Effectiveness of Proprioceptive Body Vibration Rehabilitation on Motor Function and Activities of Daily Living in Stroke Patients with Impaired Sensory Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Testing Procedure
2.3. SSEP Test
2.4. Fugl-Meyer Assessment (FMA)
2.5. Trunk-Impairment Scale (TIS)
2.6. Berg Balance Scale (BBS)
2.7. Modified Barthel Index (MBI)
2.8. Experimental Procedures
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sacco, R.L.; Kasner, S.E.; Broderick, J.P.; Caplan, L.R.; Connors, J.; Culebras, A.; Elkind, M.S.; George, M.G.; Hamdan, A.D.; Higashida, R.T. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013, 44, 2064–2089. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.C.; Riley, J.D. Neuroplasticity and brain repair after stroke. Curr. Opin. Neurol. 2008, 21, 76–82. [Google Scholar] [CrossRef]
- Dimyan, M.A.; Cohen, L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011, 7, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, P.M.; Algra, A.; Chen, Z.; Diener, H.-C.; Norrving, B.; Mehta, Z. Effects of aspirin on risk and severity of early recurrent stroke after transient ischaemic attack and ischaemic stroke: Time-course analysis of randomised trials. Lancet 2016, 388, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Sampaio-Baptista, C.; Sanders, Z.-B.; Johansen-Berg, H. Structural plasticity in adulthood with motor learning and stroke rehabilitation. Annu. Rev. Neurosci. 2018, 41, 25–40. [Google Scholar] [CrossRef] [PubMed]
- Bolognini, N.; Russo, C.; Edwards, D.J. The sensory side of post-stroke motor rehabilitation. Restor. Neurol. Neurosci. 2016, 34, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Matozinho, C.V.; Avelino, P.R.; de Morais Faria, C.D.C.; Teixeira-Salmela, L.F.; de Menezes, K.K.; Sant’Anna, R.; Scianni, A.A. Relative contributions of positive, negative, and adaptive features to limitations in upper-limb function three months after stroke. J. Stroke Cerebrovasc. Dis. 2023, 32, 107226. [Google Scholar] [CrossRef]
- Gandhi, D.B.; Sebastian, I.A.; Bhanot, K. Rehabilitation of Post Stroke Sensory Dysfunction—A Scoping Review. J. Stroke Med. 2021, 4, 25–33. [Google Scholar] [CrossRef]
- Carey, L.M.; Matyas, T.A.; Oke, L.E. Sensory loss in stroke patients: Effective training of tactile and proprioceptive discrimination. Arch. Phys. Med. Rehabil. 1993, 74, 602–611. [Google Scholar] [CrossRef]
- Lawrence, M.; Junior, F.T.C.; Matozinho, H.H.; Govan, L.; Booth, J.; Beecher, J. Yoga for stroke rehabilitation. Cochrane Database Syst. Rev. 2017, 12, CD011483. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Y.-L.; Shantsila, A.; Lip, G.Y. The global burden of atrial fibrillation and stroke: A systematic review of the clinical epidemiology of atrial fibrillation in Asia. Chest 2017, 152, 810–820. [Google Scholar] [CrossRef] [PubMed]
- Kuciel, M.; Rutkowski, S.; Szary, P.; Kiper, P.; Rutkowska, A. Effect of PNF and NDT Bobath Concepts in Improving Trunk Motor Control in Ischemic Stroke Patients–a Randomized Pilot Study. Med. Rehabil. 2021, 25, 4–8. [Google Scholar] [CrossRef]
- Pumprasart, T.; Pramodhyakul, N.; Piriyaprasarth, P. The effect of the Bobath therapy programme on upper limb and hand function in chronic stroke individuals with moderate to severe deficits. Int. J. Ther. Rehabil. 2019, 26, 1–12. [Google Scholar] [CrossRef]
