A Machine Learning Approach Reveals Distinct Predictors of Vaping Dependence for Adolescent Daily and Non-Daily Vapers in the COVID-19 Era
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Cohort
2.3. Outcome
2.4. Potential Predictors
2.5. Data Pre-Processing
2.6. Penalized Lasso Regression
2.7. Identifying the Top Predictors of Increased Vaping Dependence Score
3. Results
3.1. Baseline Characteristics
3.2. Vaping Dependence Score over 3 Months
3.3. Performance of the Lasso Regression Models
3.4. Top Predictors of Vaping Dependence
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Survey Questions | Question Responses and Scores Allocated |
---|---|
On days that you can vape freely, how soon after you wake up do you have the first vape of the day? | More than 120 min = 1, 61–120 min = 2, 31–60 min = 3, 16–30 min = 4, 6–15 min = 5, 0–5 min = 6 |
When you vape, how many puffs do you take? | Less than 5 = 1, 5–9 = 2, 10–29 = 3, 30 or more = 4; |
Do you sometimes awaken at night to vape? | Yes = 1, No = 0 |
How many nights per week do you typically awaken to vape? | One Night = 1, Two or Three Nights = 2, Four or More Nights = 3 |
Do you ever have strong cravings to vape? | Yes = 1, No = 0 |
Over the past week, how strong have the urges to vape been? | None = 1, Slight = 2, Moderate = 3, Strong = 4, Very Strong = 5 |
Is it hard to keep from vaping in places where you are not supposed to? | Yes = 1, No = 0 |
Did you feel more irritable because you could not vape? | Yes = 1, No = 0 |
Did you feel nervous, restless, or anxious because you could not vape? | Yes = 1, No = 0 |
Appendix B
References
- Statistics Canada. Canadian Tobacco and Nicotine Survey, 2021; Statistics Canada: Ottawa, ON, Canada, 2022.
- Golpe, A.A.; Martín-Álvarez, J.M.; Galiano, A.; Asensio, E. Effect of IQOS Introduction on Philip Morris International Cigarette Sales in Spain: A Logarithmic Mean Divisa Index Decomposition Approach. Gac. Sanit. 2022, 36, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Foulds, J.; Veldheer, S.; Yingst, J.; Hrabovsky, S.; Wilson, S.J.; Nichols, T.T.; Eissenberg, T. Development of a Questionnaire for Assessing Dependence on Electronic Cigarettes among a Large Sample of Ex-Smoking E-Cigarette Users. Nicotine Tob. Res. 2015, 17, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Morean, M.E.; Krishnan-Sarin, S.; O’Malley, S.S. Assessing Nicotine Dependence in Adolescent E-Cigarette Users: The 4-Item Patient-Reported Outcomes Measurement Information System (PROMIS) Nicotine Dependence Item Bank for Electronic Cigarettes. Drug Alcohol Depend 2018, 188, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Pienkowski, M.; Chaiton, M.; Dubray, J.; Schwartz, R. E-Cigarette Dependence in Youth. Nicotine Tob. Res. 2022, 24, 1089–1094. [Google Scholar] [CrossRef] [PubMed]
