A Retrospective Analysis Comparing VATS Cost Discrepancies and Outcomes in Primary Lung Cancer vs. Second Primary Lung Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Considerations
2.2. Procedures and Variables
2.3. Statistical Analysis
3. Results
3.1. Background Analysis
3.2. Clinical and Oncological Features
3.3. Surgical Intervention and Outcomes
4. Discussion
4.1. Literature Findings
4.2. Study Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barta, J.A.; Powell, C.A.; Wisnivesky, J.P. Global Epidemiology of Lung Cancer. Ann. Glob. Health 2019, 85, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, G.W.; Cummings, K.M. Tobacco and Lung Cancer: Risks, Trends, and Outcomes in Patients with Cancer. Am. Soc. Clin. Oncol. Educ. Book 2013, 33, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Riudavets, M.; de Herreros, M.G.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int. J. Clin. Oncol. 2022, 27, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Thandra, K.C.; Barsouk, A.; Saginala, K.; Aluru, J.S.; Barsouk, A. Epidemiology of lung cancer. Contemp. Oncol. 2021, 25, 45–52. [Google Scholar] [CrossRef]
- Jeon, D.S.; Kim, H.C.; Kim, S.H.; Kim, T.-J.; Kim, H.K.; Moon, M.H.; Beck, K.S.; Suh, Y.-G.; Song, C.; Ahn, J.S.; et al. Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015. Cancer Res. Treat. 2023, 55, 103–111. [Google Scholar] [CrossRef]
- Zappa, C.; Mousa, S.A. Non-small cell lung cancer: Current treatment and future advances. Transl. Lung Cancer Res. 2016, 5, 288–300. [Google Scholar] [CrossRef] [Green Version]
- Stowers, S.J.; Maronpot, R.R.; Reynolds, S.H.; Anderson, M.W. The role of oncogenes in chemical carcinogenesis. Environ. Health Perspect. 1987, 75, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, M.; Borgeaud, M.; Addeo, A.; Friedlaender, A. Oncogenic driver mutations in non-small cell lung cancer: Past, present and future. World J. Clin. Oncol. 2021, 12, 217–237. [Google Scholar] [CrossRef]
- Thakur, M.K.; Ruterbusch, J.J.; Schwartz, A.G.; Gadgeel, S.M.; Beebe-Dimmer, J.L.; Wozniak, A.J. Risk of Second Lung Cancer in Patients with Previously Treated Lung Cancer: Analysis of Surveillance, Epidemiology, and End Results (SEER) Data. J. Thorac. Oncol. 2018, 13, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Fisher, A.; Kim, S.; Farhat, D.; Belzer, K.; Milczuk, M.; French, C.; Mamdani, H.; Sukari, A.; Baciewicz, F.; Schwartz, A.G.; et al. Risk Factors Associated with a Second Primary Lung Cancer in Patients with an Initial Primary Lung Cancer. Clin. Lung Cancer 2021, 22, e842–e850. [Google Scholar] [CrossRef]
- Wu, Y.; Han, C.; Zhu, J.; Chong, Y.; Liu, J.; Gong, L.; Liu, Z.; Hu, K.; Zhang, F. Prognostic outcome after second primary lung cancer in patients with previously treated lung cancer by radiotherapy. J. Thorac. Dis. 2020, 12, 5376–5386. [Google Scholar] [CrossRef]
- Han, C.; Wu, Y.; Kang, K.; Wang, Z.; Liu, Z.; Zhang, F. Long-term radiation therapy-related risk of second primary malignancies in patients with lung cancer. J. Thorac. Dis. 2021, 13, 5863–5874. [Google Scholar] [CrossRef]
- Jamil, A.; Kasi, A. Lung Metastasis; StatPearls: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553111/ (accessed on 6 March 2023).