- Van Vliet, P.; Lincoln, N.; Foxall, A. Comparison of Bobath based and movement science based treatment for stroke: A randomised controlled trial. J. Neurol. Neurosurg. Psychiatry 2005, 76, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.J.; Park, S.W.; Lee, H.S. Comparison of the effectiveness of whole body vibration in stroke patients: A meta-analysis. BioMed Res. Int. 2018, 2018, 5083634. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, P.; Liu, C.; He, C.; Reinhardt, J.D. The effect of whole body vibration on balance, gait performance and mobility in people with stroke: A systematic review and meta-analysis. Clin. Rehabil. 2015, 29, 627–638. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Pang, M.Y. Muscle activity and vibration transmissibility during whole-body vibration in chronic stroke. Scand. J. Med. Sci. Sports 2019, 29, 816–825. [Google Scholar] [CrossRef]
- Lee, A.; Kim, H.; Kim, J.; Choi, D.-S.; Jung, J.H.; Lee, J.; Kim, Y.-H. Modulating Effects of Whole-body Vibration on Cortical Activity and Gait Function in Chronic Stroke Patients. Brain Neurorehabilit. 2020, 13, e12. [Google Scholar] [CrossRef]
- Martínez, F.; Rubio, J.A.; Ramos, D.J.; Esteban, P.; Mendizábal, S.; Jiménez, F. Effects of 6-week whole body vibration training on the reflex response of the ankle muscles: A randomized controlled trial. Int. J. Sports Phys. Ther. 2013, 8, 15. [Google Scholar]
- Torvinen, S.; Kannus, P.; SievaÈnen, H.; JaÈrvinen, T.A.; Pasanen, M.; Kontulainen, S.; JaÈrvinen, T.L.; JaÈrvinen, M.; Oja, P.; Vuori, I. Effect of a vibration exposure on muscular performance and body balance. Randomized cross-over study. Clin. Physiol. Funct. Imaging 2002, 22, 145–152. [Google Scholar] [CrossRef]
- Mileva, K.N.; Bowtell, J.L.; Kossev, A.R. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Exp. Physiol. 2009, 94, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Priplata, A.A.; Niemi, J.B.; Harry, J.D.; Lipsitz, L.A.; Collins, J.J. Vibrating insoles and balance control in elderly people. Lancet 2003, 362, 1123–1124. [Google Scholar] [CrossRef] [PubMed]
- Cochrane, D. Vibration exercise: The potential benefits. Int. J. Sports Med. 2010, 32, 75–99. [Google Scholar] [CrossRef] [PubMed]
- Lee, G. Does whole-body vibration training in the horizontal direction have effects on motor function and balance of chronic stroke survivors? A preliminary study. J. Phys. Ther. Sci. 2015, 27, 1133–1136. [Google Scholar] [CrossRef] [PubMed]
- Mijic, M.; Jung, A.; Schoser, B.; Young, P. Use of peripheral electrical stimulation on healthy individual and patients after stroke and its effects on the somatosensory evoked potentials. A systematic review. Front. Neurol. 2022, 13, 1036891. [Google Scholar] [CrossRef] [PubMed]
- Gjelsvik, B.; Breivik, K.; Verheyden, G.; Smedal, T.; Hofstad, H.; Strand, L.I. The Trunk Impairment Scale–modified to ordinal scales in the Norwegian version. Disabil. Rehabil. 2012, 34, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, D.J.; Danells, C.J.; Black, S.E. The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabil. Neural Repair. 2002, 16, 232–240. [Google Scholar] [CrossRef]
- Hochleitner, I.; Pellicciari, L.; Castagnoli, C.; Paperini, A.; Politi, A.M.; Campagnini, S.; Pancani, S.; Basagni, B.; Gerli, F.; Carrozza, M.C. Intra-and inter-rater reliability of the Italian Fugl-Meyer assessment of upper and lower extremity. Disabil. Rehabil. 2023, 45, 2989–2999. [Google Scholar] [CrossRef]
