A Longitudinal Study of CogEvo’s Prediction of Cognitive Decline in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Survey Items
2.3. CogEvo Cognitive Function Balancer
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ikeda, S.; Mimura, M.; Ikeda, M.; Wada-Isoe, K.; Azuma, M.; Inoue, S.; Tomita, K. Economic burden of Alzheimer’s disease dementia in Japan. J. Alzheimer’s Dis. 2021, 81, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Sanford, A.M. Mild cognitive impairment. Clin. Geriatr. Med. 2017, 33, 325–337. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Jack, C.R.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Li, G.; Larson, E.B.; Shofer, J.B.; Crane, P.K.; Gibbons, L.E.; McCormick, W.; Bowen, J.D.; Thompson, M.L. Cognitive trajectory changes over 20 years before dementia diagnosis: A large cohort study. J. Am. Geriatr. Soc. 2017, 65, 2627–2633. [Google Scholar] [CrossRef]
- Iwatsubo, T.; Iwata, A.; Suzuki, K.; Ihara, R.; Arai, H.; Ishii, K.; Senda, M.; Ito, K.; Ikeuchi, T.; Kuwano, R.; et al. Japanese and North American Alzheimer’s Disease Neuroimaging Initiative studies: Harmonization for international trials. Alzheimer’s Dement. 2018, 14, 1077–1087. [Google Scholar] [CrossRef] [PubMed]
- Veitch, D.P.; Weiner, M.W.; Aisen, P.S.; Beckett, L.A.; Cairns, N.J.; Green, R.C.; Harvey, D.; Jack, C.R.; Jagust, W.; Morris, J.C.; et al. Understanding disease progression and improving Alzheimer’s disease clinical trials: Recent highlights from the Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Dement. 2019, 15, 106–152. [Google Scholar] [CrossRef]
- Bateman, R.J.; Xiong, C.; Benzinger, T.L.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012, 367, 795–804. [Google Scholar] [CrossRef]
- Alty, J.; Bai, Q.; Li, R.; Lawler, K.; St George, R.J.; Hill, E.; Bindoff, A.; Garg, S.; Wang, X.; Huang, G.; et al. The TAS Test project: A prospective longitudinal validation of new online motor-cognitive tests to detect preclinical Alzheimer’s disease and estimate 5-year risks of cognitive decline and dementia. BMC Neurol. 2022, 22, 266. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Tombaugh, T.N.; McIntyre, N.J. The Mini-Mental State Examination: A comprehensive review. J. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef]
- Ciesielska, N.; Sokołowski, R.; Mazur, E.; Podhorecka, M.; Polak-Szabela, A.; Kędziora-Kornatowska, K. Is the Montreal cognitive assessment (MoCA) test better suited than the Mini-Mental State Examination (MMSE) in mild cognitive impairment (MCI) detection among people aged over 60? Meta-analysis. Psychiatr. Pol. 2016, 50, 1039–1052. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, Y.; Suzuki, H.; Yasunaga, M.; Sugiyama, M.; Ijuin, M.; Sakuma, N.; Inagaki, H.; Iwasa, H.; Ura, C.; Yatomi, N.; et al. Brief screening tool for mild cognitive impairment in older Japanese: Validation of the Japanese version of the Montreal Cognitive Assessment. Geriatr. Gerontol. Int. 2010, 10, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Cole, M.; Bellavance, F.; McCusker, J.; Primeau, F. Tracking cognitive decline in Alzheimer’s disease using the mini-mental state examination: A meta-analysis. Int. Psychogeriatr. 2000, 12, 231–247. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuis-Mark, R.E. The death knoll for the MMSE: Has it outlived its purpose? J. Geriatr. Psychiatry Neurol. 2010, 23, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Tierney, M.C.; Lermer, M.A. Computerized cognitive assessment in primary care to identify patients with suspected cognitive impairment. J. Alzheimer’s Dis. 2010, 20, 823–832. [Google Scholar] [CrossRef]
