Effects of Cognitive–Motor and Motor–Motor Dual Tasks on Gait Performance in Older Adults with Sarcopenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion and Exclusion Criteria
2.3. Movement Test Protocol
- (1)
- ST walking test: Participants wore uniform black tights, with bare feet and eyes straight ahead, and walked back and forth on an 8 m long road at a daily comfortable walking speed. The duration of each test was 1 min, a total of 3 tests were performed, and the interval of each walking test was 30–60 s as a rest period [22].
- (2)
- CMDT walking test: A counting task is performed simultaneously with a single walking task. Researchers randomly reported three-digit numbers, and participants walked while performing the continuous minus-3 task [23]. The test was performed at the same intervals as the ST walking test.
- (3)
- MMDT walking test: A water-holding task was performed in addition to the single task walking [24]. The participants held a water cup (0.55 kg) in their right hand, and when the researcher gave the “start” command, the participants walked with the water in their hands, and the test and interval were the same as those in the ST walking test.
2.4. Indicator Selection
2.5. Statistical Analysis
3. Results
3.1. Basic Information on the Participants
3.2. Comparison of Gait Parameters in Different Tasks
3.3. Comparison of Gait Stability in Different Tasks
3.4. Comparison of Behavioral Parameters in Different Tassks
4. Discussion
4.1. Effects of DTs on Gait Spatial-Temporal Performance in a Population with Sarcopenia
4.2. Effects of DTs on Gait Stabilization in a Population with Sarcopenia
4.3. Effects of DTs on Cognitive–Behavioral Performance in a Population with Sarcopenia
4.4. Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.K. Urbanization and population aging: Converging trends of demographic transitions in modern world. Arch. Gerontol. Geriatr. 2022, 101, 104709. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol. Rev. 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Nishikawa, H.; Fukunishi, S.; Asai, A.; Yokohama, K.; Nishiguchi, S.; Higuchi, K. Pathophysiology and mechanisms of primary sarcopenia (Review). Int. J. Mol. Med. 2021, 48, 156. [Google Scholar] [CrossRef]
- Lima, C.A.; Ricci, N.A.; Nogueira, E.C.; Perracini, M.R. The Berg Balance Scale as a clinical screening tool to predict fall risk in older adults: A systematic review. Physiotherapy 2018, 104, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Beck Jepsen, D.; Robinson, K.; Ogliari, G.; Montero-Odasso, M.; Kamkar, N.; Ryg, J.; Freiberger, E.; Masud, T. Predicting falls in older adults: An umbrella review of instruments assessing gait, balance, and functional mobility. BMC Geriatr. 2022, 22, 615. [Google Scholar] [CrossRef]
- Balasubramanian, C.K. The community balance and mobility scale alleviates the ceiling effects observed in the currently used gait and balance assessments for the community-dwelling older adults. J. Geriatr. Phys. Ther. 2015, 38, 78–89. [Google Scholar] [CrossRef]
- Merchant, R.A.; Goh, J.; Chan, Y.H.; Lim, J.Y.; Vellas, B. Slow Gait, Subjective Cognitive Decline and Motoric Cognitive RISK Syndrome: Prevalence and Associated Factors in Community Dwelling Older Adults. J. Nutr. Health Aging 2021, 25, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Merchant, R.A.; Chan, Y.H.; Hui, R.J.Y.; Tsoi, C.T.; Kwek, S.C.; Tan, W.M.; Lim, J.Y.; Sandrasageran, S.; Wong, B.L.L.; Chen, M.Z.; et al. Motoric cognitive risk syndrome, physio-cognitive decline syndrome, cognitive frailty and reversibility with dual-task exercise. Exp. Gerontol. 2021, 150, 111362. [Google Scholar] [CrossRef] [PubMed]