- Debela, D.T.; Muzazu, S.G.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021, 9, 20503121211034366. [Google Scholar] [CrossRef]
- Palade, O.D.; Anghelina, F.V.; Dabija, M.G.; Hainăroșie, R.; Domuta, E.M.; Hînganu, D.; Hînganu, M.V.; Radeanu, D. Multimodality Approach to Treatment of Rhinosinusal Tumours. Rev. Chim. 2019. [Google Scholar] [CrossRef]
- Lemjabbar-Alaoui, H.; Hassan, O.U.; Yang, Y.-W.; Buchanan, P. Lung cancer: Biology and treatment options. Biochim. Biophys. Acta 2015, 1856, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Toste, P.A.; Lee, J.M. VATS lobectomy for early lung cancer: Long-term outcomes. Ann. Transl. Med. 2019, 7 (Suppl. S6), S235. [Google Scholar] [CrossRef]
- Guerrera, F.; Olland, A.; Ruffini, E.; Falcoz, P.-E. VATS lobectomy vs. open lobectomy for early-stage lung cancer: An endless question—Are we close to a definite answer? J. Thorac. Dis. 2019, 11, 5616–5618. [Google Scholar] [CrossRef]
- Mei, J.; Guo, C.; Xia, L.; Liao, H.; Pu, Q.; Ma, L.; Liu, C.; Zhu, Y.; Lin, F.; Yang, Z.; et al. Long-term survival outcomes of video-assisted thoracic surgery lobectomy for stage I-II non-small cell lung cancer are more favorable than thoracotomy: A propensity score-matched analysis from a high-volume center in China. Transl. Lung Cancer Res. 2019, 8, 155–166. [Google Scholar] [CrossRef]
- Yamashita, S.-I.; Tokuishi, K.; Moroga, T.; Nagata, A.; Imamura, N.; Miyahara, S.; Yoshida, Y.; Waseda, R.; Sato, T.; Shiraishi, T.; et al. Long-term survival of thoracoscopic surgery compared with open surgery for clinical N0 adenocarcinoma. J. Thorac. Dis. 2020, 12, 6523–6532. [Google Scholar] [CrossRef]
- Luo, J.; Ji, C.; Campisi, A.; Chen, T.; Weder, W.; Fang, W. Surgical Outcomes of Video-Assisted versus Open Pneumonectomy for Lung Cancer: A Real-World Study. Cancers 2022, 14, 5683. [Google Scholar] [CrossRef] [PubMed]
- Hireche, K.; Lounes, Y.; Bacri, C.; Solovei, L.; Marty-Ané, C.; Canaud, L.; Alric, P. VATS versus Open Lobectomy following Induction Therapy for Stage III NSCLC: A Propensity Score-Matched Analysis. Cancers 2023, 15, 414. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Abulimiti, A.; He, D.; Ran, A.; Luo, D. Comparison of single- and triple-port VATS for lung cancer: A meta-analysis. Open Med. 2021, 16, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.S.; Trier, K.; Vibe-Petersen, J.; Christensen, K.B.; Missel, M.; Christensen, M.; Larsen, K.R.; Langer, S.W.; Hendriksen, C.; Clementsen, P.F.; et al. Changes in Health-Related Quality of Life During Rehabilitation in Patients with Operable Lung Cancer: A Feasibility Study (PROLUCA). Integr. Cancer Ther. 2018, 17, 388–400. [Google Scholar] [CrossRef] [Green Version]
- Vida, M.M.; Lupse, O.S.; Stoicu-Tivadar, L.; Stoicu-Tivadar, V. ICT solution supporting continuity of care in children healthcare services. In Proceedings of the 2011 6th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI), Timisoara, Romania, 19–21 May 2011; pp. 635–639. [Google Scholar]
- Enătescu, I.; Craina, M.; Gluhovschi, A.; Giurgi-Oncu, C.; Hogea, L.; Nussbaum, L.A.; Bernad, E.; Simu, M.; Cosman, D.; Iacob, D.; et al. The role of personality dimensions and trait anxiety in increasing the likelihood of suicide ideation in women during the perinatal period. J. Psychosom. Obstet. Gynecol. 2021, 42, 242–252. [Google Scholar] [CrossRef]