- Verheyden, G.; Willems, A.-M.; Ooms, L.; Nieuwboer, A. Validity of the trunk impairment scale as a measure of trunk performance in people with Parkinson’s disease. Arch. Phys. Med. Rehabil. 2007, 88, 1304–1308. [Google Scholar] [CrossRef]
- Downs, S.; Marquez, J.; Chiarelli, P. The Berg Balance Scale has high intra-and inter-rater reliability but absolute reliability varies across the scale: A systematic review. J. Physiother. 2013, 59, 93–99. [Google Scholar] [CrossRef]
- Rollnik, J. The early rehabilitation Barthel index (ERBI). Die Rehabil. 2011, 50, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Han, D.; Kim, J.; Lee, S. Whole-body vibration combined with treadmill training improves walking performance in post-stroke patients: A randomized controlled trial. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2017, 23, 4918. [Google Scholar] [CrossRef] [PubMed]
- Cordo, P.; Wolf, S.; Lou, J.-S.; Bogey, R.; Stevenson, M.; Hayes, J.; Roth, E. Treatment of severe hand impairment following stroke by combining assisted movement, muscle vibration, and biofeedback. J. Neurol. Phys. Ther. 2013, 37, 194–203. [Google Scholar] [CrossRef] [PubMed]
- Marín, P.J.; Ferrero, C.M.; Menéndez, H.; Martín, J.; Herrero, A.J. Effects of whole-body vibration on muscle architecture, muscle strength, and balance in stroke patients: A randomized controlled trial. Am. J. Phys. Med. Rehabil. 2013, 92, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Mi, X.; Liu, S.; Yi, W.; Gong, C.; Zhu, L.; Machado, S.; Yuan, T.-F.; Shan, C. Whole body vibration training improves walking performance of stroke patients with knee hyperextension: A randomized controlled pilot study. CNS Neurol. Disord.-Drug Targets (Former. Curr. Drug Targets-CNS Neurol. Disord.) 2015, 14, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Tekin, F.; Kavlak, E. Short and long-term effects of whole-body vibration on spasticity and motor performance in children with Hemiparetic cerebral palsy. Percept. Mot. Ski. 2021, 128, 1107–1129. [Google Scholar] [CrossRef] [PubMed]
- Fallon, J.B.; Macefield, V.G. Vibration sensitivity of human muscle spindles and Golgi tendon organs. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2007, 36, 21–29. [Google Scholar] [CrossRef]
- Miyara, K.; Etoh, S.; Kawamura, K.; Maruyama, A.; Kuronita, T.; Ohwatashi, A.; Shimodozono, M. Effects of lower limb segmental muscle vibration on primary motor cortex short-latency intracortical inhibition and spinal excitability in healthy humans. Exp. Brain Res. 2022, 240, 311–320. [Google Scholar] [CrossRef]
- Alam, M.M.; Khan, A.A.; Farooq, M. Effect of whole-body vibration on neuromuscular performance: A literature review. Work 2018, 59, 571–583. [Google Scholar] [CrossRef]
- Sitjà-Rabert, M.; Rigau, D.; Fort Vanmeerghaeghe, A.; Romero-Rodríguez, D.; Bonastre Subirana, M.; Bonfill, X. Efficacy of whole body vibration exercise in older people: A systematic review. Disabil. Rehabil. 2012, 34, 883–893. [Google Scholar] [CrossRef]
- Hwang, S.I. Effects of whole-body vibration on the improvement of balance, gait and activities of daily living in patients with subacute stroke. Soonchunhyang Med. Sci. 2018, 24, 131–141. [Google Scholar] [CrossRef]
