Proprioceptive and Strength Exercise Guidelines to Prevent Falls in the Elderly Related to Biomechanical Movement Characteristics
Abstract
:1. Introduction
2. Theoretical Rationale of the Exercise Program
2.1. Exercise Prescription Based on Improving Movement Quality
2.2. Workout Session for the Elderly—Guidelines
2.3. Gait Biomechanical Parameters Related to Falls
2.4. Theoretical Rationale Summary
3. Exercise Program to Prevent Falls—Proposal
Limitations of the Exercise Program Proposal and Special Considerations
4. Conclusions and Future Investigation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Ageing and Health. 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 28 November 2023).
- American College of Sports Medicine. Exercise prescription for healthy populations with special considerations. In ACSM’s Guidelines for Exercise and test Prescription, 7th ed.; Ligouri, G., Feito, Y., Fountaine, C., Roy, B., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2021; pp. 167–201. [Google Scholar]
- World Health Organization. WHO Global Report on Falls Prevention in Older Age; Community Health: Bristol, UK, 2008. [Google Scholar]
- Stenhagen, M.; Ekström, H.; Nordell, E.; Elmståhl, S. Accidental falls, health-related quality of life and life satisfaction: A prospective study of the general elderly population. Arch. Gerontol. Geriatr. 2014, 58, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Yardley, L.; Smith, H. A prospective study of the relationship between feared consequences of falling and avoidance of activity in community-living older people. Gerontologist 2002, 42, 17–23. [Google Scholar] [CrossRef]
- Ambrose, A.; Cruz, L.; Paul, G. Falls and fractures: A systematic approach to screening and prevention. Maturitas 2015, 82, 8593. [Google Scholar] [CrossRef]
- World Health Organization. Falls. 2021. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 28 November 2023).
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [PubMed]
- American Geriatrics Society; British Geriatrics Society; American Academy of Orthopaedic Surgeons Panel on Falls Prevention. Guideline for the prevention of falls in older persons. J. Am. Geriatr. Soc. 2001, 49, 664–672. [Google Scholar] [CrossRef]
- Gillespie, L.D.; Robertson, M.C.; Gillespie, W.J.; Sherrington, C.; Gates, S.; Clemson, L.; Lamb, S.E. Interventions for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2009, 2, CD007146. [Google Scholar]
- Sherrington, C.; Whitney, J.C.; Lord, S.R.; Herbert, R.D.; Cumming, R.G.; Close, J.C. Effective exercise for the prevention of falls: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2008, 56, 2234–2243. [Google Scholar] [CrossRef] [PubMed]
- Sherrington, C.; Fairhall, N.; Wallbank, G.; Tiedemann, A.; Michaleff, Z.A.; Howard, K.; Clemson, L.; Hopewell, S.; Lamb, S.E. Exercise for preventing falls in older people living in the community. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef]
- Berg, W.P.; Alessio, H.M.; Mills, E.M.; Tong, C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 1997, 26, 261–268. [Google Scholar] [CrossRef]
- Creaby, M.; Cole, M. Gait characteristics and falls in Parkinson’s disease: A systematic review and meta-analysis. Park. Relat. Disord. 2018, 57, 1–8. [Google Scholar] [CrossRef]
- Krabbe, P. The Measurement of Health and Health Status: Concepts, Methods and Applications from a Multidisciplinary Perspective; Elsevier: London, UK, 2017. [Google Scholar]
- Barrett, R.; Mills, P.; Begg, R. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture 2010, 32, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Moyer, B.; Chambers, A.; Redfern, M.; Cham, R. Gait parameters as predictors of slip severity in younger and older adults. Ergonomics 2006, 49, 329–343. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.; Rios, D.; Edelberg, H. Gait variability and fall risk in community-living older adults: A 1-year prospective study. Arch. Phys. Med. Rehabil. 2001, 82, 1050–1056. [Google Scholar] [CrossRef]