- E Roffman, C.; Buchanan, J.; Allison, G.T. Charlson Comorbidities Index. J. Physiother. 2016, 62, 171. [Google Scholar] [CrossRef] [Green Version]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo Classification of Surgical Complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.-L.; Wang, Y.-Y.; Yang, Z.-H.; Huang, D.; Weng, H.; Zeng, X.-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Chansky, K.; Detterbeck, F.C.; Nicholson, A.G.; Rusch, V.W.; Vallières, E.; Groome, P.; Kennedy, C.; Krasnik, M.; Peake, M.; Shemanski, L.; et al. The IASLC Lung Cancer Staging Project: External Validation of the Revision of the TNM Stage Groupings in the Eighth Edition of the TNM Classification of Lung Cancer. J. Thorac. Oncol. 2017, 12, 1109–1121. [Google Scholar] [CrossRef] [Green Version]
- Lim, E.; Batchelor, T.; Shackcloth, M.; Dunning, J.; McGonigle, N.; Brush, T.; Dabner, L.; Harris, R.; E Mckeon, H.; Paramasivan, S.; et al. Study protocol for VIdeo assisted thoracoscopic lobectomy versus conventional Open LobEcTomy for lung cancer, a UK multicentre randomised controlled trial with an internal pilot (the VIOLET study). BMJ Open 2019, 9, e029507. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Yu, Z.; Zhang, Y.; Liu, H. Comparison of cost effectiveness between video-assisted thoracoscopic surgery (vats) and open lobectomy: A retrospective study. Cost Eff. Resour. Alloc. 2021, 19, 55. [Google Scholar] [CrossRef]
- Swanson, S.J.; Meyers, B.F.; Gunnarsson, C.L.; Moore, M.; Howington, J.A.; Maddaus, M.A.; McKenna, R.J.; Miller, D.L. Video-Assisted Thoracoscopic Lobectomy Is Less Costly and Morbid Than Open Lobectomy: A Retrospective Multiinstitutional Database Analysis. Ann. Thorac. Surg. 2012, 93, 1027–1032. [Google Scholar] [CrossRef]
- Nasir, B.S.; Bryant, A.S.; Minnich, D.J.; Wei, B.; Cerfolio, R.J. Performing Robotic Lobectomy and Segmentectomy: Cost, Profitability, and Outcomes. Ann. Thorac. Surg. 2014, 98, 203–209. [Google Scholar] [CrossRef]
- Pompeo, E.; Tacconi, F.; Mineo, D.; Mineo, T.C. The role of awake video-assisted thoracoscopic surgery in spontaneous pneumothorax. J. Thorac. Cardiovasc. Surg. 2007, 133, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Lacin, T.; Swanson, S. Current costs of video-assisted thoracic surgery (VATS) lobectomy. J. Thorac. Dis. 2013, 5 (Suppl. 3), S190–S193. [Google Scholar] [CrossRef]
- Fang, H.-Y.; Hsiao, F.-Y.; Huang, H.-C.; Lin, Y.-S.; Chen, C.-Y.; Shieh, S.-H.; Chen, P.-R.; Chen, C.-K.; Chien, C.-R. Cost and effectiveness of video-assisted thoracoscopic surgery for clinical stage I non-small cell lung cancer: A population-based analysis. J. Thorac. Dis. 2014, 6, 1690–1696. [Google Scholar] [CrossRef]
- Casali, G.; Walker, W.S. Video-assisted thoracic surgery lobectomy: Can we afford it? Eur. J. Cardio-Thorac. Surg. 2009, 35, 423–428. [Google Scholar] [CrossRef]
- Vetrugno, L.; Deana, C.; Maggiore, S.M. COVID-19 Hurricane: Recovering the Worldwide Health System with the RE.RE.RE. (REsponse–REstoration–REengineering) Approach—Who Will Get There First? Healthcare 2022, 10, 602. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Li, L. Video-assisted thoracoscopic surgery versus open lobectomy for stage I lung cancer: A meta-analysis of long-term outcomes. Exp. Ther. Med. 2012, 3, 886–892. [Google Scholar] [CrossRef] [Green Version]
