Development and Effectiveness of a Pattern Management Educational Program Using Continuous Glucose Monitoring for Type 2 Diabetic Patients in Korea: A Quasi-Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Participants
2.3. Data Collection and Procedure
2.4. Program Development
2.5. Intervention
2.6. Outcome Assessment
2.6.1. Diabetes Symptoms
2.6.2. Diabetes Social Support
2.6.3. Diabetes Health Beliefs
2.6.4. Self-Care
2.6.5. Physiological Indices
2.7. Statistical Analysis
3. Results
3.1. Participant Characteristics at Baseline and Homogeneity Test
3.2. Outcome Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 5 May 2024).
- Moon, J.S. Revisiting the Diabetes Crisis in Korea: Call for Urgent Action. J. Korean Diabetes 2023, 24, 1–4. [Google Scholar] [CrossRef]
- Korean Diabetes Association. 2023 Clinical Practice Guidelines for Diabetes Mellitus in Korea. Available online: https://www.diabetes.or.kr/bbs/?code=guide&category=2023 (accessed on 5 May 2024).
- Lee, H.; Lee, M.; Park, G.; Khang, A.R. Prevalence of Chronic Diabetic Complications in Patients with Type 2 Diabetes Mellitus: A Retrospective Study Based on the National Health Insurance Service-National Health Screening Cohort in Korea, 2002~2015. Korean J. Adult Nurs. 2022, 34, 39–50. [Google Scholar] [CrossRef]
- Schnell, O.; Alawi, H.; Battelino, T.; Ceriello, A.; Diem, P.; Felton, A.M.; Grzeszczak, W.; Harno, K.; Kempler, P.; Satman, I.; et al. Self-monitoring of blood glucose in type 2 diabetes: Recent studies. J. Diabetes Sci. Technol. 2013, 7, 478–488. [Google Scholar] [CrossRef]
- Chase, H.P.; Kim, L.M.; Owen, S.L.; MacKenzie, T.A.; Klingensmith, G.J.; Murtfeldt, R.; Garg, S.K. Continuous subcutaneous glucose monitoring in children with type 1 diabetes. Pediatrics 2001, 107, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Boland, E.; Monsod, T.; Delucia, M.; Brandt, C.A.; Fernando, S.; Tamborlane, W.V. Limitations of conventional methods of self-monitoring of blood glucose: Lessons learned from 3 days of continuous glucose sensing in pediatric patients with type 1 diabetes. Diabetes Care 2001, 24, 1858–1862. [Google Scholar] [CrossRef] [PubMed]
- Cappon, G.; Vettoretti, M.; Sparacino, G.; Facchinetti, A. Continuous glucose monitoring sensors for diabetes management: A review of technologies and applications. Diabetes Metab. J. 2019, 43, 383–397. [Google Scholar] [CrossRef]
- Yoo, S.Y. Development of 3rd generation continuous glucose monitoring system. J. Inst. Electron. Eng. Korea 2020, 47, 15–21. [Google Scholar]
- Ko, S.H.; Kim, S.R.; Kim, D.J.; Oh, S.J.; Lee, H.J.; Shim, K.H.; Woo, M.H.; Kim, J.Y.; Kim, N.H.; Kim, J.T.; et al. Clinical practice guidelines for type 2 diabetes in Korea. Diabetes Metab. J. 2011, 35, 431–436. [Google Scholar] [CrossRef]
- American Diabetes Association. Classification and diagnosis of diabetes: Standards of medical care in diabetes—2021. Diabetes Care 2021, 44, S15–S33. [Google Scholar] [CrossRef]
- Beck, R.W.; Riddlesworth, T.D.; Ruedy, K.; Ahmann, A.; Haller, S.; Kruger, D.; DIAMOND Study Group. Continuous glucose monitoring versus usual care in patients with type 2 diabetes receiving multiple daily insulin injections: A randomized trial. Ann. Intern. Med. 2017, 167, 365–374. [Google Scholar] [CrossRef]
