Salivary Biomarker Profiles and Chronic Fatigue among Nurses Working Rotation Shifts: An Exploratory Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.2.1. Chronic Fatigue
2.2.2. Saliva Sampling and Analysis
2.2.3. Demographic Data
2.3. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Salivary Biomarkers
3.3. Chronic Fatigue
3.4. Profiles of Salivary Biomarkers and Chronic Fatigue
3.5. Comparison of Chronic Fatigue between Combined Profiles of Cortisol and s-IgA
3.6. Association between Salivary Biomarkers and Participant Characteristics
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, J.; Qiu, C.; Xu, H.; You, G. A Model for Predicting Acute and Chronic Fatigue in Chinese Nurses. J. Adv. Nurs. 2013, 69, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Smith-Miller, C.A.; Shaw-Kokot, J.; Curro, B.; Jones, C.B. An integrative review: Fatigue among nurses in acute care settings. J. Nurs. Adm. 2014, 44, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Chappel, S.E.; Verswijveren, S.J.J.M.; Aisbett, B.; Considine, J.; Ridgers, N.D. Nurses’ occupational physical activity levels: A systematic review. Int. J. Nurs. Stud. 2017, 73, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Trinkoff, A.; Geiger-Brown, J.; Brady, B.; Lipscomb, J.; Muntaner, C. How long and how much are nurses now working? Am. J. Nurs. 2006, 106, 60–71. [Google Scholar] [CrossRef]
- Costa, G. Shift work and health: Current problems and preventive actions. Saf. Health Work 2010, 1, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Eldevik, M.F.; Flo, E.; Moen, B.E.; Pallesen, S.; Bjorvatn, B. Insomnia, excessive sleepiness, excessive fatigue, anxiety, depression and shift work disorder in nurses having less than 11 hours in-between shifts. PLoS ONE 2013, 8, e70882. [Google Scholar] [CrossRef]
- Winwood, P.C.; Winefield, A.H.; Lushington, K. Work-related fatigue and recovery: The contribution of age, domestic responsibilities and shiftwork. J. Adv. Nurs. 2006, 56, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Bazazan, A.; Dianat, I.; Mombeini, Z.; Aynehchi, A.; Asghari Jafarabadi, M. Fatigue as a mediator of the relationship between quality of life and mental health problems in hospital nurses. Accid. Anal. Prev. 2019, 126, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Stimpfel, A.W.; Sloane, D.M.; Aiken, L.H. The longer the shifts for hospital nurses, the higher the levels of burnout and patient dissatisfaction. Health Aff. 2012, 31, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Ki, J.; Ryu, J.; Baek, J.; Huh, I.; Choi-Kwon, S. Association between health problems and turnover intention in shift work nurses: Health problem clustering. Int. J. Environ. Res. Public Health. 2020, 17, 4532. [Google Scholar] [CrossRef] [PubMed]
- Niu, S.F.; Chung, M.H.; Chen, C.H.; Hegney, D.; O’Brien, A.; Chou, K.R. The effect of shift rotation on employee cortisol profile, sleep quality, fatigue, and attention level: A systematic review. J. Nurs. Res. 2011, 19, 68–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barker, L.M.; Nussbaum, M.A. Fatigue, Performance and the work environment: A survey of registered nurses. J. Adv. Nurs. 2011, 67, 1370–1382. [Google Scholar] [CrossRef] [PubMed]
- Pasupathy, K.S.; Barker, L.M. Impact of fatigue on performance in registered nurses: Data mining and implications for practice. J. Healthc. Qual. 2012, 34, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Chaiard, J.; Deeluea, J.; Suksatit, B.; Songkham, W.; Inta, N. Short sleep duration among thai nurses: Influences on fatigue, daytime sleepiness, and occupational errors. J. Occup. Health. 2018, 60, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Aaronson, L.S.; Teel, C.S.; Cassmeyer, V.; Neuberger, G.B.; Pallikkathayil, L.; Pierce, J.; Press, A.N.; Williams, P.D.; Wingate, A. Defining and measuring fatigue. Image J. Nurs. Sch. 1999, 31, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Gifkins, J.; Johnston, A.; Loudoun, R.; Troth, A. Fatigue and recovery in shiftworking nurses: A scoping literature review. Int. J. Nurs. Stud. 2020, 112, 103710. [Google Scholar] [CrossRef] [PubMed]