- Strobach, T. The dual-task practice advantage: Empirical evidence and cognitive mechanisms. Psychon. Bull. Rev. 2020, 27, 3–14. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Speechley, M. Falls in Cognitively Impaired Older Adults: Implications for Risk Assessment And Prevention. J. Am. Geriatr. Soc. 2018, 66, 367–375. [Google Scholar] [CrossRef]
- Yang, L.; Liao, L.R.; Lam, F.M.; He, C.Q.; Pang, M.Y. Psychometric properties of dual-task balance assessments for older adults: A systematic review. Maturitas 2015, 80, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, B.; Liang, J.; Niu, Z.; Lu, A. Effects of Multi-Task Mode on Cognition and Lower Limb Function in Frail Older Adults: A Systematic Search and Review. Healthcare 2023, 11, 3012. [Google Scholar] [CrossRef] [PubMed]
- Akin, H.; Senel, A.; Taskiran, H.; Kaya Mutlu, E. Do motor-cognitive and motor-motor dual task training effect differently balance performance in older adults? Eur. Geriatr. Med. 2021, 12, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Eckstrom, E.; Neukam, S.; Kalin, L.; Wright, J. Physical Activity and Healthy Aging. Clin. Geriatr. Med. 2020, 36, 671–683. [Google Scholar] [CrossRef]
- Peng, T.C.; Chen, W.L.; Wu, L.W.; Chang, Y.W.; Kao, T.W. Sarcopenia and cognitive impairment: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 2695–2701. [Google Scholar] [CrossRef] [PubMed]
- Aprahamian, I.; Cipolli, G.C.; Yassuda, M.S. Sarcopenia and cognitive impairment: Possible physiopathological causation or just a spurious association? Clin. Nutr. 2020, 39, 1622. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Akagi, J. Cognitive impairment is independently associated with definitive and possible sarcopenia in hospitalized older adults: The prevalence and impact of comorbidities. Geriatr. Gerontol. Int. 2017, 17, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Arosio, B.; Calvani, R.; Ferri, E.; Coelho-Junior, H.J.; Carandina, A.; Campanelli, F.; Ghiglieri, V.; Marzetti, E.; Picca, A. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle-Brain Axis. Nutrients 2023, 15, 1853. [Google Scholar] [CrossRef]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e302. [Google Scholar] [CrossRef]
- Jonkman, N.H.; Colpo, M.; Klenk, J.; Todd, C.; Hoekstra, T.; Del Panta, V.; Rapp, K.; van Schoor, N.M.; Bandinelli, S.; Heymans, M.W.; et al. Development of a clinical prediction model for the onset of functional decline in people aged 65-75 years: Pooled analysis of four European cohort studies. BMC Geriatr. 2019, 19, 179. [Google Scholar] [CrossRef]
- Tombaugh, T.N.; McIntyre, N.J. The mini-mental state examination: A comprehensive review. J. Am. Geriatr. Soc. 1992, 40, 922–935. [Google Scholar] [CrossRef] [PubMed]
- Gál, O.; Poláková, K.; Hoskovcová, M.; Tomandl, J.; Čapek, V.; Berka, R.; Brožová, H.; Šestáková, I.; Růžička, E. Pavement patterns can be designed to improve gait in Parkinson’s disease patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2019, 34, 1831–1838. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, S.; Chen, T.; Chan, P.; Du, Y. Effect of dual-task interference on the hand flexibility of patients with Parkinson’s disease carrying the leucine-rich repeat kinase 2 gene mutation. Exp. Ther. Med. 2013, 6, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.; Lang, S.; Zheng, Y.; Huang, D.; Gao, S.; Zheng, M.; Zhao, B.; Yiming, Z.; Qiu, Y.; Lin, Q.; et al. Motor Dual-Tasks for Gait Analysis and Evaluation in Post-Stroke Patients. J. Vis. Exp. JoVE 2021, 169, e62302. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.M.; Weizman, Y.; Van Netten, J.J.; Fuss, F.K. Comparing the applicability of temporal gait symmetry, variability and laterality in bilateral gait conditions: A feasibility study of healthy individuals and people with diabetic neuropathy. Clin. Biomech. 2022, 91, 105530. [Google Scholar] [CrossRef] [PubMed]