- Furler, J.; O’Neal, D.; Speight, J.; Blackberry, I.; Manski-Nankervis, J.A.; Thuraisingam, S.; de La Rue, K.; Ginnivan, L.; Doyle, R.; Holmes-Truscott, E.; et al. Use of professional-mode flash glucose monitoring, at 3-month intervals, in adults with type 2 diabetes in general practice (GP-OSMOTIC): A pragmatic, open-label, 12-month, randomised controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Martens, T.; Beck, R.W.; Bailey, R.; Ruedy, K.J.; Calhoun, P.; Peters, A.L.; Pop-Busui, R.; Philis-Tsimikas, A.; Bao, S.; Umpierrez, G.; et al. Effect of continuous glucose monitoring on glycemic control in patients with type 2 diabetes treated with basal insulin: A randomized clinical trial. JAMA 2021, 325, 2262–2272. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.J.; Kim, K.S.; Lee, W.J.; Lee, M.Y.; Vigersky, R.; Park, C.Y. Efficacy of intermittent short-term use of a real-time continuous glucose monitoring system in non-insulin–treated patients with type 2 diabetes: A randomized controlled trial. Diabetes Obes. Metab. 2022, 25, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Foster, N.C.; Beck, R.W.; Miller, K.M.; Clements, M.A.; Rickels, M.R.; DiMeglio, L.A.; MaahsDavid, M.; TamborlaneWilliam, V.; OlsonBeth, A.; GargSatish, K. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol. Ther. 2019, 21, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Little, S.A.; Speight, J.; Leelarathna, L.; Walkinshaw, E.; Tan, H.K.; Bowes, A.; Lubina-Solomon, A.; Chadwick, T.J.; Stocken, D.D.; Brennand, C.; et al. Sustained reduction in severe hypoglycemia in adults with type 1 diabetes complicated by impaired awareness of hypoglycemia: Two-year follow-up in the HypoCOMPaSS randomized clinical trial. Diabetes Care 2018, 41, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Menti, D.; Limbert, C.; Lyrakos, G. Investigating the effectiveness of theory-based interventions for improving treatment adherence of patients with type 2 Diabetes Mellitus: A systematic review of Randomised Controlled Clinical Trials. J. Health Soc. Sci. 2019, 4, 313–330. [Google Scholar]
- Whittemore, R.; Roy, S.C. Adapting to diabetes mellitus: A theory synthesis. Nurs. Sci. Q. 2002, 15, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Lee, S.J. The Developments and Evaluations of a Health Literacy Considered Diabetes Self-Management Program for Older Adult. Ph.D. Thesis, Seoul National University, Seoul, Republic of Korea, 2016. [Google Scholar]
- Newman, S.; Steed, L.; Mulligan, K. (Eds.) Chronic Physicalillness: Self-Management and Behavioral Interventions; McGraw Hill: New York, NY, USA, 2009. [Google Scholar]
- García, A.A. The diabetes symptom self-care inventory: Development and psychometric testing with Mexican Americans. J. Pain Symptom Manag. 2011, 41, 715–727. [Google Scholar] [CrossRef]
- Hong, S.Y.; Yoo, Y.S. Symptom Clusters and Quality of Life in Patients with Type 2 Diabetes Mellitus. Korean J. Adult Nurs. 2021, 33, 498–508. [Google Scholar] [CrossRef]
- Yanover, T.; Sacco, W.P. Reliability of diabetes-specific social support scales. Psychol. Health Med. 2008, 13, 627–631. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.T.; Davis, W.K.; Connell, C.M.; Hess, G.E.; Funnell, M.M.; Hiss, R.G. Development and validation of the Diabetes Care Profile. Eval. Health Prof. 1996, 19, 208–230. [Google Scholar] [CrossRef] [PubMed]
- Byun, S.H. Structural Equation Modeling for Quality of Life with Diabetes: Associated with Diabetes Locus of Control, Social Support, Self-Efficacy, and Coping Strategy. Ph.D. Thesis, Inje University, Gimhae, Republic of Korea, 2016. [Google Scholar]