- Camara-Medeiros, A.; Diemert, L.; O’Connor, S.; Schwartz, R.; Eissenberg, T.; Cohen, J.E. Perceived Addiction to Vaping among Youth and Young Adult Regular Vapers. Tob. Control 2021, 30, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.; Max, W.; Sung, H.-Y.; Glantz, S.A.; Goldberg, R.L.; Wang, J.B.; Wang, Y.; Lightwood, J.; Cataldo, J. Relationship between Spending on Electronic Cigarettes, 30-Day Use, and Disease Symptoms among Current Adult Cigarette Smokers in the U.S. PLoS ONE 2017, 12, e0187399. [Google Scholar] [CrossRef] [PubMed]
- Fu, R.; Shi, J.; Chaiton, M.; Leventhal, A.M.; Unger, J.B.; Barrington-Trimis, J.L. A Machine Learning Approach to Identify Predictors of Frequent Vaping and Vulnerable Californian Youth Subgroups. Nicotine Tob. Res. 2022, 24, 1028–1036. [Google Scholar] [CrossRef]
- Lee, J.; Tan, A.S.; Porter, L.; Young-Wolff, K.C.; Carter-Harris, L.; Salloum, R.G. Association between Social Media Use and Vaping among Florida Adolescents, 2019. Prev. Chronic Dis. 2021, 18, 200550. [Google Scholar] [CrossRef]
- Wang, J.-W.; Cao, S.-S.; Hu, R.-Y. Smoking by Family Members and Friends and Electronic-Cigarette Use in Adolescence: A Systematic Review and Meta-Analysis. Tob. Induc. Dis. 2018, 16, 5. [Google Scholar] [CrossRef]
- Vogel, E.A.; Ramo, D.E.; Rubinstein, M.L.; Delucchi, K.L.; Darrow, S.M.; Costello, C.; Prochaska, J.J. Effects of Social Media on Adolescents’ Willingness and Intention to Use e-Cigarettes: An Experimental Investigation. Nicotine Tob. Res. 2021, 23, 694–701. [Google Scholar] [CrossRef]
- Chen-Sankey, J.C.; Kong, G.; Choi, K. Perceived Ease of Flavored E-Cigarette Use and e-Cigarette Use Progression among Youth Never Tobacco Users. PLoS ONE 2019, 14, e0212353. [Google Scholar] [CrossRef] [PubMed]
- Pepper, J.; Ribisl, K.; Brewer, N. Adolescents’ Interest in Trying Flavoured e-Cigarettes. Tob. Control 2016, 25, ii62–ii66. [Google Scholar] [CrossRef] [PubMed]
- Meernik, C.; Baker, H.M.; Kowitt, S.D.; Ranney, L.M.; Goldstein, A.O. Impact of Non-Menthol Flavours in e-Cigarettes on Perceptions and Use: An Updated Systematic Review. BMJ Open 2019, 9, e031598. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.; Yu, S.; Galimov, A.; Meza, L.R.; Galstyan, E.; Medel, D.; Unger, J.B.; Baezconde-Garbanati, L.; Sussman, S. Hypothetical Flavour Ban and Intention to Vape among Vape Shop Customers: The Role of Flavour Preference and e-Cigarette Dependence. Tob. Control 2022, 32, 110–113. [Google Scholar] [CrossRef]
- Fu, R.; Mitsakakis, N.; Chaiton, M. A Machine Learning Approach to Identify Correlates of Current E-Cigarette Use in Canada. Explor. Med. 2021, 2, 74–85. [Google Scholar] [CrossRef]
- Vogel, E.A.; Cho, J.; McConnell, R.S.; Barrington-Trimis, J.L.; Leventhal, A.M. Prevalence of Electronic Cigarette Dependence among Youth and Its Association with Future Use. JAMA Netw. Open 2020, 3, e1921513. [Google Scholar] [CrossRef]
- Soule, E.K.; Lee, J.G.; Egan, K.L.; Bode, K.M.; Desrosiers, A.C.; Guy, M.; Breland, A.; Fagan, P. “I Cannot Live without My Vape”: Electronic Cigarette User-Identified Indicators of Vaping Dependence. Drug Alcohol Depend. 2020, 209, 107886. [Google Scholar] [CrossRef]