- Batcir, S.; Shani, G.; Shapiro, A.; Alexander, N.; Melzer, I. The kinematics and strategies of recovery steps during lateral losses of balance in standing at different perturbation magnitudes in older adults with varying history of falls. BMC Geriatr. 2020, 20, 249. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.; Margerum, S.; Redfern, M.; Cham, R. Kinematics of the foot during slips. Occup. Ergon. 2003, 3, 225–234. [Google Scholar] [CrossRef]
- Aleixo, P.; Vaz Patto, J.; Abrantes, J. Dynamic joint stiffness of the ankle in rheumatoid arthritis postmenopausal women fallers and non-fallers. Gait Posture 2017, 57, 324–325. [Google Scholar] [CrossRef]
- Stief, F.; Schäfer, A.; Vogt, L.; Kirchner, M.; Hübscher, M.; Thiel, C.; Banzer, W.; Meurer, A. Differences in gait performance, quadriceps strength, and physical activity between fallers and nonfallers in women with osteoporosis. J. Aging Phys. Act. 2016, 24, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Aleixo, P.; Vaz Patto, J.; Abrantes, J. Ankle kinematics and kinetics in rheumatoid arthritis postmenopausal women fallers and non-fallers. Gait Posture 2017, 57, 308–309. [Google Scholar] [CrossRef]
- Callisaya, M.; Blizzard, L.; Schmidt, M.; Martin, K.L.; McGinley, J.L.; Sanders, L.M.; Srikanth, V.K. Gait, gait variability and the risk of multiple incident falls in older people: A population-based study. Age Ageing 2011, 40, 481–487. [Google Scholar] [CrossRef]
- Newstead, A.; Walden, J.; Gitter, A. Gait Variables Differentiating Fallers from Nonfallers. J. Geriatr. Phys. Ther. 2007, 30, 93–101. [Google Scholar] [CrossRef]
- Lázaro, M.; González, A.; Latorre, G.; Fernández, C.; Ribera, J.M. Postural stability in the elderly: Fallers versus non-fallers. Eur. Geriatr. Med. 2011, 2, 1–5. [Google Scholar] [CrossRef]
- Verghese, J.; Holtzer, R.; Lipton, R.; Wang, C. Quantitative gait markers and incident fall risk in older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 896–901. [Google Scholar] [CrossRef] [PubMed]
- Aleixo, P.; Atalaia, T.; Vaz Patto, J.; Abrantes, J. The Effect of a Proprioceptive Exercises Programme on Disease Activity and Gait Biomechanical Parameters of Post-Menopausal Women with Rheumatoid Arthritis. In Rheumatoid Arthritis; Toumi, H., Ed.; Intechopen: London, UK, 2021. [Google Scholar]
- Aleixo, P.; Vaz Patto, J.; Abrantes, J. Gait kinematics of rheumatoid arthritis postmenopausal women was improved after a proprioceptive exercises program. Gait Posture 2016, 49, 146. [Google Scholar]
- Shin, S.; An, D. The effect of motor dual-task balance training on balance and gait of elderly women. J. Phys. Ther. Sci. 2014, 26, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Salmela, L.; Nadeau, S.; Mcbride, I.; Olney, S.J. Effects of muscle strengthening and physical conditioning training on temporal, kinematic and kinetic variables during gait in chronic stroke survivors. J. Rehabil. Med. 2001, 33, 53–60. [Google Scholar] [PubMed]
- Persch, L.; Ugrinowitsch, C.; Pereira, G.; Rodacki, A.L. Strength training improves fall-related gait kinematics in the elderly: A randomized controlled trial. Clin. Biomech. 2009, 24, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Sawers, X.; Pai, Y.; Bhatt, T.; Ting, L.H. Neuromuscular responses differ between slip-induced falls and recoveries in older adults. J. Neurohysiology 2017, 117, 509–522. [Google Scholar] [CrossRef]
- Ranson, C.; Joyce, D. Enhancing movement efficiency. In High-Performance Training Sport; Joyce, D., Lewindon, D., Eds.; Human Kinetics: Champaign, IL, USA, 2014; pp. 29–40. [Google Scholar]