- Janz, N.K.; Becker, M.H. The health beliefs model: A decade later. Health Educ. Behav. 1984, 11, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Bak, H.K. The Effect of Diabetes Mellitus Patients’ Locus of Control in Personality and Health Beliefs on Therapeutic Behavior. Master’s Thesis, Korea University, Seoul, Republic of Korea, 1985. [Google Scholar]
- Orem, D.E.; Taylor, S.G.; Renpenning, K.M. Nursing: Concepts of Practice, 3rd ed.; Mcgraw-Hill: NewYork, NY, USA, 1991. [Google Scholar]
- Ausili, D.; Barbaranelli, C.; Rossi, E.; Rebora, P.; Fabrizi, D.; Coghi, C.; Luciani, M.; Vellone, E.; Di Mauro, S.; Riegel, B. Development and psychometric testing of a theory-based tool to measure self-care in diabetes patients: The self-care of diabetes inventory. BMC Endocr. Disord. 2017, 17, 66. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.Y.; Cho, M.K. Validity and Reliability of the Korean Version of the Self-Care of Diabetes Inventory (SCODI-K). Int. J. Environ. Res. Public Health 2021, 18, 12179. [Google Scholar] [CrossRef] [PubMed]
- Burns, N.; Grove, S.K. The Practice of Nursing Research: Conduct, Critique, & Utilization, 4th ed.; WB Saunders Company: Philadelphia, PA, USA, 2001. [Google Scholar]
- Azami, G.; Soh, K.L.; Sazlina, S.G.; Salmiah, M.S.; Aazami, S.; Mozafari, M.; Taghinejad, H. Effect of a nurse-led diabetes self-management education program on glycosylated hemoglobin among adults with type 2 diabetes. J. Diabetes Res. 2018, 2018, 4930157. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Nam, S.; Park, S.; Shin, I.S.; Ku, B.J. The impact of social support on self-care of patients with diabetes: What is the effect of diabetes type? Systematic review and meta-analysis. Diabetes Educ. 2017, 43, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Gulentie, T.M.; Yesuf, E.M.; Yazie, T.S.; Kefale, B. Predictors of diabetes self-care practice among patients with type 2 diabetes in public hospitals in northeastern Ethiopia: A facility-based cross-sectional study. Diabetes Metab. Syndr. Obes. 2020, 13, 3137–3147. [Google Scholar] [CrossRef] [PubMed]
- Gurmu, Y.; Gela, D.; Aga, F. Factors associated with self-care practice among adult diabetes patients in West Shoa Zone, Oromia Regional State, Ethiopia. BMC Health Serv. Res. 2018, 18, 732. [Google Scholar] [CrossRef]
- Tiruneh, S.A.; Ayele, A.A.; Emiru, Y.K.; Tegegn, H.G.; Ayele, B.A.; Engidaw, M.T.; Gebremariam, A.D. Factors influencing diabetes self-care practice among type 2 diabetes patients attending diabetic care follow up at an Ethiopian General Hospital, 2018. J. Diabetes Metab. Disord. 2019, 18, 199–206. [Google Scholar] [CrossRef]
- Shabibi, P.; Zavareh, M.S.A.; Sayehmiri, K.; Qorbani, M.; Safari, O.; Rastegarimehr, B.; Mansourian, M. Effect of educational intervention based on the health beliefs Model on promoting self-care behaviors of type-2 diabetes patients. Electron. Physician 2017, 9, 5960. [Google Scholar] [CrossRef] [PubMed]
- Swaleh, R.M.; Yu, C. “A Touch of Sugar”: A Qualitative Study of the Impact of health beliefs on Type 1 and Type 2 Diabetes Self-Management Among Black Canadian Adults. Can. J. Diabetes 2021, 45, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare. 2022. Available online: https://www.mohw.go.kr/board.es?mid=a10409020000&bid=0026&act=view&list_no=372440 (accessed on 5 May 2024).
- National Health Insurance Corporation. 2023. Available online: https://www.nhis.or.kr/nhis/together/wbhaea02200m01.do?mode=list&&articleLimit=10&article.offset=710 (accessed on 5 May 2024).