- Hammond, D.; Reid, J.L.; Rynard, V.L.; O’Connor, R.J.; Goniewicz, M.L.; Piper, M.E.; Bansal-Travers, M. Indicators of Dependence and Efforts to Quit Vaping and Smoking among Youth in Canada, England and the USA. Tob. Control 2021, 31. [Google Scholar] [CrossRef]
- Douglas, A.E.; Felicione, N.J.; Childers, M.G.; Soule, E.K.; Blank, M.D. Predictors of Electronic Cigarette Dependence among Non-Smoking Electronic Cigarette Users: User Behavior and Device Characteristics. Addict Behav. 2023, 137, 107500. [Google Scholar] [CrossRef]
- Shi, J.; Fu, R.; Hamilton, H.; Chaiton, M. A Machine Learning Approach to Predict E-Cigarette Use and Dependence among Ontario Youth. Health Promot. Chronic Dis. Prev. Can. 2022, 42, 21–28. [Google Scholar] [CrossRef]
- Andueza, A.; Del Arco-Osuna, M.Á.; Fornés, B.; González-Crespo, R.; Martín-Álvarez, J.-M. Using the Statistical Machine Learning Models ARIMA and SARIMA to Measure the Impact of COVID-19 on Official Provincial Sales of Cigarettes in Spain. Int. J. Interact. Multimed. Artif. Intell. 2023, 8, 73–87. [Google Scholar] [CrossRef]
- Suruliandi, A.; Idhaya, T.; Raja, S.P. Drug Target Interaction Prediction Using Machine Learning Techniques–A Review. IJIMAI 2022, in press. [Google Scholar] [CrossRef]
- Fu, R.; Kundu, A.; Mitsakakis, N.; Elton-Marshall, T.; Wang, W.; Hill, S.; Bondy, S.J.; Hamilton, H.; Selby, P.; Schwartz, R.; et al. Machine Learning Applications in Tobacco Research: A Scoping Review. Tob. Control 2023, 32, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, J.D.; Buajitti, E.; O’Neill, M.; Piggott, T.; Goel, V.; Fridman, D.; Kornas, K.; Rosella, L.C. Predicting Population Health with Machine Learning: A Scoping Review. BMJ Open 2020, 10, e037860. [Google Scholar] [CrossRef] [PubMed]
- Sekercioglu, N.; Fu, R.; Kim, S.J.; Mitsakakis, N. Machine Learning for Predicting Long-Term Kidney Allograft Survival: A Scoping Review. Ir. J. Med. Sci. 2021, 190, 807–817. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Statistics Canada. COVID-19 in Canada: A Two-Year Update on Social and Economic Impacts; Statistics Canada: Ottawa, ON, Canada, 2022.
- Fu, R.; Sutradhar, R.; Li, Q.; Hanna, T.P.; Chan, K.K.; Irish, J.C.; Coburn, N.; Hallet, J.; Dare, A.; Singh, S.; et al. Cancer Incidence Detection during Multiple Waves of COVID-19: The Tsunami after the Earthquake. JNCCN 2022, 20, 1190–1192. [Google Scholar] [CrossRef]
- Stephenson, M.T.; Hoyle, R.H.; Palmgreen, P.; Slater, M.D. Brief Measures of Sensation Seeking for Screening and Large-Scale Surveys. Drug Alcohol Depend. 2003, 72, 279–286. [Google Scholar] [CrossRef]
- Nodora, J.; Hartman, S.J.; Strong, D.R.; Messer, K.; Vera, L.E.; White, M.M.; Portnoy, D.B.; Choiniere, C.J.; Vullo, G.C.; Pierce, J.P. Curiosity Predicts Smoking Experimentation Independent of Susceptibility in a US National Sample. Addict. Behav. 2014, 39, 1695–1700. [Google Scholar] [CrossRef]
- Berry, K.M.; Fetterman, J.L.; Benjamin, E.J.; Bhatnagar, A.; Barrington-Trimis, J.L.; Leventhal, A.M.; Stokes, A. Association of Electronic Cigarette Use with Subsequent Initiation of Tobacco Cigarettes in US Youths. JAMA Netw. Open 2019, 2, e187794. [Google Scholar] [CrossRef]
