Factors Associated with Reduced Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Analysis
2.2. Clinical Features
2.3. Measurement of HRV
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waxenbaum, J.A.; Reddy, V.; Varacallo, M. Anatomy, Autonomic Nervous System; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539845/ (accessed on 10 August 2020).
- Coote, J.H.; Spyer, K.M. Central control of autonomic function. Brain Neurosci. Adv. 2018, 2, 2398212818812012. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Spallone, V.; Ziegler, D.; Freeman, R.; Bernardi, L.; Frontoni, S.; Pop-Busui, R.; Stevens, M.; Kempler, P.; Hilsted, J.; Tesfaye, S.; et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab. Res. Rev. 2011, 27, 639–653. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Serhiyenko, V.A.; Serhiyenko, A.A. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J. Diabetes 2018, 9, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Vinik, A.I.; Maser, R.E.; Mitchell, B.D.; Freeman, R. Diabetic autonomic neuropathy. Diabetes Care 2003, 26, 1553–1579. [Google Scholar] [CrossRef][Green Version]
- Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [Google Scholar]
- Vanderlei, L.C.; Pastre, C.M.; Hoshi, R.A.; Carvalho, T.D.; Godoy, M.F. Basic notions of heart rate variability and its clinical applicability. Rev. Bras. Cir. Cardiovasc. 2009, 24, 205–217. [Google Scholar] [CrossRef][Green Version]
- Benichou, T.; Pereira, B.; Mermillod, M.; Tauveron, I.; Pfabigan, D.; Maqdasy, S.; Dutheil, F. Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195166. [Google Scholar] [CrossRef][Green Version]
- Jaiswal, M.; Urbina, E.M.; Wadwa, R.P.; Talton, J.W.; D’Agostino, R.B., Jr.; Hamman, R.F.; Fingerlin, T.E.; Daniels, S.; Marcovina, S.M.; Dolan, L.M.; et al. Reduced heart rate variability among youth with type 1 diabetes: The SEARCH CVD study. Diabetes Care 2013, 36, 157–162. [Google Scholar] [CrossRef][Green Version]
- Zhang, Z.; Ma, Y.; Fu, L.; Li, L.; Liu, J.; Peng, H.; Jiang, H. Combination of Composite Autonomic Symptom Score 31 and heart rate variability for diagnosis of cardiovascular autonomic neuropathy in people with type 2 diabetes. J. Diabetes Res. 2020, 2020, 5316769. [Google Scholar] [CrossRef]
- Liao, D.; Carnethon, M.; Evans, G.W.; Cascio, W.E.; Heiss, G. Lower heart rate variability is associated with the development of coronary heart disease in individuals with diabetes: The atherosclerosis risk in communities (ARIC) study. Diabetes 2002, 51, 3524–3531. [Google Scholar] [CrossRef][Green Version]
- May, O.; Arildsen, H. Long-term predictive power of heart rate variability on all-cause mortality in the diabetic population. Acta Diabetol. 2011, 48, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Pop-Busui, R.; Evans, G.W.; Gerstein, H.C.; Fonseca, V.; Fleg, J.L.; Hoogwerf, B.J.; Genuth, S.; Grimm, R.H.; Corson, M.A.; Prineas, R.; et al. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 2010, 33, 1578–1584. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Buccelletti, E.; Gilardi, E.; Scaini, E.; Galiuto, L.; Persiani, R.; Biondi, A.; Basile, F.; Silveri, N.G. Heart rate variability and myocardial infarction: Systematic literature review and metanalysis. Eur. Rev. Med. Pharmacol. Sci. 2009, 13, 299–307. [Google Scholar] [PubMed]