Week | Time | Content | Method | Theoretical Components |
---|---|---|---|---|
1st | 30 min |
| Questionnaire | Stimuli and perception of illness |
| Leaflet | Health-promoting behaviors | ||
3rd | 50 min |
| AGP report & leaflet | Health-promoting behaviors |
5th | 20 min |
| Phone call | Health-promoting behaviors |
7th | 20 min | |||
9th | 20 min | |||
1th | 20 min | |||
12th | 20 min |
| Questionnaire | Adaptive responses |
Characteristics | Categories | Exp. (n = 25) | Cont. (n = 25) | t or χ² | p |
---|---|---|---|---|---|
N (%) or | N (%) or | ||||
M ± SD | M ± SD | ||||
Sociodemographic characteristics | |||||
Age (year) | <60 | 16 (64.0) | 16 (64.0) | 0.00 | 1.000 |
≥60 | 9 (36.0) | 9 (36.0) | |||
53.96 ± 9.77 | 54.92 ± 11.73 | −0.31 | 0.755 | ||
Sex | Male | 11 (44.0) | 10 (40.0) | 0.08 | 0.500 |
Female | 14 (56.0) | 15 (60.0) | |||
Education * | ≤Middle school | 9 (36.0) | 4 (16.0) | 2.60 | 0.196 |
≥High school | 16 (64.0) | 21 (84.0) | |||
Occupation | Unemployed | 9 (36.0) | 8 (32.0) | 0.09 | 0.500 |
Employed | 16 (64.0) | 17 (68.0) | |||
Economic status | Low | 5 (20.0) | 6 (24.0) | 0.12 | 0.500 |
≥Middle | 20 (80.0) | 19 (76.0) | |||
Caregivers * | No | 4 (16.0) | 10 (40.0) | 3.57 | 0.114 |
Yes | 21 (84.0) | 15 (60.0) | |||
Drinking | No | 20 (80.0) | 19 (76.0) | 0.12 | 0.500 |
Yes | 5 (20.0) | 6 (24.0) | |||
Smoking | No | 18 (72.0) | 17 (68.0) | 0.10 | 0.500 |
Yes | 7 (28.0) | 8 (32.0) | |||
Disease-related characteristics | |||||
Duration of disease (year) | <10 | 11 (44.0) | 16 (64.0) | 2.01 | 0.128 |
≥10 | 14 (56.0) | 9 (36.0) | |||
12.39 ± 8.30 | 10.31 ± 8.12 | 0.90 | 0.372 | ||
Treatment modality | Insulin | 9 (36) | 10 (40.0) | 0.09 | 0.500 |
OHA + insulin | 16 (64.0) | 15 (60.0) | |||
Complication of DM | No | 10 (40.0) | 15 (60.0) | 2.00 | 0.129 |
Yes | 15 (60.0) | 10 (40.0) | |||
Comorbidity | No | 7 (28.0) | 6 (24.0) | 0.10 | 0.500 |
Yes | 18 (72.0) | 19 (76.0) | |||
Family history | No | 9 (36.0) | 10 (40.0) | 0.09 | 0.500 |
Yes | 16 (64.0) | 15 (60.0) | |||
Experience of hospitalization with DM | No | 6 (24.0) | 6 (24.0) | 0.00 | 0.629 |
Yes | 19 (76.0) | 19 (76.0) | |||
Experience of DM education (frequency) | 1 | 13 (52.0) | 19 (76.0) | 3.13 | 0.070 |
≥2 | 12 (48.0) | 6 (24.0) | |||
1.72 ± 0.89 | 1.32 ± 0.63 | 0.03 | 0.073 | ||
Main variables | |||||
Previous health-promoting behavior | 13.64 ± 3.87 | 14.84 ± 2.56 | −1.29 | 0.203 | |