- Parsaei, M.R.; Rostami, S.M.; Javidan, R. A Hybrid Data Mining Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset. Int. J. Adv. Comput. Sci. 2016, 7, 6. [Google Scholar] [CrossRef]
- Greenwood, C.J.; Youssef, G.J.; Letcher, P.; Macdonald, J.A.; Hagg, L.J.; Sanson, A.; Mcintosh, J.; Hutchinson, D.M.; Toumbourou, J.W.; Fuller-Tyszkiewicz, M.; et al. A Comparison of Penalised Regression Methods for Informing the Selection of Predictive Markers. PLoS ONE 2020, 15, e0242730. [Google Scholar] [CrossRef] [PubMed]
- Fonti, V.; Belitser, E. Feature Selection Using LASSO; Research Paper in Business Analytics; Vrije Universiteit Amsterdam: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Ozili, P.K. The Acceptable R-Square in Empirical Modelling for Social Science Research; IGI Global: Hershey, PA, USA, 2022; pp. 134–143. [Google Scholar]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Fu, R.; Schwartz, R.; Mitsakakis, N.; Diemert, L.M.; O’Connor, S.; Cohen, J.E. Predictors of Perceived Success in Quitting Smoking by Vaping: A Machine Learning Approach. PLoS ONE 2022, 17, e0262407. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Fu, R.; Grace, D.; Logie, C.H.; Abramovich, A.; Baskerville, B.; Yager, C.; Schwartz, R.; Nicholas, M.; Planinac, L.; et al. Correlates of Wanting to Seek Help by Sexual and Gender Minority Young Adults for Mental Health and Substance Use Concerns during the COVID-19 Pandemic: A Machine Learning Analysis. PLoS ONE 2022, 17, e0277438. [Google Scholar] [CrossRef]
- Kundu, A.; Fu, R.; Grace, D.; Logie, C.; Abramovich, A.; Baskerville, B.; Yager, C.; Schwartz, R.; Mitsakakis, N.; Planinac, L.; et al. Correlates of Past Year Suicidal Thoughts among Sexual and Gender Minority Young Adults: A Machine Learning Analysis. J. Psychiatr. Res. 2022, 152, 269–277. [Google Scholar] [CrossRef]
- Gaiha, S.M.; Lempert, L.K.; Halpern-Felsher, B. Underage Youth and Young Adult E-Cigarette Use and Access before and during the Coronavirus Disease 2019 Pandemic. JAMA Netw. Open 2020, 3, e2027572. [Google Scholar] [CrossRef]
- Gaiha, S.M.; Cheng, J.; Halpern-Felsher, B. Association Between Youth Smoking, Electronic Cigarette Use, and COVID-19. J. Adolesc. Health 2020, 67, 519–523. [Google Scholar] [CrossRef]
- Soule, E.K.; Mayne, S.; Snipes, W.; Guy, M.C.; Breland, A.; Fagan, P. Impacts of COVID-19 on Electronic Cigarette Purchasing, Use and Related Behaviors. Int. J. Environ. Res. Public Health 2020, 17, 6762. [Google Scholar] [CrossRef]
- Chen-Sankey, J.C.; Unger, J.B.; Bansal-Travers, M.; Niederdeppe, J.; Bernat, E.; Choi, K. E-Cigarette Marketing Exposure and Subsequent Experimentation Among Youth and Young Adults. Pediatrics 2019, 144, e20191119. [Google Scholar] [CrossRef]
- Almeida, A.; Galiano, A.; Golpe, A.A.; Martín Álvarez, J.M. The Usefulness of Marketing Strategies in a Regulated Market: Evidence from the Spanish Tobacco Market. Econ. Manag. 2021, 24, 171–188. [Google Scholar] [CrossRef]