- Gualtieri, C.T. Dementia screening using computerized tests. J. Insur. Med. 2004, 36, 213–227. [Google Scholar] [PubMed]
- Ichii, S.; Nakamura, T.; Kawarabayashi, T.; Takatama, M.; Ohgami, T.; Ihara, K.; Shoji, M. CogEvo, a cognitive function balancer, is a sensitive and easy psychiatric test battery for age-related cognitive decline. Geriatr. Gerontol. Int. 2020, 20, 248–255. [Google Scholar] [CrossRef]
- Kluger, B.M.; Saunders, L.V.; Hou, W.; Garvan, C.W.; Kirli, S.; Efros, D.B.; Chau, Q.A.N.; Crucian, G.P.; Finney, G.R.; Meador, K.J.; et al. A brief computerized self-screen for dementia. J. Clin. Exp. Neuropsychol. 2009, 31, 234–244. [Google Scholar] [CrossRef]
- Robbins, T.W.; James, M.; Owen, A.M.; Sahakian, B.J.; McInnes, L.; Rabbitt, P. Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dementia 1994, 5, 266–281. [Google Scholar] [CrossRef]
- Saxton, J.; Morrow, L.; Eschman, A.; Archer, G.; Luther, J.; Zuccolotto, A. Computer assessment of mild cognitive impairment. Postgrad. Med. 2009, 121, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Tornatore, J.B.; Hill, E.; Laboff, J.A.; McGann, M.E. Self-administered screening for mild cognitive impairment: Initial validation of a computerized test battery. J. Neuropsychiatry Clin. Neurosci. 2005, 17, 98–105. [Google Scholar] [CrossRef] [PubMed]
- de Jager, C.A.; Schrijnemaekers, A.C.M.C.; Honey, T.E.; Budge, M.M. Detection of MCI in the clinic: Evaluation of the sensitivity and specificity of a computerised test battery, the Hopkins Verbal Learning Test and the MMSE. Age Ageing 2009, 38, 455–460. [Google Scholar] [CrossRef]
- Dwolatzky, T.; Dimant, L.; Simon, E.S.; Doniger, G.M. Validity of a short computerized assessment battery for moderate cognitive impairment and dementia. Int. Psychogeriatr. 2010, 22, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Makizako, H.; Shimada, H.; Park, H.; Doi, T.; Yoshida, D.; Uemura, K.; Tsutsumimoto, K.; Suzuki, T. Evaluation of multidimensional neurocognitive function using a tablet personal computer: Test-retest reliability and validity in community-dwelling older adults. Geriatr. Gerontol. Int. 2013, 13, 860–866. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Kawai, H.; Suzuki, H.; Fujiwara, Y.; Watanabe, Y.; Hirano, H.; Kim, H.; Ihara, K.; Miki, A.; Obuchi, S. Development and Validity of the Computer-Based Cognitive Assessment Tool for intervention in community-dwelling older individuals. Geriatr. Gerontol. Int. 2020, 20, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Goto, H.; Abo, M. Computerized assessment tool for healthy elderly persons as a predictor of cognitive function (original) Jikeikai. Med. J. 2010, 57, 1–4. [Google Scholar]
- Sawada, Y.; Satoh, T.; Saba, H.; Kitamoto, H.; Kato, Y.; Shiozuka, Y.; Kuwada, T.; Murakami, K.; Sasaki, M.; Abe, Y.; et al. Validity and reliability of a computerized cognitive function evaluation battery (CogEvo) as a screening tool. Psychiatry Clin. Neurosci. Rep. 2023, 2, e67. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024. [Google Scholar]