- Obayashi, K. Salivary mental stress proteins. Clin. Chim. Acta 2013, 425, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.S.-Q.; Koh, G.C.-H. The use of salivary biomarkers in occupational and environmental medicine. Occup. Environ. Med. 2007, 64, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Salomon, R.E.; Tan, K.R.; Vaughan, A.; Adynski, H.; Muscatell, K.A. Minimally-invasive methods for examining biological changes in response to chronic stress: A scoping review. Int. J. Nurs. Stud. 2020, 103, 103419. [Google Scholar] [CrossRef]
- Kumari, M.; Badrick, E.; Chandola, T.; Adam, E.K.; Stafford, M.; Marmot, M.G.; Kirschbaum, C.; Kivimaki, M. Cortisol secretion and fatigue: Associations in a community based cohort. Psychoneuroendocrinology 2009, 34, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, M.-C.; Hertzman, C.; Li, L.; Power, C. Prospective association of morning salivary cortisol with depressive symptoms in mid-life: A life-course study. PLoS ONE 2013, 8, e77603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, T.O.; Borsanyi, S.; Messari, S.; Stanford, K.; Cleary, S.E.; Shiers, H.M.; Brown, G.W.; Herbert, J. Morning cortisol as a risk factor for subsequent major depressive disorder in adult women. Br. J. Psychiatry 2000, 177, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Doane, L.D.; Mineka, S.; Zinbarg, R.E.; Craske, M.; Griffith, J.W.; Adam, E.K. Are flatter diurnal cortisol rhythms associated with major depression and anxiety disorders in late adolescence? The role of life stress and daily negative emotion. Dev. Psychopathol. 2013, 25, 629–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, A.; Kecklund, G.; Theorell, T.; Åkerstedt, T. Day-to-day variation in saliva cortisol--relation with sleep, stress and self-rated health. Biol. Psychol. 2009, 82, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.D.L.; Wessely, S.; Chalder, T.; Papadopoulos, A.; Cleare, A.J. Salivary cortisol response to awakening in chronic fatigue syndrome. Br. J. Psychiatry 2004, 184, 136–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nater, U.M.; Maloney, E.; Boneva, R.S.; Gurbaxani, B.M.; Lin, J.M.; Jones, J.F.; Reeves, W.C.; Heim, C. Attenuated morning salivary cortisol concentrations in a population-based study of persons with chronic fatigue syndrome and well controls. J. Clin. Endocrinol. Metab. 2008, 93, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Roerink, M.E.; Roerink, S.H.P.P.; Skoluda, N.; van der Schaaf, M.E.; Hermus, A.R.M.M.; van der Meer, J.W.M.; Knoop, H.; Nater, U.M. Hair and salivary cortisol in a cohort of women with chronic fatigue syndrome. Horm. Behav. 2018, 103, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Churchland, P.S.; Winkielman, P. Modulating social behavior with oxytocin: How does it work? What does it mean? Horm. Behav. 2012, 61, 392–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Macbeth, A.H.; Pagani, J.; Young, W.S. Oxytocin: The great facilitator of life. Prog. Neurobiol. 2009, 88, 127–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhard, A.; van der Merwe, C.; Ackermann, K.; Martinelli, A.; Neumann, I.D.; Freitag, C.M. Adolescent oxytocin response to stress and its behavioral and endocrine correlates. Horm. Behav. 2018, 105, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Frijling, J.L.; van Zuiden, M.; Nawijn, L.; Koch, S.B.J.; Neumann, I.D.; Veltman, D.J.; Olff, M. Salivary oxytocin and vasopressin levels in police officers with and without post-traumatic stress disorder. J. Neuroendocr. 2015, 27, 743–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henningsen, G.M.; Hurrell, J.J.; Baker, F.; Douglas, C.; MacKenzie, B.A.; Robertson, S.K.; Phipps, F.C. Measurement of salivary immunoglobulin A as an immunologic biomarker of job stress. Scand. J. Work. Environ. Health 1992, 18 (Suppl. 2), 133–136. [Google Scholar] [PubMed]
