Effect of Winter Outdoor Physical Activity on Body Composition and Motor Performance of Polish Adult Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- A group of men with high physical activity (physically active PA), n = 31, 43.2 ± 5.8 years. These men demonstrated a strictly defined, systematic (3–5 times a week) physical activity that they maintained from December to April. The participants engaged in outdoor sports such as cross-country skiing, downhill skiing, skitouring (n = 13, 41.9%), cross-country running (n = 14, 45.2%), and cycling (n = 4, 12.9%). The frequency of physical activity ranged from a minimum of 3 to a maximum of 5 days per week. The duration of individual physical activity ranged from 1 to 1.5 h.
- A control group of men with low physical activity (physically inactive PI), n = 22, 47.5 ± 6.0 years. These men led a sedentary lifestyle from December to April.
2.2. Methods
2.2.1. Somatic Measurements
- Body Mass Index (BMI) [kg/m2]
- Waist-to-hip ratio (WHR), an indicator of fat distribution
- Waist-to-height ratio (WHtR), an indicator of fat distribution relative to body height.WHtR values ≥ 0.50 indicate an increased risk of cardiovascular disease and diabetes.
2.2.2. Body Composition
- SMM—Skeletal Muscle Mass [%]
- BFM—Body Fat Mass [%]
2.2.3. Motor Fitness Test
- Sit-and-reach test [cm]—assesses flexibility (range of motion of the spine and hip joints)
- Plate tapping test [s]—assesses the speed of upper limb movements
- Hand grip test [kg]—assesses hand and forearm muscle grip strength (static strength assessment)
- Dynamic sit-up test [n]—assesses the strength of the lower part of the torso
- Endurance shuttle run test [n]—assesses cardiorespiratory endurance.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Special Eurobarometer 472, Report, Sport and Physical Activity. 2018. Available online: https://sport.ec.europa.eu/sites/default/files/special-eurobarometer-472_en.pdf (accessed on 28 February 2023).
- Central Statistical Office, Health Status of Population in Poland in 2014, Warsaw, 2016; pp: 91‒97. Available online: https://stat.gov.pl/obszary-tematyczne/zdrowie/zdrowie/stan-zdrowia-ludnosci-polski-w-2014-r-,6,6.html (accessed on 28 February 2023).
- Martinez-Lopez, E.J.; Hita-Contreras, F.; Moral-Garcia, J.E.; Grao-Cruces, A.; Ruiz, J.R.; Redecillas-Peiro, M.T.; Martinez-Amat, A. Association of low weekly physical activity and sedentary lifestyle with self-perceived health, pain, and well-being in Spanish teenage population. Sci. Sport. 2015, 30, 342–351. [Google Scholar] [CrossRef]
- Haskell, W.L.; Lee, I.-M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hsu, J.A.; Fernie, G. Aging and the use of pedestrian facilities in winter—The need for improved design and better technology. J. Urban Health 2013, 90, 602–617. [Google Scholar] [CrossRef] [PubMed]
- Muellmann, S.; Forberger, S.; Möllers, T.; Zeeb, H.; Pischke, C.R. Effectiveness of eHealth interventions for the promotion of physical activity in older adults: A systematic review protocol. Syst. Rev. 2016, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Omura, J.D.; Carlson, S.A.; Paul, P.; Watson, K.B.; Fulton, J.E. National physical activity surveillance: Users of wearable activity monitors as a potential data source. Prev. Med. Rep. 2017, 5, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Cepeda, M.; Koolhaas, C.M.; van Rooij, F.J.A.; Tiemeier, H.; Guxens, M.; Franco, O.H.; Schoufour, J.D. Seasonality of physical activity, sedentary behaviour, and sleep in a middle-aged and elderly population: The Rotterdam Study. Maturitas 2018, 110, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Klompsta, L.; Jaarsma, T.; Stromberg, A.; van der Wal, M. Season variation in physical activity in patients with heart failure. Heart Lung 2019, 48, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Merill, R.M.; Shields, E.C.; White, G.L., Jr.; Druce, D. Climate conditions and physical activity in the United States. Am. J. Health Behav. 2005, 29, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Togo, F.; Park, H.; Shephard, R.J.; Aoyagi, Y. Meteorology and the physical activity of the elderly: The Nakanojo Study. Int. J. Biometeorol. 2005, 50, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S. Effects of Weather on Physical Activity among School Children in Alberta, Canada; School of Public Health University of Alberta: Edmonton, AB, Canada, 2017; pp. 1–174. Available online: https://era.library.ualberta.ca/items/40ce3e90-769d-4ce5-b2cf-37cc4275f18e/view/4e46d922-7731-44a3-b1918587b0ba2654/Rahman_Sholeh_201707_MSc.pdf (accessed on 28 February 2023).