- Stokes, A.C. Declines in Electronic Cigarette Use Among US Youth in the Era of COVID-19—A Critical Opportunity to Stop Youth Vaping in Its Tracks. JAMA Netw. Open 2020, 3, e2028221. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.; Krzystanek, M.; Zejda, J.E.; Majek, P.; Lubanski, J.; Lawson, J.A.; Brozek, G. E-Cigarettes Are More Addictive than Traditional Cigarettes—A Study in Highly Educated Young Peopl. Int. J. Environ. Res. Public Health 2019, 16, 2279. [Google Scholar] [CrossRef] [PubMed]
- Dinardo, P.; Rome, E.S. Vaping: The New Wave of Nicotine Addiction. Clevel. Clin. J. Med. 2019, 86, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Piper, M.E.; Baker, T.B.; Benowitz, N.L.; Smith, S.S.; Jorenby, D.E. E-Cigarette Dependence Measures in Dual Users: Reliability and Relations with Dependence Criteria and e-Cigarette Cessation. Nicotine Tob. Res. 2020, 22, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.; Gillespie, E.F.; Shaverdian, N. Truthfulness in Patient-Reported Outcomes: Factors Affecting Patients’ Responses and Impact on Data Quality. Patient Relat. Outcome Meas. 2019, 19, 171–186. [Google Scholar] [CrossRef]
- Sung, H.-Y.; Wang, Y.; Yao, T.; Lightwood, J.; Max, W. Polytobacco Use and Nicotine Dependence Symptoms among US Adults, 2012–2014. Nicotine Tob. Res. 2018, 20, S88–S98. [Google Scholar] [CrossRef]
- Felner, J.K.; Andrzejewski, J.; Strong, D.; Kieu, T.; Ravindran, M.; Corliss, H.L. Vaping Disparities at the Intersection of Gender Identity and Race/Ethnicity in a Population-Based Sample of Adolescents. Nicotine Tob. Res. 2022, 24, 349–357. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Youth Risk Behavior Survey: Data Summary & Trends Report; CDC: Atlanta, GA, USA, 2022.
- Cotaina, M.; Peraire, M.; Bosca, M.; Echeverria, I.; Benito, A.; Haro, G. Substance Use in the Transgender Population: A Meta-Analysis. Brain Sci. 2022, 12, 366. [Google Scholar] [CrossRef]
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Zhao, Q.; Hastie, T. Causal Interpretations of Black-Box Models. J. Bus. Econ. Stat. 2019, 39, 272–281. [Google Scholar] [CrossRef] [PubMed]
Variables | Daily Vapers (n = 643, 54.9%) | Non-Daily Vapers (n = 529, 45.1%) | Total (n = 1172) | p-Value |
---|---|---|---|---|
Age, year, mean (SD) | 19.6 (2.5) | 19.6 (2.7) | 19.6 (2.6) | 0.94 |
Sex | 0.03 | |||
Female | 472 (73.4) | 423 (80.0) | 895 (76.4) | |
Male | 163 (25.3) | 102 (19.3) | 265 (22.6) | |
Prefer not to say | 8 (1.2) | 4 (0.8) | 12 (1.0) | |
Education | 0.02 | |||
Below high school | 135 (21.0) | 128 (24.2) | 263 (22.4) | |
Completed high school | 368 (57.2) | 259 (49.0) | 627 (53.5) | |
College diploma | 63 (9.8) | 52 (9.8) | 115 (9.8) | |
University degree or above | 77 (12.0) | 90 (17.0) | 167 (14.2) | |
Race | 0.01 | |||
White | 472 (73.4) | 351 (66.4) | 823 (70.2) | |
Indigenous | 54 (8.4) | 35 (6.6) | 89 (7.6) | |
Chinese | 23 (3.6) | 31 (5.9) | 54 (4.6) | |
South Asian | 25 (3.9) | 26 (4.9) | 51 (4.4) | |
