The Impact of Exercise on Interleukin-6 to Counteract Immunosenescence: Methodological Quality and Overview of Systematic Reviews
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview Conduct
2.2. Eligibility Criteria
2.3. PICO Framework Application
2.4. Data Selection and Extraction
2.5. Search Strategy
2.6. Data Extraction
2.7. Methodological Quality Assessment
3. Results
3.1. Resistance Exercises
3.2. Aerobic Exercises
3.3. Combined Exercises
3.4. Evaluation of the Methodological Quality of Systematic Reviews
4. Discussion
4.1. Strengths and Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mattson, M.P. Hormesis defined. Ageing Res. Rev. 2008, 7, 1–7. [Google Scholar] [CrossRef]
- Meessen, E.C.E.; Warmbrunn, M.V.; Nieuwdorp, M.; Soeters, M.R. Human Postprandial Nutrient Metabolism and Low-Grade Inflammation: A Narrative Review. Nutrients 2019, 11, 3000. [Google Scholar] [CrossRef]
- Pedersen, B.K. Physical activity and muscle-brain crosstalk. Nat. Rev. Endocrinol. 2019, 15, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Tominaga, T.; Ruhee, R.T.; Ma, S. Characterization and Modulation of Systemic Inflammatory Response to Exhaustive Exercise in Relation to Oxidative Stress. Antioxidants 2020, 9, 401. [Google Scholar] [CrossRef]
- Mattson, M.P.; Allison, D.B.; Fontana, L.; Harvie, M.; Longo, V.D.; Malaisse, W.J.; Mosley, M.; Notterpek, L.; Ravussin, E.; Scheer, F.A.; et al. Meal frequency and timing in health and disease. Proc. Natl. Acad. Sci. USA 2014, 111, 16647–16653. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Santoro, A.; Martucci, M.; Conte, M.; Capri, M.; Franceschi, C.; Salvioli, S. Inflammaging, hormesis and the rationale for anti-aging strategies. Ageing Res. Rev. 2020, 64, 101142. [Google Scholar] [CrossRef]
- Reis, A.S.L.D.S.; Borges, G.F.; Laguna, G.G.d.C.; Santos, A.C.S.d.; Ramos, I.d.S.; Mascarenhas, A.G. Envelhecimento, Imunossenescência e Exercício Físico: Uma revisão narrativa. In Ciências Biológicas e da Saúde: Integrando Saberes em Diferentes Contextos; Oliveira, T.R.S., Neto, O.B., Eds.; Editora Científica Digital: Guarujá, Brazil, 2022; pp. 153–169. [Google Scholar] [CrossRef]
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef]
- Santoro, A.; Bientinesi, E.; Monti, D. Immunosenescence and inflammaging in the aging process: Age-related diseases or longevity? Ageing Res. Rev. 2021, 71, 101422. [Google Scholar] [CrossRef]
- Barbé-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; Maurmann, R.M.; Bauer, M.E. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 2020, 42, 545–557. [Google Scholar] [CrossRef]
- Calabrese, V.; Santoro, A.; Monti, D.; Crupi, R.; Di Paola, R.; Latteri, S.; Cuzzocrea, S.; Zappia, M.; Giordano, J.; Calabrese, E.J.; et al. Aging and Parkinson’s Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic. Biol. Med. 2018, 115, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Salvioli, S.; Garagnani, P.; De Eguileor, M.; Monti, D.; Capri, M. Immunobiography and the Heterogeneity of Immune Responses in the Elderly: A Focus on Inflammaging and Trained Immunity. Front Immunol. 2017, 15, 982. [Google Scholar] [CrossRef]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Bonafè, M.; Olivieri, F.; Cavallone, L.; Giovagnetti, S.; Mayegiani, F.; Cardelli, M.; Pieri, C.; Marra, M.; Antonicelli, R.; Lisa, R.; et al. A gender--dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur. J. Immunol. 2001, 31, 2357–2361. [Google Scholar] [CrossRef]