- Della Rocca, G.; Vetrugno, L.; Coccia, C.; Pierconti, F.; Badagliacca, R.; Vizza, C.D.; Papale, M.; Melis, E.; Facciolo, F. Preoperative Evaluation of Patients Undergoing Lung Resection Surgery: Defining the Role of the Anesthesiologist on a Multidisciplinary Team. J. Cardiothorac. Vasc. Anesthesia 2016, 30, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Muranishi, Y.; Sonobe, M.; Hamaji, M.; Kawaguchi, A.; Hijiya, K.; Motoyama, H.; Menju, T.; Aoyama, A.; Chen-Yoshikawa, T.F.; Sato, T.; et al. Surgery for metachronous second primary lung cancer versus surgery for primary lung cancer: A propensity score-matched comparison of postoperative complications and survival outcomes. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 631–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yang, Z.; Cui, R.; Liu, L. Feasibility and safety of secondary video-assisted thoracoscopic surgery for ipsilateral lung cancer after prior pulmonary resection. Thorac. Cancer 2023, 14, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Boujibar, F.; Gravier, F.; Selim, J.; Baste, J. Preoperative assessment for minimally invasive lung surgery: Need an update? Thorac. Cancer 2021, 12, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, M.; Fan, J.; Song, N.; He, W.-X.; Yang, Y.-L.; Xia, Y.; Jiang, G.-N. Surgical Treatment of Metachronous Second Primary Lung Cancer. Ann. Thorac. Surg. 2014, 98, 1192–1198. [Google Scholar] [CrossRef]
- Abid, W.; Seguin-Givelet, A.; Brian, E.; Grigoroiu, M.; Girard, P.; Girard, N.; Gossot, D. Second pulmonary resection for a second primary lung cancer: Analysis of morbidity and survival. Eur. J. Cardio-Thoracic Surg. 2021, 59, 1287–1294. [Google Scholar] [CrossRef]
- Li, S.-J.; Zhou, K.; Wu, Y.-M.; Wang, M.-M.; Shen, C.; Wang, Z.-Q.; Che, G.-W.; Liu, L.-X. Presence of pleural adhesions can predict conversion to thoracotomy and postoperative surgical complications in patients undergoing video-assisted thoracoscopic lung cancer lobectomy. J. Thorac. Dis. 2018, 10, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Hokka, D.; Tanaka, Y.; Shimizu, N.; Doi, T.; Maniwa, Y. Oxidized Regenerated Cellulose Sheets in Postoperative Intrathoracic Adhesions. Ann. Thorac. Cardiovasc. Surg. 2022, 28, 32–35. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, L.; Li, Z.; Chen, D.; Jiang, G.; Hu, J.; Chen, C. Feasibility Investigation of Ipsilateral Reoperations by Thoracoscopy for Major Lung Resection. Thorac. Cardiovasc. Surg. 2020, 68, 241–245. [Google Scholar] [CrossRef]
- Marta, G.M.; Facciolo, F.; Ladegaard, L.; Dienemann, H.; Csekeo, A.; Rea, F.; Dango, S.; Spaggiari, L.; Tetens, V.; Klepetko, W. Efficacy and safety of TachoSil® versus standard treatment of air leakage after pulmonary lobectomy. Eur. J. Cardiothorac. Surg. 2010, 38, 683–689. [Google Scholar] [CrossRef]
Variables | PLC (n = 62) | SPLC (n = 62) | p-Value |
---|---|---|---|
Age (mean ± SD) | 62.1 ± 9.0 | 63.7 ± 8.8 | 0.318 |
Age range | 42–77 | 37–84 | – |
Gender (male, %) | 29 (46.8%) | 26 (41.9%) | 0.587 |
Area of residence (urban, %) | 52 (83.9%) | 47 (75.8%) | 0.263 |
Smoking status (yes, %) | 33 (53.2%) | 24 (38.7%) | 0.104 |
Pack-year smoking (median, IQR) | 30.5 (23.0–37.5) | 32.5 (22.0–38.0) | 0.661 |
Exposure to respiratory hazards (yes, %) | 10 (16.1%) | 7 (11.3%) | 0.433 |
Blood type A (n, %) | 25 (40.3%) | 28 (45.2%) | 0.586 |
CCI > 3 (n, %) | 39 (62.9%) | 50 (80.6%) | 0.028 |
Variables | PLC (n = 62) | SPLC (n = 62) | p-Value |
---|---|---|---|
FEV1% (mean ± SD) | 79.7 ± 11.0 | 79.8 ± 8.6 | 0.955 |
EF% (mean ± SD) | 57.2 ± 2.8 | 57.7 ± 2.9 | 0.330 |
Cancer histology | 0.127 | ||
NSCLC (n, %) | 52 (83.9%) | 45 (72.6%) | |
SCLC (n, %) | 10 (16.1%) | 17 (27.4%) | |
Localization | 0.191 | ||
Left lung (n, %) | 26 (41.9%) | 19 (30.6%) | |
Right lung (n, %) | 36 (58.1%) | 43 (69.4%) | |
Lobe involved | 0.858 | ||
Left upper lobe | 18 (29.0%) | 14 (22.6%) | |
Left lower lobe | 9 (14.5%) | 7 (11.3%) | |
Right upper lobe | 16 (25.8%) | 20 (32.3%) | |
Right middle lobe | 5 (8.1%) | 6 (9.7%) | |
Right lower lobe | 14 (22.6%) | 15 (24.2%) | |
TNM staging | 0.450 | ||
Stage I (all stages) | 36 (58.1%) | 29 (46.8%) | |