- Hillebrand, S.; Gast, K.B.; de Mutsert, R.; Swenne, C.A.; Jukema, J.W.; Middeldorp, S.; Rosendaal, F.R.; Dekkers, O.M. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose-response meta-regression. Europace 2013, 15, 742–749. [Google Scholar] [CrossRef]
- Parvaneh, S.; Howe, C.L.; Toosizadeh, N.; Honarvar, B.; Slepian, M.J.; Fain, M.; Mohler, J.; Najafi, B. Regulation of cardiac autonomic nervous system control across frailty statuses: A systematic review. Gerontology 2015, 62, 3–15. [Google Scholar] [CrossRef][Green Version]
- Topinková, E. Aging, disability and frailty. Ann. Nutr. Metab. 2008, 52, 6–11. [Google Scholar]
- Clegg, A.; Young, J.; Iliffe, S.; Rikkert, M.O.; Rockwood, K. Frailty in elderly people. Lancet 2013, 381, 752–762. [Google Scholar] [CrossRef][Green Version]
- Crocker, T.F.; Brown, L.; Clegg, A.; Farley, K.; Franklin, M.; Simpkins, S.; Young, J. Quality of life is substantially worse for community-dwelling older people living with frailty: Systematic review and meta-analysis. Qual. Life Res. 2019, 28, 2041–2056. [Google Scholar] [CrossRef][Green Version]
- Speechley, M.; Tinetti, M. Falls and injuries in frail and vigorous community elderly persons. J. Am. Geriatr. Soc. 1991, 39, 46–52. [Google Scholar] [CrossRef]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A. Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Saito, I.; Hitsumoto, S.; Maruyama, K.; Nishida, W.; Eguchi, E.; Kato, T.; Kawamura, R.; Takata, Y.; Onuma, H.; Osawa, H.; et al. Heart rate variability, insulin resistance, and insulin sensitivity in Japanese adults: The Toon Health Study. J. Epidemiol. 2015, 25, 583–591. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nakaji, S.; Ihara, K.; Sawada, K.; Parodi, S.; Umeda, T.; Takahashi, I.; Murashita, K.; Kurauchi, S.; Tokuda, I. Social innovation for life expectancy extension utilizing a platform-centered system used in the Iwaki health promotion project: A protocol paper. SAGE Open Med. 2021, 9, 20503121211002606. [Google Scholar] [CrossRef] [PubMed]
- Kume, S.; Nishimura, Y.; Mizuno, K.; Sakimoto, N.; Hori, H.; Tamura, Y.; Yamato, M.; Mitsuhashi, R.; Akiba, K.; Koizumi, J.I.; et al. Music improves subjective feelings leading to cardiac autonomic nervous modulation: A pilot study. Front. Neurosci. 2017, 11, 108. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mizuno, K.; Sasaki, A.T.; Ebisu, K.; Tajima, K.; Kajimoto, O.; Nojima, J.; Kuratsune, H.; Hori, H.; Watanabe, Y. Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life. Med. Gas. Res. 2017, 7, 247–255. [Google Scholar]
- Młyńczak, M.; Krysztofiak, H. Discovery of Causal Paths in Cardiorespiratory Parameters: A Time-Independent Approach in Elite Athletes. Front. Physiol. 2018, 9, 1455. [Google Scholar] [CrossRef][Green Version]
- Starreveld, R.; Knops, P.; Roos-Serote, M.; Kik, C.; Bogers, A.J.J.C.; Brundel, B.J.J.M.; de Groot, N.M.S. The Impact of Filter Settings on Morphology of Unipolar Fibrillation Potentials. J. Cardiovasc. Transl. Res. 2020, 13, 953–964. [Google Scholar] [CrossRef]
- Kozumplík, J.; Provazník, I. Fast time-varying linear filters for suppression of baseline drift in electrocardiographic signals. Biomed. Eng. Online 2017, 16, 24. [Google Scholar] [CrossRef][Green Version]
- Pop-Busui, R. Cardiac autonomic neuropathy in diabetes: A clinical perspective. Diabetes Care 2010, 33, 434–441. [Google Scholar] [CrossRef][Green Version]