Southeast Asian | 4 (0.6) | 5 (0.9) | 9 (0.8) | |
Filipino | 8 (1.2) | 9 (1.7) | 17 (1.5) | |
Japanese/Korean | 8 (1.2) | 9 (1.7) | 17 (1.5) | |
West Asian | 13 (2.0) | 26 (4.9) | 39 (3.3) | |
Latin American | 14 (2.2) | 20 (3.8) | 34 (2.9) | |
Black | 13 (2.0) | 15 (2.8) | 28 (2.4) | |
Others | 9 (1.4) | 2 (0.4) | 11 (0.9) | |
Province | <0.01 | |||
Ontario | 262 (40.7) | 298 (56.3) | 560 (47.8) | |
Alberta | 134 (20.8) | 82 (15.5) | 216 (18.4) | |
British Columbia | 110 (17.1) | 77 (14.6) | 187 (16.0) | |
Quebec | 27 (4.2) | 18 (3.4) | 45 (3.8) | |
Saskatchewan | 35 (5.4) | 8 (1.5) | 43 (3.7) | |
Manitoba | 25 (3.9) | 18 (3.4) | 43 (3.7) | |
Nova scotia | 17 (2.6) | 21 (4.0) | 38 (3.2) | |
New Brunswick | 15 (2.3) | 2 (0.4) | 17 (1.5) | |
Newfoundland and Labrador | 10 (1.6) | 4 (0.8) | 14 (1.2) | |
Prince Edward Island | 7 (1.1) | 1 (0.2) | 8 (0.7) | |
Northwest territories | 1 (0.2) | 0 (0.0) | 1 (0.1) | |
Marital status | 0.21 | |||
Single or never married | 517 (80.4) | 441 (83.4) | 958 (81.7) | |
Married or living with a partner | 126 (19.6) | 87 (16.4) | 213 (18.2) | |
Divorced, separated, or widowed | 0 (0.0) | 1 (0.2) | 1 (0.1) | |
Sexual orientation | 0.74 | |||
Heterosexual | 340 (55.1) | 261 (52.0) | 601 (53.7) | |
Bisexual | 195 (31.6) | 176 (35.1) | 371 (33.2) | |
Pansexual | 33 (5.3) | 28 (5.6) | 61 (5.5) | |
Gay | 26 (4.2) | 15 (3.0) | 41 (3.7) | |
Queer | 17 (2.8) | 16 (3.2) | 33 (2.9) | |
Aromantic | 4 (0.6) | 4 (0.8) | 8 (0.7) | |
Questioning | 1 (0.2) | 2 (0.4) | 3 (0.3) | |
Demisexual | 1 (0.2) | 0 (0.0) | 1 (0.1) | |
Missing | 26 (4.0) | 27 (5.1) | 53 (4.5) | |
Gender | 0.37 | |||
Woman | 402 (62.5) | 360 (68.0) | 762 (65.0) | |
Man | 146 (22.7) | 91 (17.2) | 237 (20.2) | |
Gender non-binary | 34 (5.3) | 27 (5.1) | 61 (5.2) | |
Transgender | 20 (3.1) | 18 (3.4) | 38 (3.2) | |
Gender fluid | 9 (1.5) | 5 (1.0) | 14 (1.2) | |
Two-spirit | 3 (0.5) | 2 (0.4) | 5 (0.4) | |
Gender non-conforming | 2 (0.3) | 1 (0.2) | 3 (0.3) | |
Gender queer | 1 (0.2) | 2 (0.4) | 3 (0.3) | |
Prefer not to say | 26 (4.0) | 23 (4.3) | 49 (4.2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, I.; Valavil Punnapuzha, V.; Mitsakakis, N.; Fu, R.; Chaiton, M. A Machine Learning Approach Reveals Distinct Predictors of Vaping Dependence for Adolescent Daily and Non-Daily Vapers in the COVID-19 Era. Healthcare 2023, 11, 1465. https://doi.org/10.3390/healthcare11101465
Singh I, Valavil Punnapuzha V, Mitsakakis N, Fu R, Chaiton M. A Machine Learning Approach Reveals Distinct Predictors of Vaping Dependence for Adolescent Daily and Non-Daily Vapers in the COVID-19 Era. Healthcare. 2023; 11(10):1465. https://doi.org/10.3390/healthcare11101465
Chicago/Turabian StyleSingh, Ishmeet, Varna Valavil Punnapuzha, Nicholas Mitsakakis, Rui Fu, and Michael Chaiton. 2023. "A Machine Learning Approach Reveals Distinct Predictors of Vaping Dependence for Adolescent Daily and Non-Daily Vapers in the COVID-19 Era" Healthcare 11, no. 10: 1465. https://doi.org/10.3390/healthcare11101465