- van Nes, I.J.; Latour, H.; Schils, F.; Meijer, R.; van Kuijk, A.; Geurts, A.C. Long-term effects of 6-week whole-body vibration on balance recovery and activities of daily living in the postacute phase of stroke: A randomized, controlled trial. Stroke 2006, 37, 2331–2335. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.T.; Dias, M.P.F.; Calixto, R., Jr.; Carone, A.L.; Martinez, B.B.; Silva, A.M.; Honorato, D.C. Acute effects of whole-body vibration on the motor function of patients with stroke: A randomized clinical trial. Am. J. Phys. Med. Rehabil. 2014, 93, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Nam, Y.; Shim, J.; Kim, S.J.; Namkoong, S. Effects of whole body vibration exercise combined with forced weight bearing on balance and gait in patients with stroke hemiplegia. Res. J. Pharm. Technol. 2019, 12, 4117–4120. [Google Scholar] [CrossRef]
- Sañudo, B.; Taiar, R.; Furness, T.; Bernardo-Filho, M. Clinical approaches of whole-body vibration exercises in individuals with stroke: A narrative revision. Rehabil. Res. Pract. 2018, 2018, 8180901. [Google Scholar] [CrossRef] [PubMed]
- Lau, R.; Yip, S.P.; Pang, M. Whole-body vibration has no effect on neuromotor function and falls in chronic stroke. Med. Sci. Sports Exerc. 2012, 44, 1409–1418. [Google Scholar] [CrossRef] [PubMed]
- Tihanyi, T.K.; Horváth, M.; Fazekas, G.; Hortobágyi, T.; Tihanyi, J. One session of whole body vibration increases voluntary muscle strength transiently in patients with stroke. Clin. Rehabil. 2007, 21, 782–793. [Google Scholar] [CrossRef]
- Choi, S.-J.; Shin, W.-S.; Oh, B.-K.; Shim, J.-K.; Bang, D.-H. Effect of training with whole body vibration on the sitting balance of stroke patients. J. Phys. Ther. Sci. 2014, 26, 1411–1414. [Google Scholar] [CrossRef]
- Haas, C.T.; Turbanski, S.; Kessler, K.; Schmidtbleicher, D. The effects of random whole-body-vibration on motor symptoms in Parkinson’s disease. NeuroRehabilitation 2006, 21, 29–36. [Google Scholar] [CrossRef]
- Yule, C.E.; Stoner, L.; Hodges, L.D.; Cochrane, D.J. Does short-term whole-body vibration training affect arterial stiffness in chronic stroke? A preliminary study. J. Phys. Ther. Sci. 2016, 28, 996–1002. [Google Scholar] [CrossRef]
- Liao, L.-R.; Huang, M.; Lam, F.M.; Pang, M.Y. Effects of whole-body vibration therapy on body functions and structures, activity, and participation poststroke: A systematic review. Phys. Ther. 2014, 94, 1232–1251. [Google Scholar] [CrossRef] [PubMed]
- Tankisheva, E.; Bogaerts, A.; Boonen, S.; Feys, H.; Verschueren, S. Effects of intensive whole-body vibration training on muscle strength and balance in adults with chronic stroke: A randomized controlled pilot study. Arch. Phys. Med. Rehabil. 2014, 95, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Kihlberg, S.; Attebrant, M.; Gemne, G.; Kjellberg, A. Acute effects of vibration from a chipping hammer and a grinder on the hand-arm system. Occup. Environ. Med. 1995, 52, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Mester, J.; Spitzenpfeil, P.; Yue, Z. Vibration loads: Potential for strength and power development. Strength Power Sport 2003, 1, 488–501. [Google Scholar]
- Cardinale, M.; Lim, J. The acute effects of two different whole body vibration frequencies on vertical jump performance. Med. Dello Sport 2003, 56, 287–292. [Google Scholar]
- Costantino, C.; Petraglia, F.; Sabetta, L.L.; Giumelli, R. Effects of single or multiple sessions of whole body vibration in stroke: Is there any evidence to support the clinical use in rehabilitation? Rehabil. Res. Pract. 2018, 2018, 8491859. [Google Scholar] [CrossRef] [PubMed]