- Schroeder, E.B.; Liao, D.; Chambless, L.E.; Prineas, R.J.; Evans, G.W.; Heiss, G. Hypertension, blood pressure, and heart rate variability: The Atherosclerosis Risk in Communities (ARIC) study. Hypertension 2003, 42, 1106–1111. [Google Scholar] [CrossRef][Green Version]
- Tanaka, S.; Takubo, M.; Kohno, G.; Kushimoto, M.; Ikeda, J.; Ogawa, K.; Suzuki, Y.; Abe, M.; Ishihara, H.; Fujishiro, M. Inverse Correlation Between Grip Strength and Serum Phosphorus: A Retrospective Observational Study in Japanese Elderly with Poorly Controlled Type 2 Diabetes. Geriatrics 2020, 5, 33. [Google Scholar] [CrossRef]
- Huikuri, H.V.; Mäkikallio, T.H.; Peng, C.K.; Goldberger, A.L.; Hintze, U.; Møller, M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation 2000, 101, 47–53. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Min, K.B.; Min, J.Y.; Paek, D.; Cho, S.I. The impact of the components of metabolic syndrome on heart rate variability: Using the NCEP-ATP III and IDF definitions. Pacing Clin. Electrophysiol. 2008, 31, 584–591. [Google Scholar] [CrossRef] [PubMed]
- Dimitropoulos, G.; Tahrani, A.A.; Stevens, M.J. Cardiac autonomic neuropathy in patients with diabetes mellitus. World J. Diabetes 2014, 5, 17–39. [Google Scholar] [CrossRef] [PubMed]
- Agashe, S.; Petak, S. Cardiac autonomic neuropathy in diabetes mellitus. Methodist DeBakey Cardiovasc. J. 2018, 14, 251–256. [Google Scholar] [CrossRef]
- Shah, A.S.; El Ghormli, L.; Vajravelu, M.E.; Bacha, F.; Farrell, R.M.; Gidding, S.S.; Katz, L.E.L.; Tryggestad, J.B.; White, N.H.; Urbina, E.M. Heart rate variability and cardiac autonomic dysfunction: Prevalence, risk factors, and relationship to arterial stiffness in the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study. Diabetes Care 2019, 42, 2143–2150. [Google Scholar] [CrossRef][Green Version]
- Freitas, P.A.C.; Ehlert, L.R.; Camargo, J.L. Glycated albumin: A potential biomarker in diabetes. Arch. Endocrinol. Metab. 2017, 61, 296–304. [Google Scholar] [CrossRef][Green Version]
- Ribeiro, R.T.; Macedo, M.P.; Raposo, J.F. HbA1c, Fructosamine, and glycated albumin in the detection of dysglycaemic conditions. Curr. Diabetes Rev. 2016, 12, 14–19. [Google Scholar] [CrossRef]
- Vincent, A.M.; Hinder, L.M.; Pop-Busui, R.; Feldman, E.L. Hyperlipidemia: A new therapeutic target for diabetic neuropathy. J. Peripher. Nerv. Syst. 2009, 14, 257–267. [Google Scholar] [CrossRef][Green Version]
- Jaiswal, M.; Divers, J.; Urbina, E.M.; Dabelea, D.; Bell, R.A.; Pettitt, D.J.; Imperatore, G.; Pihoker, C.; Dolan, L.M.; Liese, A.D.; et al. Cardiovascular autonomic neuropathy in adolescents and young adults with type 1 and type 2 diabetes: The SEARCH for Diabetes in Youth Cohort Study. Pediatr. Diabetes 2018, 19, 680–689. [Google Scholar] [CrossRef]
- Mori, H.; Saito, I.; Eguchi, E.; Maruyama, K.; Kato, T.; Tanigawa, T. Heart rate variability and blood pressure among Japanese men and women: A community-based cross-sectional study. Hypertens. Res. 2014, 37, 779–784. [Google Scholar] [CrossRef]
- Witte, D.R.; Tesfaye, S.; Chaturvedi, N.; Eaton, S.E.; Kempler, P.; Fuller, J.H. EURODIAB Prospective Complications Study Group. Risk factors for cardiac autonomic neuropathy in type 1 diabetes mellitus. Diabetologia 2005, 48, 164–171. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Julius, S.; Majahalme, S. The changing face of sympathetic overactivity in hypertension. Ann. Med. 2000, 32, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.L. A comprehensive definition for metabolic syndrome. Dis. Models Mech. 2009, 2, 231–237. [Google Scholar] [CrossRef][Green Version]