- Sardi, F.; Fassina, L.; Venturini, L.; Inguscio, M.; Guerriero, F.; Rolfo, E.; Ricevuti, G. Alzheimer’s disease, autoimmunity and inflammation. The good, the bad and the ugly. Autoimmun. Rev. 2011, 11, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.S.L.S.; Borges, G.F.; dos Santos, A.C.S.; Ramos, I.d.S.; Mascarenhas, A.G. Efeitos da Prática de Atividade Física no Processo de Imunossenescência: Uma revisão narrativa. In Ciências da Saúde: Desafios, Perspectivas e Possibilidades; Editora Científica Digital: Guarujá, Brazil, 2022; pp. 126–142. [Google Scholar] [CrossRef]
- Franceschi, C.; Grignolio, A. Immunosenescence within an Evolutionary Perspective. In Immunology Today. Three Historical Perspectives under Three Theoretical Horizons; Grignolio, A., Ed.; Bup-Bononia University Press: Bologna, Italy, 2020; pp. 79–99. ISBN 978-88-7395-510-8. [Google Scholar]
- Fulop, T.; Larbi, A.; Hirokawa, K.; Cohen, A.A.; Witkowski, J.M. Immunosenescence is both functional/adaptive and dysfunctional/maladaptive. Semin. Immunopathol. 2020, 42, 521–536. [Google Scholar] [CrossRef]
- Shinkai, S.; Kohno, H.; Kimura, K.; Komura, T.; Asai, H.; Inai, R.; Oka, K.; Kurokawa, Y.; Shephard, R. Physical activity and immune senescence in men. Med. Sci. Sports Exerc. 1995, 27, 1516–1526. [Google Scholar] [CrossRef]
- Turner, J.E.; Brum, P.C. Does Regular Exercise Counter T Cell Immunosenescence Reducing the Risk of Developing Cancer and Promoting Successful Treatment of Malignancies? Oxid Med Cell Longev. 2017, 2017, 4234765. [Google Scholar] [CrossRef]
- Simpson, R.J.; Kunz, H.; Agha, N.; Graff, R. Exercise and the Regulation of Immune Functions. Prog. Mol. Biol. Transl. Sci. 2015, 135, 355–380. [Google Scholar] [CrossRef]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Mathot, E.; Liberman, K.; Cao Dinh, H.; Njemini, R.; Bautmans, I. Systematic review on the effects of physical exercise on cellular immunosenescence-related markers—An update. Exp. Gerontol. 2021, 149, 111318. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.P.; Teixeira, V.R.; Alencar-Silva, T.; Simonassi-Paiva, B.; Pereira, R.W.; Pogue, R.; Carvalho, J.L. Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine Growth Factor Rev. 2021, 5, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Fang, P.; She, Y.; Yu, M.; Min, W.; Shang, W.; Zhang, Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res. Rev. 2023, 84, 101829. [Google Scholar] [CrossRef] [PubMed]
- Chow, L.S.; Gerszten, R.E.; Taylor, J.M.; Pedersen, B.K.; van Praag, H.; Trappe, S.; Febbraio, M.A.; Galis, Z.S.; Gao, Y.; Haus, J.M.; et al. Exerkines in health, resilience and disease. Nat. Rev. Endocrinol. 2022, 18, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Safar, M.E. Influence of lifestyle modification on arterial stiffness and wave reflections. Am. J. Hypertens 2005, 18, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Forcina, L.; Franceschi, C.; Musarò, A. The hormetic and hermetic role of IL-6. Ageing Res. Rev. 2022, 80, 101697. [Google Scholar] [CrossRef]
- Das, D.K.; Graham, Z.A.; Cardozo, C.P. Myokines in skeletal muscle physiology and metabolism: Recent advances and future perspectives. Acta Physiol. 2020, 228, e13367. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.; Pollock, A.; Campbell, P.; Estcourt, L.; Brunton, G. An introduction to overviews of reviews: Planning a relevant research question and objective for an overview. Syst. Rev. 2018, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Haim, A. Effect of Exercise Interventions on Irisin and Interleukin-6 Concentrations and Indicators of Carbohydrate Metabolism in Males with Metabolic Syndrome. J. Clin. Med. 2023, 12, 369. [Google Scholar] [CrossRef]
