeletal Disorders in Korean Farmers: Survey on Occupational Diseases in 2020 and 2022" Healthcare 12, no. 20: 2026. https://doi.org/10.3390/healthcare12202026
APA StyleKim, J., Youn, K., & Park, J. (2024). Risk Factors for Musculoskeletal Disorders in Korean Farmers: Survey on Occupational Diseases in 2020 and 2022. Healthcare, 12(20), 2026. https://doi.org/10.3390/healthcare12202026