- Liao, D.; Sloan, R.P.; Cascio, W.E.; Folsom, A.R.; Liese, A.D.; Evans, G.W.; Cai, J.; Sharrett, A.R. Multiple metabolic syndrome is associated with lower heart rate variability. The Atherosclerosis Risk in Communities Study. Diabetes Care 1998, 21, 2116–2122. [Google Scholar] [CrossRef]
- Saito, I.; Maruyama, K.; Eguchi, E.; Kato, T.; Kawamura, R.; Takata, Y.; Onuma, H.; Osawa, H.; Tanigawa, T. Low Heart Rate Variability and Sympathetic Dominance Modifies the Association Between Insulin Resistance and Metabolic Syndrome—The Toon Health Study. Circ. J. 2017, 81, 1447–1453. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, S.; Miyata, T.; Ueda, Y.; Tanaka, H.; Maeda, K.; Kawashima, S.; Van Ypersele de Strihou, C.; Kurokawa, K. Plasma levels of pentosidine in diabetic patients: An advanced glycation end product. J. Am. Soc. Nephrol. 1998, 9, 1681–1688. [Google Scholar] [CrossRef] [PubMed]
- Kerkeni, M.; Saïdi, A.; Bouzidi, H.; Letaief, A.; Yahia, S.B.; Hammami, M. Pentosidine as a biomarker for microvascular complications in type 2 diabetic patients. Diab. Vasc. Dis. Res. 2013, 10, 239–245. [Google Scholar] [CrossRef]
- Ramasamy, R.; Vannucci, S.J.; Yan, S.S.; Herold, K.; Yan, S.F.; Schmidt, A.M. Advanced glycation end products and RAGE: A common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 2005, 15, 16R–28R. [Google Scholar] [CrossRef]
- Verrotti, A.; Loiacono, G.; Mohn, A.; Chiarelli, F. New insights in diabetic autonomic neuropathy in children and adolescents. Eur. J. Endocrinol. 2009, 161, 811–818. [Google Scholar] [CrossRef][Green Version]
- Dietrich, D.F.; Schindler, C.; Schwartz, J.; Barthélémy, J.C.; Tschopp, J.M.; Roche, F.; von Eckardstein, A.; Brändli, O.; Leuenberger, P.; Gold, D.R.; et al. Heart rate variability in an ageing population and its association with lifestyle and cardiovascular risk factors: Results of the SAPALDIA study. Europace 2006, 8, 521–529. [Google Scholar] [CrossRef]
- Mouridsen, M.R.; Bendsen, N.T.; Astrup, A.; Haugaard, S.B.; Binici, Z.; Sajadieh, A. Modest weight loss in moderately overweight postmenopausal women improves heart rate variability. Eur. J. Prev. Cardiol. 2013, 20, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.H.; Craig, M.E.; Jopling, T.; Chan, A.; Donaghue, K.C. Higher body mass index predicts cardiac autonomic dysfunction: A longitudinal study in adolescent type 1 diabetes. Pediatr. Diabetes. 2018, 19, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.L.; Gotman, N.M.; Soliman, E.Z.; Whitsel, E.A.; Arens, R.; Cai, J.; Daviglus, M.L.; Denes, P.; González, H.M.; Moreiras, J.; et al. Association of glucose homeostasis measures with heart rate variability among Hispanic/Latino adults without diabetes: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Cardiovasc. Diabetol. 2016, 15, 45. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Foroumandi, E.; Alizadeh, M.; Kheirouri, S.; Jafarabadi, M.A. Exploring the role of body mass index in relationship of serum nitric oxide and advanced glycation end products in apparently healthy subjects. PLoS ONE 2019, 14, e0213307. [Google Scholar]
- Slowick-Zylka, D.; Safranow, K.; Dziedziejko, V.; Dutkiewicz, G.; Ciechanowski, K.; Chlubek, D. The influence of gender, weight, height and BMI on pentosidine concentrations in plasma of hemodialyzed patients. J. Nephrol. 2006, 19, 65–69. [Google Scholar]