- Ritzmann, R.; Gollhofer, A.; Kramer, A. The influence of vibration type, frequency, body position and additional load on the neuromuscular activity during whole body vibration. Eur. J. Appl. Physiol. 2013, 113, 1–11. [Google Scholar] [CrossRef]
- Mouchnino, L.; Blouin, J. When standing on a moving support, cutaneous inputs provide sufficient information to plan the anticipatory postural adjustments for gait initiation. PLoS ONE 2013, 8, e55081. [Google Scholar] [CrossRef]
- Jammes, Y.; Ferrand, E.; Fraud, C.; Boussuges, A.; Weber, J.P. Adding body load modifies the vibratory sensation of the foot sole and affects the postural control. Mil. Med. Res. 2018, 5, 28. [Google Scholar] [CrossRef]
- Gu, S.-Y.; Hwangbo, K. Effects of horizontal-and vertical-vibration exercises using a blade on the balance ability of patient with hemiplegic. J. Phys. Ther. Sci. 2016, 28, 896–899. [Google Scholar] [CrossRef]
- Kipp, K.; Johnson, S.T.; Doeringer, J.R.; Hoffman, M.A. Spinal reflex excitability and homosynaptic depression after a bout of whole-body vibration. Muscle Nerve 2011, 43, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Lee, J.H. Effect of whole-body vibration therapy on lower extremity function in subacute stroke patients. J. Exerc. Rehabil. 2021, 17, 158. [Google Scholar] [CrossRef] [PubMed]
- Lau, R.W.; Liao, L.-R.; Yu, F.; Teo, T.; Chung, R.C.; Pang, M.Y. The effects of whole body vibration therapy on bone mineral density and leg muscle strength in older adults: A systematic review and meta-analysis. Clin. Rehabil. 2011, 25, 975–988. [Google Scholar] [CrossRef] [PubMed]
Parameters | a PBVT (n = 22) | b CPT (n = 22) | p-Value | |
---|---|---|---|---|
Gender | Male | 12 | 10 | 0.55 |
Female | 10 | 12 | ||
Paretic side | Right | 14 | 11 | 0.27 |
Left | 8 | 11 | ||
Age (years) | 64.68 ± d 8.82 | 67.04 ± 8.85 | 0.38 | |
c MMSE-K | 26.31 ± 2.00 | 25.40 ± 1.99 | 0.13 | |
Post-stroke (months) | 1.95 ± 0.65 | 1.77 ± 0.68 | 0.37 |
PBVT (n = 22) | CPT (n = 22) | p-Value | ||
---|---|---|---|---|
FMA (score) | before | 12.36 ± 4.49 | 14.54 ± 4.00 | |
after | 22.04 ± 3.53 | 19.86 ± 3.53 | 0.04 * | |
t | 11.58 ** | 11.62 ** | ||
TIS (score) | before | 13.95 ± 5.41 | 14.27 ± 4.77 | |
after | 19.54 ± 2.64 | 18.86 ± 3.38 | 0.46 | |
t | 5.88 ** | 5.96 ** | ||
BBS (score) | before | 23.90 ± 16.57 | 15.63 ± 11.94 | |
after | 40.95 ± 12.24 | 31.54 ± 10.90 | 0.01 ** | |
t | 6.65 ** | 7.95 ** | ||
MBI (score) | before | 43.40 ± 19.22 | 46.04 ± 17.14 | |
after | 70.00 ± 18.19 | 58.40 ± 16.32 | 0.03 * | |
t | 10.89 ** | 5.06 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.; Park, C. Effectiveness of Proprioceptive Body Vibration Rehabilitation on Motor Function and Activities of Daily Living in Stroke Patients with Impaired Sensory Function. Healthcare 2024, 12, 35. https://doi.org/10.3390/healthcare12010035
Yoon H, Park C. Effectiveness of Proprioceptive Body Vibration Rehabilitation on Motor Function and Activities of Daily Living in Stroke Patients with Impaired Sensory Function. Healthcare. 2024; 12(1):35. https://doi.org/10.3390/healthcare12010035
Chicago/Turabian StyleYoon, Hyunsik, and Chanhee Park. 2024. "Effectiveness of Proprioceptive Body Vibration Rehabilitation on Motor Function and Activities of Daily Living in Stroke Patients with Impaired Sensory Function" Healthcare 12, no. 1: 35. https://doi.org/10.3390/healthcare12010035