- Wild, K.; Howieson, D.; Webbe, F.; Seelye, A.; Kaye, J. Status of computerized cognitive testing in aging: A systematic review. Alzheimer’s Dement. 2008, 4, 428–437. [Google Scholar] [CrossRef]
- Memória, C.M.; Yassuda, M.S.; Nakano, E.Y.; Forlenza, O.V. Contributions of the Computer-Administered Neuropsychological Screen for Mild Cognitive Impairment (CANS-MCI) for the diagnosis of MCI in Brazil. Int. Psychogeriatr. 2014, 26, 1483–1491. [Google Scholar] [CrossRef]
- Zygouris, S.; Tsolaki, M. Computerized cognitive testing for older adults: A review. Am. J. Alzheimer’s Dis. Other Dement. 2015, 30, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Juncos-Rabadán, O.; Facal, D.; Pereiro, A.X.; Lojo-Seoane, C. Visual memory profiling with CANTAB in mild cognitive impairment (MCI) subtypes. Int. J. Geriatr. Psychiatry 2014, 29, 1040–1048. [Google Scholar] [CrossRef] [PubMed]
- Ruano, L.; Sousa, A.; Severo, M.; Alves, I.; Colunas, M.; Barreto, R.; Mateus, C.; Moreira, S.; Conde, E.; Bento, V.; et al. Development of a self-administered web-based test for longitudinal cognitive assessment. Sci. Rep. 2016, 6, 19114. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Kawai, H.; Ejiri, M.; Fujiwara, Y.; Hirano, H.; Sasai, H.; Obuchi, S. Predicting the incidence of mild cognitive impairment with a computer-based cognitive assessment tool in community-dwelling older adults: The Otassha study. PLoS ONE 2024, 19, e0297433. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, T.; Sakurai, T.; Akatsu, H.; Doi, T.; Fujiwara, Y.; Hirakawa, A.; Kinoshita, F.; Kuzuya, M.; Lee, S.; Matsuo, K.; et al. The Japan-Multimodal Intervention Trial for Prevention of Dementia (J-MINT): The Study Protocol for an 18-Month, Multicenter, Randomized, Controlled Trial. J. Prev. Alzheimer’s Dis. 2021, 4, 465–476. [Google Scholar] [CrossRef]
- Kivipelto, M.; Mangialasche, F.; Snyder, H.M.; Allegri, R.; Andrieu, S.; Arai, H.; Baker, L.; Belleville, S.; Brodaty, H.; Brucki, S.M.; et al. World-Wide FINGERS Network: A global approach to risk reduction and prevention of dementia. Alzheimer’s Dement. 2020, 16, 1078–1094. [Google Scholar] [CrossRef]
Participant Number | Study Participants (n = 119) | Withdrawals (n = 89) | p-Values | ||||||
---|---|---|---|---|---|---|---|---|---|
Number (%) | Number (%) | ||||||||
Age | |||||||||
<69 years | 8 | ( | 6.7 | ) | 11 | ( | 12.4 | ) | 0.08 |
70–79 years | 53 | ( | 44.5 | ) | 41 | ( | 46.1 | ) | |
80–89 years | 54 | ( | 45.4 | ) | 35 | ( | 39.3 | ) | |
90–99 years | 4 | ( | 3.4 | ) | 2 | ( | 0.2 | ) | |
Sex | |||||||||
Female | 107 | ( | 89.9 | ) | 80 | ( | 89.9 | ) | 0.995 |
Male | 12 | ( | 10.1 | ) | 9 | ( | 10.1 | ) | |
Years of education | |||||||||
≥12 years | 29 | ( | 24.4 | ) | 29 | ( | 33 | ) | 0.193 |
<12 years | 90 | ( | 75.6 | ) | 60 | ( | 67 | ) | |
Prescription | |||||||||
≥6 | 48 | ( | 40 | ) | 34 | ( | 38 | ) | 0.757 |
<6 | 71 | ( | 60 | ) | 55 | ( | 62 | ) | |
CogEvo subclassification grade | |||||||||
Grade 1 | 0 | ( | 0 | ) | 3 | ( | 0.3 | ) | 0.817 |
Grade 2 | 35 | ( | 29.4 | ) | 27 | ( | 30.3 | ) | |
Grade 3 | 72 | ( | 60.5 | ) | 40 | ( | 44.9 | ) | |
Grade 4 | 12 | ( | 10.1 | ) | 19 | ( | 21.3 | ) | |
Grade 5 | 0 | ( | 0 | ) | 0 | ( | 0 | ) | |
CogEvo subclassification grade * | 2.8 | ± | 0.6 | 2.8 | ± | 0.8 | 0.71 | ||
CogEvo Score ** | |||||||||