Stage II (all stages) | 6 (9.7%) | 8 (12.9%) | |
Stage III (all stages) | 20 (32.3%) | 25 (40.3%) |
Variables | PLC (n = 62) | SPLC (n = 62) | p-Value |
---|---|---|---|
Blood loss (n, %) | 0.028 | ||
<100 mL | 49 (79.0%) | 48 (77.4%) | |
100–200 mL | 7 (11.3%) | 3 (1.6%) | |
>200 mL | 6 (9.7%) | 13 (21.0%) | |
Operative time, minutes (median, IQR) | 260 (223–311) | 300 (248–352) | 0.001 |
Lymphadenectomy (n, %) | 0.278 | ||
1 group | 5 (8.1%) | 9 (14.5%) | |
2 groups | 10 (16.1%) | 14 (22.6%) | |
>2 groups | 47 (75.8%) | 39 (62.9%) | |
Drainage, mL (mean ± SD) | |||
1st day | 247.7 ± 64.9 | 246.8 ± 58.3 | 0.935 |
2nd day | 205.0 ± 82.8 | 187.4 ± 73.3 | 0.212 |
Total intravenous fluids, mL (mean ± SD) | 2370.9 ± 538.3 | 2161.3 ± 587.3 | 0.040 |
Local anesthesia (n, %) | 48 (77.4%) | 41 (66.1%) | 0.162 |
Intra-op diuresis (mean ± SD) | 1181.5 ± 371.2 | 1023.4 ± 362.1 | 0.017 |
Surgical site infection (n, %) | 2 (3.2%) | 4 (6.5%) | 0.402 |
Surgical site seroma (n, %) | 3 (4.8%) | 2 (3.2%) | 0.648 |
Air leak | |||
1st day post-op | 5 (8.1%) | 8 (12.9%) | 0.379 |
1-week post-op | 2 (3.2%) | 1 (1.6%) | 0.558 |
Intractable pain (n, %) | 3 (4.8%) | 6 (9.7%) | 0.299 |
Reintervention (n, %) | 1 (1.6%) | 2 (3.2%) | 0.559 |
Adjuvant treatment | 40 (64.5%) | 48 (77.4%) | 0.113 |
Days of hospitalization (mean ± SD) | |||
Before surgery | 4.2 ± 3.2 | 6.1 ± 4.0 | 0.004 |
After surgery | 4.8 ± 2.6 | 6.6 ± 4.3 | 0.006 |
Days in the ICU (median, IQR) | 1.0 (1.0–1.5) | 1.5 (1.0–2.0) | 0.162 |
Clavien–Dindo score I, (n, %) | 51 (82.3%) | 41 (66.1%) | 0.040 |
Local invasion after surgery (n, %) | 4 (6.5%) | 5 (8.1%) | 0.729 |
Distant invasion after surgery (n, %) | 2 (3.2%) | 8 (12.9%) | 0.048 |
Total expenses, RON (median, IQR) | 12,800 (9940–16,660) | 15,400 (10,120–19,750) | 0.007 |
Variables | PLC (n = 62) | SPLC (n = 62) | p-Value |
---|---|---|---|
1-month survival | 62 (100%) | 59 (95.2%) | 0.079 |
3 months survival | 60 (96.8%) | 57 (91.9%) | 0.243 |
1-year survival | 51 (82.3%) | 46 (74.2%) | 0.276 |
2 years survival | 37 (58.1%) | 25 (40.3%) | 0.031 |
3 years survival | 26 (41.9%) | 15 (24.2%) | 0.035 |
5 years survival | 7 (11.3%) | 1 (1.6%) | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanase, B.C.; Burlacu, A.I.; Nistor, C.E.; Horvat, T.; Oancea, C.; Marc, M.; Tudorache, E.; Mateescu, T.; Manolescu, D. A Retrospective Analysis Comparing VATS Cost Discrepancies and Outcomes in Primary Lung Cancer vs. Second Primary Lung Cancer Patients. Healthcare 2023, 11, 1745. https://doi.org/10.3390/healthcare11121745
Tanase BC, Burlacu AI, Nistor CE, Horvat T, Oancea C, Marc M, Tudorache E, Mateescu T, Manolescu D. A Retrospective Analysis Comparing VATS Cost Discrepancies and Outcomes in Primary Lung Cancer vs. Second Primary Lung Cancer Patients. Healthcare. 2023; 11(12):1745. https://doi.org/10.3390/healthcare11121745
Chicago/Turabian StyleTanase, Bogdan Cosmin, Alin Ionut Burlacu, Claudiu Eduard Nistor, Teodor Horvat, Cristian Oancea, Monica Marc, Emanuela Tudorache, Tudor Mateescu, and Diana Manolescu. 2023. "A Retrospective Analysis Comparing VATS Cost Discrepancies and Outcomes in Primary Lung Cancer vs. Second Primary Lung Cancer Patients" Healthcare 11, no. 12: 1745. https://doi.org/10.3390/healthcare11121745
APA StyleTanase, B. C., Burlacu, A. I., Nistor, C. E., Horvat, T., Oancea, C., Marc, M., Tudorache, E., Mateescu, T., & Manolescu, D. (2023). A Retrospective Analysis Comparing VATS Cost Discrepancies and Outcomes in Primary Lung Cancer vs. Second Primary Lung Cancer Patients. Healthcare, 11(12), 1745. https://doi.org/10.3390/healthcare11121745