- McCormack, G.R.; Friedenreich, C.; Shiell, A.; Giles-Corti, B.; Doyle-Baker, P.K. Sex and age-specific season variations in physical activity among adults. J. Epidemiol. Community Health 2010, 64, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Oja, P.; Tuxworth, B. Eurofit for adults. In Assessment of Health-Related Fitness; Council of Europe: Strasbourg, France, 1995. [Google Scholar]
- Cameron, A.; Welborn, T.; Zimmet, P.; Dunstan, D.W.; Owen, N.; Salom, J.; Dalton, M.; Jolley, D.; Shaw, J.E. Overweight and obesity in Australia. The 1999–2000 Australian diabetes, obesity and life study style. Med. J. Aust. 2003, 178, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Westerterp, K.R. Seasonal variation in body mass, body composition and activity-induced energy expenditure: A long-term study. Eur. J. Clin. Nutr. 2020, 74, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Arnardottir, N.Y.; Oskarsddottir, N.D.; Brychta, R.J.; Koster, A.; Van Domelon, D.R.; Caserotti, P.; Eirksdottir, G.; Sverrisdottir, J.E.; Johannsson, E.; Launer, L.J.; et al. Comparison of summer and winter objectively measured physical activity and sedentary behavior in older adults: Age, Gene/Environmental Susceptibility Reykjavik Study. Int. J. Environ. Res. Public Health 2017, 14, 1268. [Google Scholar] [CrossRef] [PubMed]
- Burtscher, M.; Bodner, T.; Burtscher, J.; Ruedl, G.; Kopp, M.; Broessner, G. Life-style characteristics and cardiovascular risk factors in regular downhill skiers: An observational study. BMC Public Health 2013, 13, 788. [Google Scholar] [CrossRef] [PubMed]
- Niederseer, D.; Ledl-Kurkowski, E.; Kvita, K.; Patsch, W.; Dela, F.; Mueller, E.; Niebauer, J. Skiing for the Elderly Study: Changes in cardiovascular risk factors through skiing in the elderly. Scand. J. Med. Sci. Sports 2011, 21, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Müller, E.; Gimpl, M.; Kirchner, S.; Jahnel, R.; Niebauer, J.; Niederseer, D.; Scheiber, P. Salzburg Skiing for the Elderly Study: Influence of alpine skiing on aerobic capacity, strength, power, and balance. Scand. J. Med. Sci. Sports 2011, 21, 9–22. [Google Scholar] [CrossRef]
- Clemes, S.A.; Hamilton, S.L.; Griffiths, P.L. Summer to winter variability in the step counts of normal weight and overweight adults living in the UK. J. Phys. Act. Health 2011, 8, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Suder, A. Socioeconomic and lifestyle determinants of body fat distribution in young working males from Cracow, Poland. Am. J. Hum. Biol. 2008, 20, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.L.; Keusch, F.; Yan, T.; Clarke, P.J. The impact of weather on summer and winter exercise behaviors. J. Sport Health Sci. 2019, 8, 39–45. [Google Scholar] [CrossRef]