Illness perception | |||||
Consequences | 7.72 ± 2.95 | 7.16 ± 2.29 | 0.75 | 0.457 | |
Timeline | 8.64 ± 2.56 | 8.92 ± 1.71 | −0.46 | 0.651 | |
Personal control | 4.88 ± 2.37 | 5.20 ± 2.53 | −0.46 | 0.647 | |
Treatment control | 6.92 ± 1.71 | 6.84 ± 2.48 | 0.13 | 0.895 | |
Identity | 6.16 ± 3.25 | 5.32 ± 2.39 | 1.04 | 0.304 | |
Illness concern | 6.92 ± 3.57 | 8.12 ± 1.99 | −1.47 | 0.150 | |
Coherence | 5.44 ± 1.90 | 6.48 ± 1.87 | −1.95 | 0.057 | |
Emotional representation | 4.00 ± 2.86 | 5.44 ± 3.19 | −1.68 | 0.099 | |
Diabetes symptoms | |||||
Psychological–cognitive | 16.80 ± 5.50 | 16.04 ± 6.75 | 0.44 | 0.664 | |
Thirst–fatigue | 12.56 ± 5.93 | 11.00 ± 4.06 | 1.09 | 0.284 | |
Neurological | 7.64 ± 3.07 | 7.80 ± 3.33 | −0.18 | 0.860 | |
Gastrointestinal comfort | 11.04 ± 3.54 | 9.96 ± 3.80 | 1.04 | 0.304 | |
Sexual | 3.68 ± 2.54 | 2.68 ± 1.18 | 1.78 | 0.084 | |
Diabetes social support | 15.36 ± 7.61 | 18.92 ± 9.22 | −1.49 | 0.161 | |
Diabetes health beliefs | |||||
Perceived susceptibility and severity | 30.04 ± 6.49 | 33.04 ± 6.03 | −1.69 | 0.097 | |
Perceived barrier | 11.08 ± 3.46 | 12.08 ± 3.17 | −1.06 | 0.293 | |
Perceived benefit | 16.60 ± 2.94 | 15.92 ± 3.20 | 0.78 | 0.438 | |
Self-care | 56.36 ± 16.48 | 63.95 ± 11.30 | −1.90 | 0.065 | |
Maintenance | 65.75 ± 15.23 | 69.83 ± 12.13 | −1.05 | 0.300 | |
Monitoring | 50.59 ± 22.16 | 59.53 ± 16.49 | −1.62 | 0.112 | |
Management | 34.67 ± 23.83 | 44.33 ± 14.06 | −1.75 | 0.087 | |
Confidence | 74.45 ± 21.47 | 82.09 ± 18.00 | −1.36 | 0.179 | |
Physiological indices | |||||
BMI (kg/m2) | 24.74 ± 4.47 | 25.80 ± 3.75 | −0.90 | 0.371 | |
HbA1c (%) | 10.76 ± 2.78 | 9.60 ± 1.92 | 1.71 | 0.093 | |
FBS (mg/dL) | 213.69 ± 80.55 | 186.76 ± 67.60 | 1.30 | 0.207 | |
Cholesterol (mg/dL) | 153.48 ± 35.15 | 169.76 ± 40.98 | −1.51 | 0.138 | |
LDL-C (mg/dL) | 77.08 ± 28.01 | 93.44 ± 30.36 | −1.98 | 0.053 | |
HDL-C (mg/dL) | 52.20 ± 13.76 | 53.72 ± 11.27 | −0.43 | 0.671 | |
TG (mg/dL) | 142.84 ± 83.26 | 171.36 ± 119.56 | −0.98 | 0.333 | |
SBP (mmHg) | 127.00 ± 14.73 | 129.20 ± 17.09 | −0.49 | 0.628 | |
DBP (mmHg) | 74.12 ± 6.93 | 74.20 ± 11.32 | −0.03 | 0.976 |
Variables | Group | Pre-Test | Post-Test | Difference | t | p | |
---|---|---|---|---|---|---|---|
M ± SD | M ± SD | M ± SD | |||||
Diabetes symptoms | Psychological–cognitive | Exp. (n = 25) | 16.80 ± 5.50 | 14.00 ± 4.93 | −2.80 ± 2.58 | −3.74 | <0.001 |