- Lee, K.M.; Kang, D.; Yoon, K.; Kim, S.Y.; Kim, H.; Yoon, H.S.; Trout, D.B.; Hurrell, J.J. A pilot study on the association between job stress and repeated measures of immunological biomarkers in female nurses. Int. Arch. Occup. Environ. Health 2010, 83, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, S.; Phillips, A.C.; Evans, P.; Der, G.; Hunt, K.; Carroll, D. Caregiving is associated with low secretion rates of immunoglobulin A in saliva. Brain Behav. Immun. 2008, 22, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, A.C.; Carroll, D.; Evans, P.; Bosch, J.A.; Clow, A.; Hucklebridge, F.; Der, G. Stressful life events are associated with low secretion rates of immunoglobulin A in saliva in the middle aged and elderly. Brain Behav. Immun. 2006, 20, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Koh, D.; Ng, V.; Lee, F.C.Y.; Chan, G.; Dong, F.; Chia, S.E. Salivary Cortisol levels and work-related stress among emergency department nurses. J. Occup. Environ. Med. 2001, 43, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Bani-Issa, W.; Radwan, H.; Al Marzooq, F.; Al Awar, S.; Al-Shujairi, A.M.; Samsudin, A.R.; Khasawneh, W.; Albluwi, N. Salivary cortisol, subjective stress and quality of sleep among female healthcare professionals. J. Multidiscip. Healthc. 2020, 13, 125–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimaru, C.; Okamura, H.; Kawasaki, M.; Kakuma, T.; Yoshii, C.; Matsuishi, T. Self-perceived work-related stress and its relation to salivary IgA, cortisol and 3-Methoxy-4-Hydroxyphenyl glycol levels among neonatal intensive care nurses. Stress Health 2012, 28, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y. Self perceived work related stress and the relation with salivary IgA and lysozyme among emergency department nurses. Occup. Environ. Med. 2002, 59, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Japanese Nursing Association Survey of Nursing in Hospitals and Medical Clinics with Bed. 2019. Available online: https://www.nurse.or.jp/home/publication/research/index.html (accessed on 7 January 2022). (In Japanese).
- Kosugo, R.; Fujii, H. An index for rating Cumulative Fatigue Symptoms (CFSI) in different occupations. J. Sci. Labour 1987, 63, 229–246. (In Japanese) [Google Scholar]
- Kosugo, R. Validity and reliability of Cumulative Fatigue Symptoms Index. J. Sci. Labour 1991, 67, 145–157. (In Japanese) [Google Scholar]
- Silverman, M.N.; Sternberg, E.M. Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction: Glucocorticoid resistance in inflammatory disease. Ann. N. Y. Acad. Sci. 2012, 1261, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Adam, E.K.; Quinn, M.E.; Tavernier, R.; McQuillan, M.T.; Dahlke, K.A.; Gilbert, K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-Analysis. Psychoneuroendocrinology 2017, 83, 25–41. [Google Scholar] [CrossRef]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef] [Green Version]
- Özkan, A.H. The effect of burnout and its dimensions on turnover intention among nurses: A meta-analytic review. J. Nurs. Manag. 2022, 30, 660–669. [Google Scholar] [CrossRef]
- Waddill-Goad, S.M. Stress, Fatigue, and burnout in nursing. J. Radiol. Nurs. 2019, 38, 44–46. [Google Scholar] [CrossRef]
Median (IQR) | Number (%) | |
---|---|---|
Age, years | 29.0 (26.0, 32.0) | |
BMI, kg/m2 | 21.1 (19.3, 22.2) | |