- Koelwyn, G.J.; Wennerberg, E.; Demaria, S.; Jones, L.W. Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression. Oncology 2015, 29, 908–920, 922. [Google Scholar]
- Valacchi, G.; Virgili, F.; Cervellati, C.; Pecorelli, A. OxInflammation: From Subclinical Condition to Pathological Biomarker. Front Physiol. 2018, 9, 858. [Google Scholar] [CrossRef] [PubMed]
- Casuso, R.A.; Huertas, J.R. Mitochondrial Functionality in Inflammatory Pathology-Modulatory Role of Physical Activity. Life 2021, 11, 61. [Google Scholar] [CrossRef]
- Buckley, C.D.; Pilling, D.; Lord, J.M.; Akbar, A.N.; Scheel-Toellner, D.; Salmon, M. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 2001, 22, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Borsa, M.; Simon, A.K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 2021, 20, e13316. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.S.L.S.; Borges, G.F.; Santos, A.C.S.d.; Mascarenhas, A.G.; Ramos, I. de S. Exercícios, Catecolaminas e Imunossenescência: Uma Revisão Narrativa de Literatura. In Medicina do Exercício e do Esporte: Evidências Científicas para Uma Abordagem Multiprofissional; Editora Científica Digital: Guarujá, Brazil, 2022; pp. 75–94. [Google Scholar] [CrossRef]
- Fuster, J.J.; Walsh, K. The good, the bad, and the ugly of interleukin-6 signaling. EMBO J. 2014, 33, 1425–1427. [Google Scholar] [CrossRef]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis. Res. Ther. 2006, 8 (Suppl. S2), S3. [Google Scholar] [CrossRef]
- Uhl, B.; Vadlau, Y.; Zuchtriegel, G.; Nekolla, K.; Sharaf, K.; Gaertner, F.; Massberg, S.; Krombach, F.; Reichel, C.A. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood 2016, 128, 2327–2337. [Google Scholar] [CrossRef]
- Borsa, M.; Barandun, N.; Gräbnitz, F.; Barnstorf, I.; Baumann, N.S.; Pallmer, K.; Baumann, S.; Stark, D.; Balaz, M.; Oetiker, N.; et al. Asymmetric cell division shapes naive and virtual memory T-cell immunity during ageing. Nat. Commun. 2021, 12, 2715. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Jiao, H.; Xue, Y.; Wang, L.; Zhang, Y.; Wang, B.; Teng, Z.; Li, J.; Zhao, H.; Liu, C. A Meta-Analysis of the Influence on Inflammatory Factors in Type 2 Diabetes among Middle-Aged and Elderly Patients by Various Exercise Modalities. Int. J. Environ. Res. Public Health 2023, 20, 1783. [Google Scholar] [CrossRef]
- Kim, S.D.; Yeun, Y.R. Effects of Resistance Training on C-Reactive Protein and Inflammatory Cytokines in Elderly Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2022, 19, 3434. [Google Scholar] [CrossRef]
- Salimans, L.; Liberman, K.; Njemini, R.; Kortekaas Krohn, I.; Gutermuth, J.; Bautmans, I. The effect of resistance exercise on the immune cell function in humans: A systematic review. Exp. Gerontol. 2022, 164, 111822. [Google Scholar] [CrossRef] [PubMed]
- Brauer, L.; Krüger, K.; Weyh, C.; Alack, K. The Effects of Physical Activity on the Aging of Circulating Immune Cells in Humans: A Systematic Review. Immuno 2021, 1, 132–159. [Google Scholar] [CrossRef]