- Chijimatsu, M.; Henmi, R.; Yokoyama, H.; Kimura, Y.; Ishibashi, Y.; Tsuda, E. Anterior-Posterior Center of Pressure Is Associated With Knee Extensor Moment During Landing After Anterior Cruciate Ligament Reconstruction. J. Sport Rehabil. 2024, 33, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Perrotta, A.S.; Jeklin, A.T.; Bredin, S.S.D.; Shellington, E.M.; Kaufman, K.L.; de Faye, A.; Miles, R.M.; Warburton, D.E.R. Effect of an Ultra-Endurance Event on Cardiovascular Function and Cognitive Performance in Marathon Runners. Front. Physiol. 2022, 13, 838704. [Google Scholar] [CrossRef] [PubMed]
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Fukuchi, C.A.; Fukuchi, R.K.; Duarte, M. Effects of walking speed on gait biomechanics in healthy participants: A systematic review and meta-analysis. Syst. Rev. 2019, 8, 153. [Google Scholar] [CrossRef]
- Mehmet, H.; Robinson, S.R.; Yang, A.W.H. Assessment of Gait Speed in Older Adults. J. Geriatr. Phys. Ther. 2020, 43, 42–52. [Google Scholar] [CrossRef]
- Conder, R.; Zamani, R.; Akrami, M. The Biomechanics of Pregnancy: A Systematic Review. J. Funct. Morphol. Kinesiol. 2019, 4, 72. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Murata, S.; Goda, A.; Kikuchi, Y.; Shiraiwa, K.; Horie, J.; Nakano, H. Gait Characteristics of Dynapenia, Sarcopenia, and Presarcopenia in Community-Dwelling Japanese Older Women: A Cross-Sectional Study. Healthcare 2022, 10, 1905. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.H.; Hossain, G. Dual EEG alignment between participants during shared intentionality experiments. Brain Res. 2022, 1790, 147986. [Google Scholar] [CrossRef] [PubMed]
- Pockett, S.; Bold, G.E.; Freeman, W.J. EEG synchrony during a perceptual-cognitive task: Widespread phase synchrony at all frequencies. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2009, 120, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Jungen, P.; Batista, J.P.; Kirchner, M.; Habel, U.; Bollheimer, L.C.; Huppertz, C. Variability and symmetry of gait kinematics under dual-task performance of older patients with depression. Aging Clin. Exp. Res. 2023, 35, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Santhiranayagam, B.K.; Lai, D.T.; Sparrow, W.A.; Begg, R.K. Minimum toe clearance events in divided attention treadmill walking in older and young adults: A cross-sectional study. J. Neuroeng. Rehabil. 2015, 12, 58. [Google Scholar] [CrossRef] [PubMed]
- Terrier, P.; Reynard, F. Effect of age on the variability and stability of gait: A cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture 2015, 41, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jimenez, M. Normal Changes in Gait and Mobility Problems in the Elderly. Phys. Med. Rehabil. Clin. N. Am. 2017, 28, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Wahn, B.; Sinnett, S. Shared or Distinct Attentional Resources? Confounds in Dual Task Designs, Countermeasures, and Guidelines. Multisensory Res. 2019, 32, 145–163. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, Y.; Wang, J.; Su, H.; Tang, H.; Wang, Y. A novel digital biomarker of sarcopenia in frail elderly: New combination of gait parameters under dual-task walking. Front. Aging Neurosci. 2023, 15, 1087318. [Google Scholar] [CrossRef]