Years as nurse, years | 7.0 (3.0, 9.0) | |
Years in current work setting, years | 3.0 (2.0, 4.5) | |
Marital status | ||
Married | 8 (17.8) | |
Single | 37 (82.2) | |
Have children | ||
Yes | 4 (8.9) | |
No | 41 (91.1) | |
Commute time (one way), min a | 30.0 (22.5, 38.8) | |
Overtime hours (last month) | ||
<10 | 30 (66.7) | |
10–19 | 13 (28.9) | |
20–29 | 2 (4.4) | |
≥30 | 0 (0) |
Physical Aspect | Mental Aspect | Social Aspect | ||||||
---|---|---|---|---|---|---|---|---|
General Fatigue | Chronic Fatigue Sign | Physical Disorder | Depressive Feelings | Anxiety | Decreased Vitality | Unwillingness to Work | Irritability | |
Cortisol (four shifts) | ||||||||
HL group (n = 11) | 50.0 (30.0, 70.0) | 75.0 (37.5, 87.5) | 14.3 (14.3, 57.1) | 44.4 (22.2, 66.7) | 36.4 (9.1, 54.6) | 66.7 (22.2, 66.7) | 15.4 (15.4, 69.2) | 0 (0, 42.9) |
LL group (n = 29) | 40.0 (30.0, 60.0) | 75.0 (43.8, 75.0) | 28.6 (14.3, 57.1) | 33.33 (16.7, 55.6) | 27.3 (9.1, 50.0) | 55.6 (22.2, 66.7) | 23.1 (11.5, 38.5) | 14.3 (0, 42.9) |
p-Value | 0.187 | 0.579 | 0.687 | 0.445 | 0.783 | 0.976 | 0.561 | 0.235 |
Effect size (r) | 0.21 | 0.09 | 0.06 | 0.12 | 0.04 | 0 | 0.09 | 0.19 |
Cortisol (day shifts) | ||||||||
HL group (n = 24) | 40.0 (30.0, 60.0) | 62.50 (28.1, 75.0) | 28.57 (14.3, 53.6) | 27.78 (11.1, 63.9) | 27.27 (2.3, 52.3) | 27.8 (11.1, 66.7) | 15.4 (7.7, 34.6) | 14.3 (0, 25.0) |
LL group (n = 19) | 50.0 (30.0, 60.0) | 75.00 (62.5, 87.5) | 28.6 (28.6, 57.1) | 33.3 (33.3, 55.6) | 27.3 (18.2, 45.5) | 55.6 (33.3, 77.8) | 30.8 (15.4, 61.5) | 28.6 (14.3, 42.9) |
p-Value | 0.911 | 0.062 | 0.194 | 0.251 | 0.323 | 0.058 | 0.033 | 0.026 |
Effect size (r) | 0.02 | 0.28 | 0.20 | 0.17 | 0.15 | 0.29 | 0.33 | 0.34 |
Oxytocin (four shifts) | ||||||||
HL group (n = 13) | 50.0 (35.0, 70.0) | 75.0 (62.5, 87.5) | 57.1 (14.3, 64.3) | 44.4 (22.2, 66.7) | 27.3 (22.7, 50.0) | 66.7 (22.2, 72.2) | 23.1 (15.4, 61.5) | 14.3 (0, 57.1) |
LL group (n = 16) | 35.0 (30.0, 50.0) | 62.5 (28.1, 75.0) | 28.6 (3.6, 39.3) | 27.8 (11.1, 44.4) | 31.8 (9.1, 54.6) | 33.3 (11.1, 55.6) | 19.2 (9.6, 36.5) | 14.3 (0, 42.9) |
p-Value | 0.096 | 0.099 | 0.112 | 0.138 | 0.842 | 0.102 | 0.672 | 0.602 |
Effect size (r) | 0.31 | 0.31 | 0.30 | 0.27 | 0.04 | 0.30 | 0.08 | 0.10 |
s-IgA (four shifts) | ||||||||
HL group (n = 21) | 40.0 (30.0, 60.0) | 75.0 (56.2, 87.5) | 28.6 (14.3, 57.1) | 44.4 (33.3, 72.2) | 36.4 (22.7, 50.0) | 66.7 (38.9, 77.8) | 38.5 (19.2, 69.2) | 28.6 (14.3, 50.0) |
LL group (n = 19) | 40.0 (30.0, 60.0) | 62.5 (37.5, 75.0) | 28.6 (14.3, 57.1) | 22.2 (11.1, 55.6) | 27.3 (0, 54.6) | 33.3 (11.1, 66.7) | 15.4 (7.7, 23.1) | 14.3 (0, 28.6) |
p-Value | 0.848 | 0.215 | 0.857 | 0.034 | 0.235 | 0.026 | 0.005 | 0.041 |
Effect size (r) | 0.03 | 0.20 | 0.03 | 0.33 | 0.19 | 0.35 | 0.44 | 0.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, S.; Watanabe, K.; Sugimura, N.; Shishido, I.; Konya, I.; Fujita, T.; Yoshimitsu, Y.; Kato, S.; Ito, Y.M.; Yano, R. Salivary Biomarker Profiles and Chronic Fatigue among Nurses Working Rotation Shifts: An Exploratory Pilot Study. Healthcare 2022, 10, 1416. https://doi.org/10.3390/healthcare10081416
Yamaguchi S, Watanabe K, Sugimura N, Shishido I, Konya I, Fujita T, Yoshimitsu Y, Kato S, Ito YM, Yano R. Salivary Biomarker Profiles and Chronic Fatigue among Nurses Working Rotation Shifts: An Exploratory Pilot Study. Healthcare. 2022; 10(8):1416. https://doi.org/10.3390/healthcare10081416
Chicago/Turabian StyleYamaguchi, Shinya, Kazuhiro Watanabe, Naotaka Sugimura, Inaho Shishido, Issei Konya, Tomoko Fujita, Yuichi Yoshimitsu, Shintaro Kato, Yoichi M. Ito, and Rika Yano. 2022. "Salivary Biomarker Profiles and Chronic Fatigue among Nurses Working Rotation Shifts: An Exploratory Pilot Study" Healthcare 10, no. 8: 1416. https://doi.org/10.3390/healthcare10081416