- Bautmans, I.; Salimans, L.; Njemini, R.; Beyer, I.; Lieten, S.; Liberman, K. The effects of exercise interventions on the inflammatory profile of older adults: A systematic review of the recent literature. Exp. Gerontol. 2021, 146, 111236. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, S.S.; Sousa, C.V.; Santos, P.A.; Barbosa, L.P.; Maciel, L.A.; Coelho-Júnior, H.J.; Motta-Santos, D.; Rosa, T.S.; Degens, H.; Simões, H.G. Master athletes have longer telomeres than age-matched non-athletes. A systematic review, meta-analysis and discussion of possible mechanisms. Exp. Gerontol. 2021, 146, 111212. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, C.S.L.; Thang, L.A.N.; Maier, A.B. Markers of inflammation and their association with muscle strength and mass: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 64, 101185. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, N.; Stoner, L.; Farajivafa, V.; Hanson, E.D. Exercise training, circulating cytokine levels and immune function in cancer survivors: A meta-analysis. Brain Behav. Immun. 2019, 81, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Djalilova, D.M.; Schulz, P.S.; Berger, A.M.; Case, A.J.; Kupzyk, K.A.; Ross, A.C. Impact of Yoga on Inflammatory Biomarkers: A Systematic Review. Biol. Res. Nurs. 2019, 2, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Qiu, P.; Xia, R.; Lin, H.; Ye, B.; Tao, J.; Chen, L. Effect of Aerobic Exercise on Inflammatory Markers in Healthy Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Aging Neurosci. 2019, 26, 98. [Google Scholar] [CrossRef] [PubMed]
- Greenham, G.; Buckley, J.D.; Garrett, J.; Eston, R.; Norton, K. Biomarkers of Physiological Responses to Periods of Intensified, Non-Resistance-Based Exercise Training in Well-Trained Male Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 2517–2548. [Google Scholar] [CrossRef]
- Barros, E.S.; Nascimento, D.C.; Prestes, J.; Nóbrega, O.T.; Córdova, C.; Sousa, F.; Boullosa, D.A. Acute and Chronic Effects of Endurance Running on Inflammatory Markers: A Systematic Review. Front. Physiol. 2017, 8, 779. [Google Scholar] [CrossRef]
- Monteiro-Junior, R.S.; de Tarso Maciel-Pinheiro, P.; da Matta Mello Portugal, E.; da Silva Figueiredo, L.F.; Terra, R.; Carneiro, L.S.F.; Rodrigues, V.D.; Nascimento, O.J.M.; Deslandes, A.C.; Laks, J. Effect of Exercise on Inflammatory Profile of Older Persons: Systematic Review and Meta-Analyses. J. Phys. Act. Health 2018, 15, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Pereira Junior, M.; Andrade, R.D.; Lazarini Junior, J.R.; Ornellas, F.H. Efeito agudo do exercício resistido sobre a Interleucina 6 e Fator de Necrose Tumoral alfa em idosos: Uma revisão sistemática. RBPFEX 2023, 9, 597–604. [Google Scholar]
- Gjevestad, G.O.; Holven, K.B.; Ulven, S.M. Effects of Exercise on Gene Expression of Inflammatory Markers in Human Peripheral Blood Cells: A Systematic Review. Curr. Cardiovasc. Risk Rep. 2015, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Tong, G.; Geng, Q.; Cheng, J.; Chai, J.; Xia, Y.; Feng, R.; Zhang, L.; Wang, D. Effects of psycho-behavioral interventions on immune functioning in cancer patients: A systematic review. J. Cancer Res. Clin. Oncol. 2014, 140, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Ploeger, H.E.; Takken, T.; de Greef, M.H.; Timmons, B.W. The effects of acute and chronic exercise on inflammatory markers in children and adults with a chronic inflammatory disease: A systematic review. Exerc. Immunol. Rev. 2009, 15, 6–41. [Google Scholar] [PubMed]
- Ng, B.H.; Tsang, H.W. Psychophysiological outcomes of health qigong for chronic conditions: A systematic review. Psychophysiology 2009, 46, 257–269. [Google Scholar] [CrossRef]