Cont. (n = 25) | 16.04 ± 6.75 | 15.72 ± 6.13 | −0.32 ± 2.08 | ||||
Thirst–fatigue | Exp. (n = 25) | 12.56 ± 5.93 | 10.00 ± 3.79 | −2.56 ± 4.33 | −2.03 | 0.049 | |
Cont. (n = 25) | 11.00 ± 4.06 | 10.48 ± 3.72 | −0.52 ± 2.57 | ||||
Neurological | Exp. (n = 25) | 7.64 ± 3.07 | 6.76 ± 3.02 | −0.88 ± 1.76 | −2.54 | 0.015 | |
Cont. (n = 25) | 7.80 ± 3.33 | 7.67 ± 3.10 | −0.17 ± 1.05 | ||||
Gastrointestinal C omfort | Exp. (n = 25) | 11.04 ± 3.54 | 8.76 ± 2.95 | −2.28 ± 2.01 | −3.75 | <0.001 | |
Cont. (n = 25) | 9.96 ± 3.80 | 9.76 ± 3.95 | −0.20 ± 1.91 | ||||
Sexual | Exp.(n = 25) | 3.68 ± 2.54 | 3.68 ± 2.34 | 0.00 ± 1.80 | 0.00 | 1.000 | |
Cont. (n = 25) | 2.68 ± 1.18 | 2.68 ± 1.22 | 0.00 ± 0.29 | ||||
Diabetes social support | Exp. (n = 25) | 15.36 ± 7.61 | 18.12 ± 7.88 | 2.76 ± 3.96 | 2.95 | 0.005 | |
Cont. (n = 25) | 18.92 ± 9.22 | 19.20 ± 9.45 | 0.28 ± 1.40 | ||||
Diabetes health beliefs | Perceived susceptibility and severity | Exp. (n = 25) | 30.04 ± 6.49 | 31.44 ± 5.03 | 1.40 ± 3.55 | 1.46 | 0.152 |
Cont. (n = 25) | 33.04 ± 6.03 | 33.28 ± 6.54 | 0.24 ± 1.76 | ||||
Perceived barrier | Exp. (n = 25) | 11.08 ± 3.46 | 11.48 ± 3.38 | 0.40 ± 1.55 | 1.54 | 0.134 | |
Cont. (n = 25) | 12.08 ± 3.17 | 11.96 ± 3.25 | −0.12 ± 0.67 | ||||
Perceived benefit | Exp. (n = 25) | 16.60 ± 2.94 | 19.88 ± 2.55 | 3.28 ± 3.42 | 3.72 | <0.001 | |
Cont. (n = 25) | 15.92 ± 3.20 | 16.32 ± 2.84 | 0.40 ± 1.80 | ||||
Self-care | Maintenance | Exp. (n = 25) | 65.75 ± 15.23 | 82.83 ± 13.82 | 17.08 ± 12.34 | 5.29 | <0.001 |
Cont. (n = 25) | 69.83 ± 12.13 | 72.33 ± 12.21 | 2.50 ± 6.16 | ||||
Monitoring | Exp. (n = 25) | 50.59 ± 22.16 | 79.29 ± 13.60 | 28.71 ± 19.99 | 5.04 | <0.001 | |
Cont. (n = 25) | 59.53 ± 16.49 | 62.47 ± 18.43 | 2.94 ± 15.91 | ||||
Management | Exp. (n = 25) | 34.67 ± 23.83 | 62.67 ± 16.71 | 28.00 ± 21.52 | 4.42 | <0.001 | |
Cont. (n = 25) | 44.33 ± 14.06 | 49.89 ± 17.99 | 5.56 ± 13.51 | ||||
Confidence | Exp. (n = 25) | 74.45 ± 21.47 | 89.27 ± 13.94 | 14.82 ± 19.73 | 2.99 | 0.004 | |
Cont. (n = 25) | 82.09 ± 18.00 | 84.00 ± 17.82 | 1.91 ± 8.79 | ||||
BMI (kg/m2) | Exp. (n = 25) | 24.74 ± 4.47 | 25.48 ± 4.52 | 0.73 ± 1.92 | −0.51 | 0.611 | |
Cont. (n = 25) | 25.80 ± 3.75 | 27.15 ± 7.08 | 1.35 ± 5.73 | ||||
HbA1c (%) | Exp. (n = 25) | 10.76 ± 2.78 | 7.86 ± 0.69 | −2.89 ± 2.59 | −3.83 | <0.001 | |
Cont. (n = 25) | 9.60 ± 1.92 | 9.19 ± 2.12 | −0.41 ± 1.94 | ||||