- Cook, G.; Burton, L.; Hoogenboom, B.; Voight, M. Functional movement screening: The use of fundamental movements as an assessment of function—Part 1. Int. J. Sports Phys. Ther. 2014, 9, 396–409. [Google Scholar]
- Aleixo, P.; Atalaia, T.; Abrantes, J. Dynamic joint stiffness: A critical review. In Advances in Medicine and Biology; Berhardt, L., Ed.; Nova Science Publishers: New York, NY, USA, 2021; Volume 175, pp. 1–96. [Google Scholar]
- Espanha, M.; Pascoal, A.; Correia, P.; Silva, P. Noções fundamentais de artrologia. In Anatomofisiologia Tomo I Sistema Osteo-Articular, 2nd ed.; Espanha, M., Ed.; Faculdade de Motricidade Humana—Serviço de edições: Cruz Quebrada, Portugal, 1999. [Google Scholar]
- Abrantes, J. Rigidez dinâmica como indicador da estabilidade articular. In Proceedings of the XII Congresso Brasileiro de Biomecânica, São Paulo, Brazil, 30 May–2 June 2007. [Google Scholar]
- Riemann, B.; Lephart, S. The sensorimotor system, part I: The physiologic basis of functional joint stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar]
- Correia, P. Regulação medular do movimento. In Aparelho Locomotor função Neuromuscular e Adaptação à Atividade Física, 2nd ed.; Correia, P., Ed.; Edições FMH: Cruz Quebrada, Portugal, 2016; pp. 51–65. [Google Scholar]
- Riemann, B.; Lephart, S. The sensorimotor system, part II: The role of proprioception in motor control and functional joint stability. J. Athl. Train. 2002, 37, 80–84. [Google Scholar]
- Gollhofer, A. Proprioceptive training: Considerations for strength and power production. In Strength Power Sport, 2nd ed.; Komi, P., Ed.; Wiley: Hoboken, NJ, USA, 2008; pp. 331–342. [Google Scholar]
- Aman, J.; Elangovan, N.; Yeh, I.; Konczak, J. The effectiveness of proprioceptive training for improving motor function: A systematic review. Front. Hum. Neurosci. 2015, 8, 1075. [Google Scholar] [CrossRef]
- Wan, J.; Qin, Z.; Wang, P.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [PubMed]
- Correia, P. Coordenação neuromuscular. In Aparelho Locomotor Função Neuromuscular e Adaptação à Atividade Física, 2nd ed.; Correia, P., Ed.; Edições FMH: Cruz Quebrada, Portugal, 2016; pp. 23–50. [Google Scholar]
- Wickstrom, R. Fundamental Movement Patterns; Henry Kimpton: London, UK, 1970. [Google Scholar]
- Santana, J. Functional Training; Human Kinetics: Champaign, IL, USA, 2016. [Google Scholar]
- Gray Institute. Fundamental Movement Skills for Personal Trainers. 2020. Available online: https://grayinstitute.com/blog/fundamental-movement-skills-for-personal-trainers (accessed on 28 November 2023).
- Pacheco, M.; Teixeira, L.; Franchini, E.; Takito, M. Functional vs. strength training in adults: Specific needs define the best intervention. Int. J. Sports Phys. Ther. 2013, 8, 34–43. [Google Scholar] [PubMed]
- Liao, T.; Li, L.; Wang, Y. Effects of functional strength training program on movement quality and fitness performance among girls aged 12–13 years. J. Strength Cond. Res. 2017, 33, 1534–1541. [Google Scholar] [CrossRef]
- Yildiz, S.; Pinar, S.; Gelen, E. Effects of 8-week functional vs. traditional training on athletic performance and functional movement on prepubertal tennis players. J. Strength Cond. Res. 2018, 33, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Distefano, L.; Distefano, M.; Frank, B.; Clark, M.A.; Padua, D.A. Comparison of integrated and isolated training on performance measures and neuromuscular control. J. Strength Cond. Res. 2013, 27, 1083–1090. [Google Scholar] [CrossRef]
- Tomljanović, M.; Spasić, M.; Gabrilo, G.; Uljević, O.; Foretić, N. Effects of Five Weeks of Functional Vs. Traditional Resistance Training on Anthropometric and Motor Performance Variables. Kinesiology 2011, 43, 145–154. Available online: http://search.ebscohost.com/login.aspx?direct=true&db=s3h&AN=71498008&lang=es&site=ehost-live (accessed on 28 November 2023).