- Haaland, D.A.; Sabljic, T.F.; Baribeau, D.A.; Mukovozov, I.M.; Hart, L.E. Is regular exercise a friend or foe of the aging immune system? A systematic review. Clin. J. Sport Med. 2008, 18, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Hartling, L.; Chisholm, A.; Thomson, D.; Dryden, D.M. A descriptive analysis of overviews of reviews published between 2000 and 2011. PLoS ONE 2012, 7, e49667. [Google Scholar] [CrossRef]
- Smith, V.; Devane, D.; Begley, C.M.; Clarke, M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Med. Res. Methodol. 2011, 11, 15. [Google Scholar] [CrossRef]
- López-López, J.A.; Rubio-Aparicio, M.; Sánchez-Meca, J. Overviews of Reviews: Concept and Development. Psicothema 2022, 34, 175–181. [Google Scholar] [CrossRef]
- Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Bougioukas, K.I.; Liakos, A.; Tsapas, A.; Ntzani, E.; Haidich, A.B. Preferred reporting items for overviews of systematic reviews including harms checklist: A pilot tool to be used for balanced reporting of benefits and harms. J. Clin. Epidemiol. 2018, 93, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shammer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, 160. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Reeves, B.C.; Wells, G.; Thuku, M.; Hamel, C.; Moran, J.; Moher, D.; Tugwell, P.; Welch, V.; Kristjansson, E.; et al. AMSTAR 2: A critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017, 21, j4008. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Grimshaw, J.M.; Wells, G.A.; Boers, M.; Andersson, N.; Hamel, C.; Porter, A.C.; Tugwell, P.; Moher, D.; Bouter, L.M. Development of AMSTAR: A measurement tool to assess the methodological quality of systematic reviews. BMC Med. Res. Methodol. 2007, 15, 10. [Google Scholar] [CrossRef]
- Kung, J.; Chiappelli, F.; Cajulis, O.O.; Avezova, R.; Kossan, G.; Chew, L.; Maida, C.A. From Systematic Reviews to Clinical Recommendations for Evidence-Based Health Care: Validation of Revised Assessment of Multiple Systematic Reviews (R-AMSTAR) for Grading of Clinical Relevance. Open Dent. J. 2010, 4, 84–91. [Google Scholar] [CrossRef]
- Gates, A.; Gates, M.; Duarte, G.; Cary, M.; Becker, M.; Prediger, B.; Vandermeer, B.; Fernandes, R.; Pieper, D.; Hartling, L. Evaluation of the reliability, usability, and applicability of AMSTAR, AMSTAR 2, and ROBIS: Protocol for a descriptive analytic study. Syst. Rev. 2018, 7, 85. [Google Scholar] [CrossRef]
- Furtado, G.E.; Reis, A.S.L.S.; Braga-Pereira, R.; Caldo-Silva, A.; Teques, P.; Sampaio, A.R.; Santos, C.A.F.d.; Bachi, A.L.L.; Campos, F.; Borges, G.F.; et al. Impact of Exercise Interventions on Sustained Brain Health Outcomes in Frail Older Individuals: A Comprehensive Review of Systematic Reviews. Healthcare 2023, 11, 3160. [Google Scholar] [CrossRef]
- Reis, A.S.L.S.; Comper, M.L.C.; Menucchi, M.R.T.P.; Furtado, G.E.; Borges, G.F. Resposta da Il-6 ao Exercício Aeróbico na Imunossenescência: Uma revisão narrativa. RBPFEX 2023, 17, 438–446. [Google Scholar]
Acronym | Definition | Information |
---|---|---|
P | Population | Adolescents, adults, and elderly |
I | Intervention | Exercise (including duration, modality, and intensity) |
C | Comparison | No exercise |
O | Outcomes | Positive effect on IL-6 as a biomarker of immunosenescence. |
Exercise |