FBS (mg/dL) | Exp. (n = 25) | 213.68 ± 80.55 | 133.48 ± 35.26 | −80.20 ± 79.56 | −2.14 | 0.038 | |
Cont. (n = 25) | 186.76 ± 67.60 | 151.48 ± 56.70 | −35.28 ± 68.73 | ||||
Cholesterol (mg/dL) | Exp. (n = 25) | 153.48 ± 35.15 | 152.60 ± 33.79 | −0.88 ± 24.22 | 0.27 | 0.785 | |
Cont. (n = 25) | 169.76 ± 40.98 | 166.64 ± 41.32 | −3.12 ± 32.96 | ||||
LDL-C (mg/dL) | Exp. (n = 25) | 77.08 ± 28.01 | 74.60 ± 26.57 | −2.48 ± 16.98 | 0.49 | 0.624 | |
Cont. (n = 25) | 93.44 ± 30.36 | 88.00 ± 30.58 | −5.44 ± 24.70 | ||||
HDL-C (mg/dL) | Exp. (n = 25) | 52.20 ± 13.77 | 55.36 ± 13.10 | 3.16 ± 9.39 | 2.39 | 0.021 | |
Cont. (n = 25) | 53.72 ± 11.27 | 49.81 ± 14.72 | −3.91 ± 11.39 | ||||
TG (mg/dL) | Exp. (n = 25) | 142.84 ± 83.26 | 138.16 ± 86.72 | −4.68 ± 53.99 | 0.45 | 0.654 | |
Cont. (n = 25) | 171.36 ± 119.56 | 157.36 ± 117.48 | −14.00 ± 88.12 | ||||
SBP (mmHg) | Exp. (n = 25) | 127.00 ± 14.73 | 127.76 ± 13.18 | 0.76 ± 17.08 | 0.16 | 0.874 | |
Cont. (n = 25) | 129.20 ± 17.09 | 129.24 ± 17.16 | 0.04 ± 14.88 | ||||
DBP (mmHg) | Exp. (n = 25) | 74.12 ± 6.93 | 71.64 ± 9.30 | −2.48 ± 10.27 | 0.00 | 1.000 | |
Cont. (n = 25) | 74.20 ± 11.32 | 71.72 ± 9.39 | −2.48 ± 11.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, S.-Y.; Cho, M.-K. Development and Effectiveness of a Pattern Management Educational Program Using Continuous Glucose Monitoring for Type 2 Diabetic Patients in Korea: A Quasi-Experimental Study. Healthcare 2024, 12, 1381. https://doi.org/10.3390/healthcare12141381
Kong S-Y, Cho M-K. Development and Effectiveness of a Pattern Management Educational Program Using Continuous Glucose Monitoring for Type 2 Diabetic Patients in Korea: A Quasi-Experimental Study. Healthcare. 2024; 12(14):1381. https://doi.org/10.3390/healthcare12141381
Chicago/Turabian StyleKong, Seung-Yeon, and Mi-Kyoung Cho. 2024. "Development and Effectiveness of a Pattern Management Educational Program Using Continuous Glucose Monitoring for Type 2 Diabetic Patients in Korea: A Quasi-Experimental Study" Healthcare 12, no. 14: 1381. https://doi.org/10.3390/healthcare12141381
APA StyleKong, S.-Y., & Cho, M.-K. (2024). Development and Effectiveness of a Pattern Management Educational Program Using Continuous Glucose Monitoring for Type 2 Diabetic Patients in Korea: A Quasi-Experimental Study. Healthcare, 12(14), 1381. https://doi.org/10.3390/healthcare12141381