- Jehu, D.A.; Paquet, N.; Lajoie, Y. Examining the stability of dual-task posture and reaction time measures in older adults over five sessions: A pilot study. Aging Clin. Exp. Res. 2016, 28, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Baek, C.Y.; Kim, H.D.; Yoo, D.Y.; Kang, K.Y.; Lee, J.W. Change in activity patterns in the prefrontal cortex in different phases during the dual-task walking in older adults. J. Neuroeng. Rehabil. 2023, 20, 86. [Google Scholar] [CrossRef] [PubMed]
- Schoene, D.; Kiesswetter, E.; Sieber, C.C.; Freiberger, E. Musculoskeletal factors, sarcopenia and falls in old age. Z. Fur Gerontol. Und Geriatr. 2019, 52, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Zhang, H. Sarcopenia and cognitive impairment. Clin. Nutr. 2020, 39, 3207–3208. [Google Scholar] [CrossRef]
- Hertzog, C.; Kramer, A.F.; Wilson, R.S.; Lindenberger, U. Enrichment Effects on Adult Cognitive Development: Can the Functional Capacity of Older Adults Be Preserved and Enhanced? Psychol. Sci. Public Interest A J. Am. Psychol. Soc. 2008, 9, 1–65. [Google Scholar] [CrossRef]
N | Age (yr) | Weight (kg) | Height (cm) | BMI (kg/m2) | MMSE Score |
---|---|---|---|---|---|
30 | 70.73 ± 4.12 | 61.56 ± 9.18 | 161.97 ± 8.37 | 23.75 ± 3.15 | 26.90 ± 3.00 |
Indicators | ST | CMDT | MMDT | F Value | p Value | η2 | |
---|---|---|---|---|---|---|---|
Step speed (m/s) | 0.81 ± 0.11 | 0.75 ± 0.11 | 0.72 ± 0.10 | 4.965 | 0.009 | 0.102 | |
Step length (%) | 0.34 ± 0.02 | 0.33 ± 0.02 | 0.32 ± 0.02 | 3.12 | 0.049 | 0.067 | |
Step width (cm) | 15.17 ± 1.84 | 15.81 ± 2.47 | 15.01 ± 2.29 | 1.071 | 0.347 | 0.024 | |
Stride frequency (step/min) | 106.66 ± 7.00 | 97.86 ± 4.76 | 97.77 ± 4.94 | 23.601 | <0.001 | 0.352 | |
Gait cycle (s) | L | 1.15 ± 0.09 | 1.25 ± 0.12 | 1.26 ± 0.09 | 10.502 | <0.001 | 0.196 |
R | 1.16 ± 0.08 | 1.25 ± 0.11 | 1.26 ± 0.09 | 9.647 | <0.001 | 0.182 | |
Support phase (%) | L | 62.05 ± 3.28 | 62.22 ± 4.01 | 62.44 ± 3.15 | 2.015 | 0.139 | 0.044 |
R | 62.98 ± 2.82 | 62.73 ± 3.58 | 63.09 ± 3.56 | 1.410 | 0.25 | 0.031 | |
Swing phase (%) | L | 37.91 ± 3.27 | 37.78 ± 4.05 | 37.23 ± 3.17 | 1.851 | 0.163 | 0.041 |
R | 37.32 ± 3.45 | 37.20 ± 3.60 | 36.91 ± 3.56 | 1.410 | 0.25 | 0.031 | |
Double support phase (%) | L | 23.47 ± 3.03 | 25.15 ± 3.94 | 24.87 ± 3.71 | 3.26 | 0.043 | 0.070 |
R | 23.85 ± 2.68 | 25.21 ± 3.60 | 26.28 ± 3.08 | 3.435 | 0.037 | 0.073 |
Indicator | ST | CMDT | F Value | p Value | η2 |
---|---|---|---|---|---|
CR (%) | 96.28 ± 3.78 | 89.16 ± 6.31 | 27.185 | <0.001 | 0.319 |
RT (ms) | 981.50 ± 320.06 | 1415.50 ± 422.97 | 19.415 | <0.001 | 0.251 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Jin, B.; Lu, A. Effects of Cognitive–Motor and Motor–Motor Dual Tasks on Gait Performance in Older Adults with Sarcopenia. Healthcare 2024, 12, 1206. https://doi.org/10.3390/healthcare12121206
Wang C, Jin B, Lu A. Effects of Cognitive–Motor and Motor–Motor Dual Tasks on Gait Performance in Older Adults with Sarcopenia. Healthcare. 2024; 12(12):1206. https://doi.org/10.3390/healthcare12121206
Chicago/Turabian StyleWang, Cenyi, Baoming Jin, and Aming Lu. 2024. "Effects of Cognitive–Motor and Motor–Motor Dual Tasks on Gait Performance in Older Adults with Sarcopenia" Healthcare 12, no. 12: 1206. https://doi.org/10.3390/healthcare12121206
APA StyleWang, C., Jin, B., & Lu, A. (2024). Effects of Cognitive–Motor and Motor–Motor Dual Tasks on Gait Performance in Older Adults with Sarcopenia. Healthcare, 12(12), 1206. https://doi.org/10.3390/healthcare12121206