… OR Exercises OR Physical Activity OR Activities, Physical OR Activity, Physical OR Physical Activities OR Exercise, Physical OR Exercises, Physical OR Physical Exercise OR Physical Exercises OR Acute Exercise OR Acute Exercises OR Exercise, Acute OR Exercises, Acute OR Exercise, Isometric OR Exercises, Isometric OR Isometric Exercises OR Isometric Exercise OR Exercise, Aerobic OR Aerobic Exercise OR Aerobic Exercises OR Exercises, Aerobic OR Exercise Training OR Exercise Trainings OR Training, Exercise OR Trainings, Exercise AND… |
Cellular Senescence |
… OR Senescence, Cellular OR Cell Senescence OR Senescence, Cell OR Cell Aging OR Cellular Ageing OR Ageing, Cellular OR Aging, Cell OR Senescence, Replicative OR Cellular Aging OR Aging, Cellular OR Replicative Senescence OR Cell Ageing OR Ageing, Cell OR Aging OR Senescence OR Biological Aging OR Aging, Biological OR Immunocompetence OR Immunological Competence OR Competence, Immunological OR Competence, Immunologic OR Immunologic Competence AND… |
Cytokines |
… OR Cytokine OR Interleukins OR Interleukin OR Interleukin-6 OR Interleukin-6 receptors OR Interleukin 6 OR IL6 AND… |
Inflammation |
… OR Inflammations OR Innate Inflammatory Response OR Inflammatory Response, Innate OR Innate Inflammatory Responses |
Systematic Review |
…OR Systematic literature review OR Systematic critical review OR Systematic mixed studies review OR Systematic search and review OR Systematic meta-review OR Metanalysis OR Meta-analysis… |
Aging |
… OR Senescence OR Biological Aging OR Aging, Biological OR Aged OR Elderly… |
Author (Year) Reference | Total and Range of Study Participants/Settings | Number of Studies | Exercise | Meta-Analysis | Quality Assessment | Outcomes |
---|---|---|---|---|---|---|
Yang et al. (2023) [43] | A total of 853 (type 2 diabetics) (BMI ≤ 42, duration of disease ≥ 1 year); intervention: 44 years; control: 45 years; both sexes (balanced sample); age: 40 to 55 years >55 years | 18 RCTs | C Aerobic, resisted, CON, HIIT; 3 weeks to 12 months | Y | Cochrane Collaboration (ROB) | ↓ IL-6, IL-10, CRP, TNF-α |
Kim; Yeun, (2022) [44] | A total of 539 (268—intervention group, 271 control: usual care/inactivity) 10 healthy elderly interventions and 8 diseases (metabolic syndrome, type 2 diabetes, cognitive impairment) | 18 RCTs | R Intervention machines, elastic band; 6 to 32 weeks | Y | Cochrane Collaboration (ROB) | ↓ IL-6, CRP, TNF-α, ↑ IL-10 |
Salimans et al. (2022) [45] | A total of 835 (284 adults); resistance exercise, 17 and 40 years; 8 resistance exercise, 60 and 85 years; healthy | 30 (11 RCTs/6 NRCT/2 randomized control I/2 compared two I/exercise groups to each other in a non-randomized/8 single-intervention group with no control I/1 post-I only) | R Equipment: gymnastics and free weights; 3 to 12 weeks | N | Cochrane Collaboration (ROB2) | ↑ NF-κB, MCP-1; * TNF-α, IL-6, IL-6R |
Brauer et al. (2021) [46] | A total of 440. Acute exercise (3): running test (1), stationary bicycle (1), resisted (1); trained: rowing football, running, or resistance exercise. Sedentary: last 6 months, no more than 2 to 3x/or no more 150 min/week; 173 F; 66 M; 201 NI; 18 to 75 years. | 9 (3 RCTs 4 RCTs, non-randomized or uncontrolled, 2 cohort studies) | C Acute exercise: running test, exercise bike; chronic sessions; 6 weeks to 6 months | N | Cochrane Collaboration (ROB2/ ROBINS-I) | ↓ L-6, TNF-α, inflammation, cytokines |