- Mechling, H. Physical activity, sport and successful aging. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2005, 48, 899–905. [Google Scholar] [CrossRef]
Variables | Physically Active Group (PA) n = 31 | Physically Inactive Group (PI) n = 22 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | |||||||||||||
SD | Min | Max | SD | Min | Max | SD | Min | Max | SD | Min | Max | |||||
Height [cm] | 179.4 | 5.6 | 168.0 | 192.0 | - | - | - | - | 178.6 | 6.6 | 166.0 | 190.0 | - | - | - | - |
BM [kg] | 80.8 | 7.5 | 66.0 | 102.0 | 80.1 | 7.5 | 65.9 | 101.2 | 84.2 | 11.3 | 65.0 | 109.5 | 84.9 | 11.2 | 66.0 | 108.3 |
WC [cm] | 88.9 | 6.1 | 76.5 | 103.0 | 88.6 | 5.9 | 75.5 | 103.0 | 95.7 | 6.1 | 84.0 | 109.0 | 96.5 | 6.5 | 84.0 | 111.0 |
HP [cm] | 98.0 | 4.3 | 86.0 | 104.0 | 97.8 | 4.4 | 84.0 | 104.0 | 100.6 | 4.5 | 92.0 | 112.0 | 100.7 | 4.4 | 92.5 | 112.0 |
BMI [kg/m2] | 25.09 | 2.06 | 21.40 | 29.71 | 24.89 | 2.06 | 21.33 | 30.17 | 26.34 | 2.60 | 23.15 | 32.70 | 26.55 | 2.52 | 23.25 | 32.34 |
WHR | 0.91 | 0.05 | 0.82 | 1.05 | 0.91 | 0.05 | 0.82 | 1.05 | 0.95 | 0.03 | 0.88 | 1.02 | 0.96 | 0.04 | 0.88 | 1.04 |
WHtR [%] | 0.50 | 0.03 | 0.45 | 0.59 | 0.49 | 0.03 | 0.45 | 0.59 | 0.54 | 0.03 | 0.48 | 0.59 | 0.54 | 0.03 | 0.48 | 0.61 |
SMM [%] | 47.6 | 2.50 | 41.5 | 51.4 | 48.2 | 2.33 | 43.4 | 52.1 | 44.6 | 2.6 | 39.9 | 48.3 | 44.3 | 2.1 | 41.1 | 47.6 |
BFM [%] | 16.8 | 4.00 | 15.7 | 10.8 | 15.4 | 3.8 | 9.5 | 22.8 | 21.9 | 4.3 | 15.1 | 29.1 | 21.8 | 3.5 | 16.3 | 27.6 |
Variables | Main Effects | Probabilities for Post Hoc, Test LSD; p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Activity Group PA-PI | Pre-Post | Interaction, Activity—Test | Pre-Post | PA-PI | ||||||
F | p | F | p | F | p | PA | PI | Pre | Post | |
Height [cm] | 0.24 | 0.6261 | 0.71 | 0.4048 | 0.71 | 0.4048 | 0.1981 | 1.0000 | 0.6294 | 0.6227 |
BM [kg] | 2.59 | 0.1136 | <0.001 | 0.9860 | 8.00 | 0.0067 | 0.0338 | 0.0685 | 0.1821 | 0.0694 |
WC [cm] | 18.67 | <0.0001 | 3.93 | 0.0527 | 22.56 | <0.0001 | 0.0366 | 0.0001 | 0.0002 | <0.0001 |
HP [cm] | 4.83 | 0.0326 | 1.46 | 0.2325 | 7.09 | 0.0103 | 0.0041 | 0.3461 | 0.0446 | 0.0237 |
BMI [kg/m2] | 5.29 | 0.0256 | 0.00 | 0.9964 | 8.47 | 0.0053 | 0.0280 | 0.0632 | 0.0546 | 0.0119 |
WHR | 14.68 | 0.0004 | 5.99 | 0.0179 | 11.15 | 0.0016 | 0.4921 | 0.0004 | 0.0011 | 0.0001 |
WHtR [%] | 22.13 | <0.0001 | 3.80 | 0.0569 | 23.04 | <0.001 | 0.0314 | <0.0001 | 0.0001 | <0.0001 |
SMM [%] | 28.56 | <0.0001 | 0.97 | 0.3299 | 9.00 | 0.0042 | 0.0032 | 0.1933 | <0.0001 | <0.0001 |
BFM [%] | 30.07 | <0.0001 | 8.08 | 0.0064 | 6.82 | 0.0118 | 0.0001 | 0.8804 | <0.0001 | <0.0001 |