- Plenzler, M.; Mrozińska, N.; Mierzwińska, A.; Korbolewska, O.; Mejnartowicz, D.; Popieluch, M.; Śmigielski, R. How does functional soccer training on uneven ground affect dynamic stability of lower limbs in young soccer players. Orthop. J. Sport. Med. 2014, 2, 2325967114S00155. [Google Scholar] [CrossRef]
- Weiss, T.; Kreitinger, J.; Wilde, H.; Wiora, C.; Steege, M.; Dalleck, L.; Janot, J. Effect of functional resistance training on muscular fitness outcomes in young adults. J Exerc Sci Fit 2010, 8, 113–122. [Google Scholar] [CrossRef]
- Krebs, D.; Scarborough, D.; McGibbon, C. Functional vs. strength training in disabled elderly outpatients. Am. J. Phys. Med. Rehabil. 2007, 86, 93–103. [Google Scholar] [CrossRef]
- Schwenk, M.; Zieschang, T.; Englert, S.; Grewal, G.; Najafi, B.; Hauer, K. Improvements in gait characteristics after intensive resistance and functional training in people with dementia: A randomised controlled trial. BMC Geriatr. 2014, 14, 73. [Google Scholar] [CrossRef] [PubMed]
- Clark, M.; Lucett, S.; McGill, E.; National Academy of Sports Medicine; Corn, R.J. NASM Essentials of Personal Fitness Training, 6th ed.; Jones & Bartlett Publishers, Inc.: Burlington, NJ, USA, 2018. [Google Scholar]
- Verstegen, M.; Williams, P. Every Day is Game Day: The Proven System of Elite Performance to Win All Day, Every Day; Penguin Group: New York, NY, USA, 2014. [Google Scholar]
- Maki, B. Gait changes in older adults: Predictors of falls or indicators of fear? J. Am. Geriatr. Soc. 1997, 45, 313–320. [Google Scholar] [CrossRef]
- Oliveira, C.; Vieira, E.; Sousa, F.; Vilas-Boas, J.P. Kinematic changes during prolonged fast-walking in old and young adults. Front. Med. 2017, 4, 207. [Google Scholar] [CrossRef] [PubMed]
- Winter, D. The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd ed.; Waterloo Biomechanics: Waterloo, Belgium, 1991. [Google Scholar]
- Aleixo, P.; Vaz Patto, J.; Cardoso, A.; Moreira, H.; Abrantes, J. Ankle kinematics and kinetics during gait in healthy and rheumatoid arthritis post-menopausal women. Somatosens. Mot. Res. 2019, 36, 171–178. [Google Scholar] [CrossRef]
- Aleixo, P.; Vaz Patto, J.; Moreira, H.; Abrantes, J. Dynamic joint stiffness of the ankle in healthy and rheumatoid arthritis post-menopausal women. Gait Posture 2018, 60, 225–234. [Google Scholar] [CrossRef]
- Docherty, C.; Arnold, B.; Zinder, S.; Granata, K.; Gansneder, B.M. Relationship between two proprioceptive measures and stiffness at the ankle. J. Electromyogr. Kinesiol. 2004, 14, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.; Creath, R.; Gray, V.; Abarro, J.; McCombe Waller, S.; Beamer, B.A.; Sorkin, J.D. Comparison of lateral perturbation-induced step training and hip muscle strengthening exercise on balance and falls in community-dwelling older adults: A blinded randomized controlled trial. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2021, 76, E194–E202. [Google Scholar] [CrossRef]
- Moosabhoy, M.; Gard, S. Methodology for determining the sensitivity of swing leg toe clearance and leg length to swing leg joint angles during gait. Gait Posture 2006, 24, 493–501. [Google Scholar] [CrossRef]
- Exercise Program to Prevent Falls in Elderly. Available online: http://elderly.falls.ulusofona.pt/ (accessed on 13 December 2023).
- Di Paolo, S.; Lopomo, N.F.; Della Villa, F.; Paolini, G.; Figari, G.; Bragonzoni, L.; Grassi, A.; Zaffagnini, S. Rehabilitation and return to sport assessment after anterior cruciate ligament injury: Quantifying joint kinematics during complex high-speed tasks through wearable sensors. Sensors 2021, 21, 2331. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleixo, P.; Abrantes, J. Proprioceptive and Strength Exercise Guidelines to Prevent Falls in the Elderly Related to Biomechanical Movement Characteristics. Healthcare 2024, 12, 186. https://doi.org/10.3390/healthcare12020186
Aleixo P, Abrantes J. Proprioceptive and Strength Exercise Guidelines to Prevent Falls in the Elderly Related to Biomechanical Movement Characteristics. Healthcare. 2024; 12(2):186. https://doi.org/10.3390/healthcare12020186
Chicago/Turabian StyleAleixo, Pedro, and João Abrantes. 2024. "Proprioceptive and Strength Exercise Guidelines to Prevent Falls in the Elderly Related to Biomechanical Movement Characteristics" Healthcare 12, no. 2: 186. https://doi.org/10.3390/healthcare12020186
APA StyleAleixo, P., & Abrantes, J. (2024). Proprioceptive and Strength Exercise Guidelines to Prevent Falls in the Elderly Related to Biomechanical Movement Characteristics. Healthcare, 12(2), 186. https://doi.org/10.3390/healthcare12020186