Bautmans et al. (2021) [47] | A total of 985 studies (8 with healthy patients, 1 in frailty and 4 with elderly diseases: cancer, on hemodialysis). 8 aerobic exercise (5 elderly with specific conditions/diseases); 7 resistance exercises (3 in healthy, 1 fragile, and 3 elderly with specific conditions/diseases). 1 Tai Chi in older adults/mild cognitive impairment; 70 F, 249 M, 666 NI (estimated); 56 to 83 years. | 19 RCTs/3 NRCT/1COR (19 randomized controlled trials; crossover; 3 non-randomized controlled intervention studies; 1 randomized intervention) | C Resistance exercise, aerobics, and Tai Chi; 3 weeks to 12 months | N | NICE | ↓ IL-6, CRP, TNF-α |
Khosravi et al. (2019) [50] | A total of 1190 cancer survivors (I: exercise—age 54.37; control—age 56.71) (13 combined exercise; 5 aerobic; 3 resisted). 5 yoga (n = 2), Tai Chi (n = 3), control habitual care (n = 17), educational I (n = 3), therapy (n = 2), health assessment (n = 1), counseling (n = 1), relaxation (n = 1), and oral I (n = 1); 857 F, 40 M, 93 NI (estimated); 27 to 70 years. | 27 RCTs | C Combined aerobic exercise, resisted, yoga, Tai Chi; 2 to 104 weeks | Y | PeDro | ↓ M.P.I, CRP, TNF; ↑ MCP-1; * IL-6, IL-8, IL-1β, INF-γ |
Djalilova et al. (2019) [51] | A total of 937 cases of breast cancer, colorectal, heart failure, and hypertension (5 studies with controls on the waiting list and 4 usual or untreated care, 2 education, 1 time and attention, 2 three-arm intervention comparing yoga with 2 control groups); 706 F, 231 M; 35 to 66 years, average 48.54. | 15 (10 randomized controlled trials; RCT/3 quasi-experimental, 2 single-group pre-posts) | A Types of yoga: Hatha yoga; 2 to 8 weeks | N | Quality Rating Scale | ↓ Inflammation in several chronic conditions |
Zheng et al. (2019) [52] | A total of 1250 healthy aerobic exercises (Tai Chi intervention groups (1), treadmill (1), step on the bench (1), multicomponents (5): 1062 F, 188 M, 3 NI (estimated); 40 to 95 years. | 11 RCTs | A Tai Chi, treadmill, step on the bench, multicomponent; 2 to 12 months | Y | Cochrane Collaboration | ↓ IL-6, CRP, TNF-α |
Barros et al. (2017) [54] | A total of 1421 marathoners, recreational runners, sedentary, beginners, and only healthy participants: 163 F, 1234 M, 24 NI; average age: 39.16. | 51 RCT/NRCT | A Marathon, ultramarathon, half marathon, distance protocols (42.195, 21.1, 12, 10 km and treadmill, chronic exercise; 24 h to 6 days | N | Downs and Black scale (Modified) | ↓ IL-6, TNF-α, ↑ IL-10 |
Tong et al. (2013) [58] | A total of 276 (only for interventions with physical exercises); cancer/survivors walking, Tai Chi, Qigong, and aerobic exercise (moderate and low intensity); both sexes; 41.5 to 70.43 years. | 76 RCTs (11 physical exercises, 5 multiple interventions); 54 psychological/cognitive therapies, 5 diets, 6 multiple strategies combining 2/3 of the interventions. | A walking, Tai Chi, Qigong, aerobic exercise (moderate and low intensity); 4 days to 6 months | Y | Instrument not informed | → CD4+, CD4+/CD8+, CD3+, NKCA, IL-2; * E.C IL-6, CD8+, TNF-α |
Ploeger, 2009 [59] | A total of 316. Asthma, diabetes mellitus 1 and 2, multiple sclerosis, chronic obstructive pulmonary disease, and healthy control. I (chronic exercise in adults and acute in children); control with 9–110 chronic disease (mean: 34.19); placebo therapy: 12/26; No I: 14/26. (estimated); sex: NI; ≤18 and >19 years old. | 19 RCTs (12 studies in adults and 7 studies in children * (* deleted from this overview) | A Acute and chronic cycling; 8 to 12 weeks | N | PeDRO | ↑ IL-6, TNF-α in chronic diseases, ↓ after 2 h of acute exercise/↓ IL-6, TNF-α healthy control |