Total | 1084 | ( | 927, 1225 | ) | 1058 | ( | 779, 1261.5 | ) | 0.365 |
Orientation | 274 | ( | 218, 317.5 | ) | 259 | ( | 210.25, 315.5 | ) | 0.493 |
Follow the order | 172 | ( | 152.5, 192.5 | ) | 167.5 | ( | 117.25, 192.75 | ) | 0.388 |
Flash light | 290 | ( | 190, 350 | ) | 265 | ( | 150, 340 | ) | 0.642 |
Route 99 | 150 | ( | 116.5, 150 | ) | 150 | ( | 103.75, 150 | ) | 0.531 |
Same shape | 242 | ( | 170, 292 | ) | 223 | ( | 163, 290.75 | ) | 0.541 |
CogEvo examination time (s) ** | 550.33 | ( | 478.84, 636.55 | ) | 559.61 | ( | 464.39, 654.27 | ) | 0.868 |
MMSE ** | 27 | ( | 26, 29 | ) | 26 | ( | 25, 29 | ) | 0.148 |
MMSE > 23 | MMSE ≤ 23 | p-Values | |||||||
---|---|---|---|---|---|---|---|---|---|
n | ( | % | ) | n | ( | % | ) | ||
CogEvo subclassification at baseline | |||||||||
Grades 2 and 3 | 102 | ( | 95.3 | ) | 5 | ( | 4.7 | ) | <0.001 |
Grade 4 | 7 | ( | 58.3 | ) | 5 | ( | 41.7 | ) | |
MMSE at baseline | |||||||||
≤27 | 65 | ( | 94.2 | ) | 4 | ( | 5.8 | ) | 0.318 |
24–26 | 44 | ( | 88.0 | ) | 6 | ( | 12.0 | ) |
Variables | OR | 95% CI | p-Values | |||||
---|---|---|---|---|---|---|---|---|
Model 1 | Age | 1.24 | ( | 1.03 | – | 1.49 | ) | 0.023 |
Sex | 1.44 | ( | 0.13 | – | 16.10 | ) | 0.766 | |
Education | 0.86 | ( | 0.08 | – | 9.69 | ) | 0.901 | |
Prescription | 3.74 | ( | 0.47 | – | 30.10 | ) | 0.214 | |
CogEvo subclassification grade 2 and 3/4 | 26.1 | ( | 3.51 | – | 193.00 | ) | 0.001 | |
Model 2 | Sex | 1.91 | ( | 0.19 | – | 19.60 | ) | 0.588 |
Education | 1.87 | ( | 0.19 | – | 18.20 | ) | 0.590 | |
Prescription | 7.35 | ( | 0.98 | – | 55.10 | ) | 0.523 | |
CogEvo subclassification grade 2 and 3/4 | 27.4 | ( | 4.10 | – | 182.00 | ) | 0.001 | |
Model 3 | Age | 1.23 | ( | 1.02 | – | 1.48 | ) | 0.027 |
Sex | 1.43 | ( | 0.13 | – | 16.30 | ) | 0.773 | |
Education | 0.88 | ( | 0.08 | – | 10.20 | ) | 0.916 | |
Prescription | 4.03 | ( | 0.51 | – | 32.10 | ) | 0.188 | |
CogEvo subclassification grade 2 and 3/4 | 21.7 | ( | 2.70 | – | 174.00 | ) | 0.004 | |
MMSE * | 0.87 | ( | 0.53 | – | 1.42 | ) | 0.570 | |
Model 4 | Sex | 2.01 | ( | 0.19 | – | 21.10 | ) | 0.559 |
Education | 2.07 | ( | 0.21 | – | 20.80 | ) | 0.536 | |
Prescription | 7.69 | ( | 1.03 | – | 57.20 | ) | 0.047 | |
CogEvo subclassification grade 2 and 3/4 | 19.9 | ( | 2.75 | – | 144.00 | ) | 0.003 | |
MMSE * | 0.81 | ( | 0.51 | – | 1.29 | ) | 0.379 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ichii, S.; Oba, H.; Sugimura, Y.; Yang, Y.; Shoji, M.; Ihara, K. A Longitudinal Study of CogEvo’s Prediction of Cognitive Decline in Older Adults. Healthcare 2024, 12, 1379. https://doi.org/10.3390/healthcare12141379
Ichii S, Oba H, Sugimura Y, Yang Y, Shoji M, Ihara K. A Longitudinal Study of CogEvo’s Prediction of Cognitive Decline in Older Adults. Healthcare. 2024; 12(14):1379. https://doi.org/10.3390/healthcare12141379
Chicago/Turabian StyleIchii, Sadanobu, Hikaru Oba, Yoshikuni Sugimura, Yichi Yang, Mikio Shoji, and Kazushige Ihara. 2024. "A Longitudinal Study of CogEvo’s Prediction of Cognitive Decline in Older Adults" Healthcare 12, no. 14: 1379. https://doi.org/10.3390/healthcare12141379
APA StyleIchii, S., Oba, H., Sugimura, Y., Yang, Y., Shoji, M., & Ihara, K. (2024). A Longitudinal Study of CogEvo’s Prediction of Cognitive Decline in Older Adults. Healthcare, 12(14), 1379. https://doi.org/10.3390/healthcare12141379