Motor Skills | Physically Active Group (PA) n = 31 | Physically Inactive Group (PI) n = 22 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | |||||||||||||
SD | Min | Max | SD | Min | Max | SD | Min | Max | SD | Min | Max | |||||
sit-and-reach [cm] | 30.6 | 8.6 | 14.0 | 45.0 | 31.8 | 8.8 | 14.5 | 48.0 | 26.2 | 7.9 | 13.5 | 48.0 | 25.5 | 7.3 | 12.0 | 45.0 |
plate tapping [s] | 10.4 | 0.9 | 9.1 | 12.4 | 10.0 | 0.7 | 9.1 | 11.4 | 11.4 | 1.0 | 9.1 | 13.6 | 11.3 | 1.2 | 9.2 | 14.0 |
hand grip [kg] | 59.4 | 8.5 | 41.0 | 76.0 | 60.5 | 8.7 | 41.0 | 80.0 | 54.5 | 10.1 | 33.0 | 74.0 | 53.5 | 9.7 | 34.0 | 73.0 |
dynamic sit-up [n] | 25.0 | 3.9 | 18.0 | 34.0 | 27.0 | 4.2 | 19.0 | 35.0 | 19.0 | 4.0 | 11.0 | 29.0 | 18.0 | 4.1 | 10.0 | 29.0 |
endurance shuttle run test [n] | 77.0 | 13.6 | 52.0 | 103.0 | 83.0 | 15.5 | 52.0 | 108.0 | 42.0 | 14.4 | 19.0 | 66.0 | 39.0 | 14.4 | 18.0 | 66.0 |
Motor Skills | Main Effects | Probabilities for Post Hoc, Test LSD; p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Activity Group PA-PI | Pre-Post | Interaction, Activity—Test | Pre-Post | PA-PI | ||||||
F | p | F | p | F | p | PA | PI | Pre | Post | |
sit-and-reach [cm] | 5.44 | 0.024 | 0.76 | 0.388 | 21.25 | <0.001 | <0.001 | 0.018 | 0.062 | 0.009 |
plate tapping [s] | 21.00 | <0.001 | 6.90 | 0.011 | 4.69 | 0.035 | 0.001 | 0.764 | <0.001 | <0.001 |
hand grip [kg] | 5.57 | 0.022 | 0.06 | 0.816 | 14.91 | <0.001 | 0.003 | 0.022 | 0.059 | 0.008 |
dynamic sit-up [n] | 36.65 | <0.001 | 3.62 | 0.063 | 26.50 | <0.001 | <0.001 | 0.039 | <0.001 | <0.001 |
endurance shuttle run test [n] | 96.32 | <0.001 | 3.98 | 0.051 | 45.76 | <0.001 | <0.001 | 0.003 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanaszek, M.; Fugiel, J.; Kozieł, S.; Sebastjan, A.; Suder, A.; Ignasiak, Z. Effect of Winter Outdoor Physical Activity on Body Composition and Motor Performance of Polish Adult Men. Healthcare 2023, 11, 2348. https://doi.org/10.3390/healthcare11162348
Stanaszek M, Fugiel J, Kozieł S, Sebastjan A, Suder A, Ignasiak Z. Effect of Winter Outdoor Physical Activity on Body Composition and Motor Performance of Polish Adult Men. Healthcare. 2023; 11(16):2348. https://doi.org/10.3390/healthcare11162348
Chicago/Turabian StyleStanaszek, Monika, Jarosław Fugiel, Sławomir Kozieł, Anna Sebastjan, Agnieszka Suder, and Zofia Ignasiak. 2023. "Effect of Winter Outdoor Physical Activity on Body Composition and Motor Performance of Polish Adult Men" Healthcare 11, no. 16: 2348. https://doi.org/10.3390/healthcare11162348
APA StyleStanaszek, M., Fugiel, J., Kozieł, S., Sebastjan, A., Suder, A., & Ignasiak, Z. (2023). Effect of Winter Outdoor Physical Activity on Body Composition and Motor Performance of Polish Adult Men. Healthcare, 11(16), 2348. https://doi.org/10.3390/healthcare11162348