Ng; Tsang, (2009) [60] | A total of 796 (groups 9–115) have chronic diseases: hypertension, fibromyalgia, cancer, and neurological problems. (average: 35.06 people/group/Qigon), (estimated); sex: NI; 18.5 to 77.5 years. | 26 RCTs | A Qigong and variations, walking; 3 to 12 weeks | Y | Jadad | ↓ IL-6, ↑ white blood cells, lymphocytes |
Haaland et al. (2008) [61] | A total of 794 (estimated total) (the sample size ranged from 13 to 190) were healthy. Water exercises, calisthenics, flexibility/toning, strength (upper and lower), 572 F, 201 M, 31 NR (estimated), 64.6 to 90.6 years. | 17 RCTs (17 studies and 16 cohorts of participants) | C water exercises, calisthenics, flexibility/toning, strength (top and bottom); 8 weeks to 43 months | N | Jadad | ↓ IL-6, IL-1b, IL-2, IL-18, TNF-α |
AMSTAR-2 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Author/Year | I.1 | I.2 | I.3 | I.4 | I.5 | I.6 | I.7 | I.8 | I.9 | I.10 | I.11 | I.12 | I.13 | I.14 | I.15 | I.16 | GC |
Yang et al., 2023 [43] | N | N | Y | P | Y | Y | P | Y | Y | N | Y | Y | Y | Y | Y | Y | L |
Kim; Yeun, 2022 [44] | Y | N | Y | P | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | L |
Salimans et al., 2022 [45] | Y | Y | Y | P | Y | Y | Y | Y | Y | N | N | Y | Y | Y | Y | Y | L |
Brauer et al., 2021 [46] | N | N | Y | P | N | N | Y | Y | Y | N | N | N | Y | Y | N | Y | CL |
Bautmans et al., 2021 [47] | Y | N | Y | P | Y | Y | Y | Y | Y | N | N | N | N | N | N | Y | CL |
Khosravi et al., 2019 [50] | Y | N | Y | P | Y | Y | Y | P | Y | N | Y | Y | Y | Y | Y | Y | L |
Djalilova et al., 2019 [51] | Y | N | Y | P | N | N | Y | P | Y | N | N | N | N | N | N | Y | CL |
Zheng et al., 2019 [52] | Y | N | Y | P | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | L |
Barros et al., 2017 [54] | Y | N | Y | P | N | N | Y | P | Y | N | N | N | N | Y | N | Y | CL |
Tong et al., 2013 [58] | Y | N | P | N | Y | P | Y | Y | N | Y | Y | Y | Y | Y | Y | N | CL |
Ploeger, 2009 [59] | N | N | Y | P | Y | N | Y | N | Y | N | N | N | Y | Y | N | N | CL |
Ng; Tsang, 2009 [60] Haaland et al., 2008 [61] | Y Y | N N | Y Y | P P | N N | Y Y | Y P | Y P | Y Y | N N | N N | Y N | Y N | Y N | Y N | N N | CL CL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, A.S.L.d.S.; Furtado, G.E.; Menuchi, M.R.T.P.; Borges, G.F. The Impact of Exercise on Interleukin-6 to Counteract Immunosenescence: Methodological Quality and Overview of Systematic Reviews. Healthcare 2024, 12, 954. https://doi.org/10.3390/healthcare12100954
Reis ASLdS, Furtado GE, Menuchi MRTP, Borges GF. The Impact of Exercise on Interleukin-6 to Counteract Immunosenescence: Methodological Quality and Overview of Systematic Reviews. Healthcare. 2024; 12(10):954. https://doi.org/10.3390/healthcare12100954
Chicago/Turabian StyleReis, Anne Sulivan Lopes da Silva, Guilherme Eustáquio Furtado, Marcos Rodrigo Trindade Pinheiro Menuchi, and Grasiely Faccin Borges. 2024. "The Impact of Exercise on Interleukin-6 to Counteract Immunosenescence: Methodological Quality and Overview of Systematic Reviews" Healthcare 12, no. 10: 954. https://doi.org/10.3390/healthcare12100954
APA StyleReis, A. S. L. d. S., Furtado, G. E., Menuchi, M. R. T. P., & Borges, G. F. (2024). The Impact of Exercise on Interleukin-6 to Counteract Immunosenescence: Methodological Quality and Overview of Systematic Reviews. Healthcare, 12(10), 954. https://doi.org/10.3390/healthcare12100954