- Machowska, A.; Sun, J.; Qureshi, A.R.; Isoyama, N.; Leurs, P.; Anderstam, B.; Heimburger, O.; Barany, P.; Stenvinkel, P.; Lindholm, B. Plasma pentosidine and its association with mortality in patients with chronic kidney disease. PLoS ONE 2016, 11, e0163826. [Google Scholar]
- Suliman, M.E.; Heimbürger, O.; Bárány, P.; Anderstam, B.; Pecoits-Filho, R.; Ayala, E.R.; Qureshi, A.R.; Fehrman-Ekholm, I.; Lindholm, B.; Stenvinkel, P. Plasma pentosidine is associated with inflammation and malnutrition in end-stage renal disease patients starting on dialysis therapy. J. Am. Soc. Nephrol. 2003, 14, 1614–1622. [Google Scholar] [CrossRef][Green Version]
- Drawz, P.E.; Babineau, D.C.; Brecklin, C.; He, J.; Kallem, R.R.; Soliman, E.Z.; Xie, D.; Appleby, D.; Anderson, A.H.; Rahman, M.; et al. Heart rate variability is a predictor of mortality in chronic kidney disease: A report from the CRIC Study. Am. J. Nephrol. 2013, 38, 517–528. [Google Scholar] [CrossRef][Green Version]
- Thio, C.H.L.; van Roon, A.M.; Lefrandt, J.D.; Gansevoort, R.T.; Snieder, H. Heart rate variability and its relation to chronic kidney disease: Results from the PREVEND Study. Psychosom. Med. 2018, 80, 307–316. [Google Scholar] [CrossRef][Green Version]
- Salman, I.M. Cardiovascular autonomic dysfunction in chronic kidney disease: A comprehensive review. Curr. Hypertens. Rep. 2015, 17, 59. [Google Scholar] [CrossRef]
- Miller, A.J.; Arnold, A.C. The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin. Auton. Res. 2019, 29, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Brotman, D.J.; Bash, L.D.; Qayyum, R.; Crews, D.; Whitsel, E.A.; Astor, B.C.; Coresh, J. Heart rate variability predicts ESRD and CKD-related hospitalization. J. Am. Soc. Nephrol. 2010, 21, 1560–1570. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Amaral, J.A.T.D.; Salatini, R.; Arab, C.; Abreu, L.C.; Valenti, V.E.; Monteiro, C.B.M.; Tannuri, U.; Tannuri, A.C.A. Non-alcoholic cirrhosis and heart rate variability: A systematic mini-review. Medicina 2020, 56, 116. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Natarajan, A.; Pantelopoulos, A.; Emir-Farinas, H.; Natarajan, P. Heart rate variability with photoplethysmography in 8 million individuals: A cross-sectional study. Lancet Digit. Health 2020, 2, e650–e657. [Google Scholar] [CrossRef]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef]
- Kobayashi, H. Inter- and intra-individual variations of heart rate variability in Japanese males. J. Physiol. Anthropol. 2007, 26, 173–177. [Google Scholar] [CrossRef][Green Version]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef][Green Version]
Total | (N = 987) | Men | (N = 405) | Women | (N = 582) | ||
---|---|---|---|---|---|---|---|
Continuous variables | Unit | Mean | (SD) | Mean | (SD) | Mean | (SD) |
Age | years | 52.3 | (15.0) | 52.2 | (14.9) | 52.4 | (15.1) |
BMI | kg/m2 | 23.1 | (3.6) | 24.1 | (3.5) | 22.4 | (3.5) |
HbA1c | % | 5.7 | (0.6) | 5.7 | (0.7) | 5.7 | (0.5) |
Glycoalbumin | % | 14.6 | (2.0) | 14.4 | (2.4) | 14.7 | (1.6) |
Blood glucose | mg/dL | 96.1 | (16.3) | 99.5 | (18.1) | 93.6 | (14.5) |
Triglyceride | mg/dL | 97.9 | (83.7) | 124.8 | (113.7) | 79.2 | (45.1) |
Total cholesterol | mg/dL | 204.7 | (34.7) | 202.3 | (34.6) | 206.4 | (34.8) |
HDL cholesterol | mg/dL | 64.8 | (16.6) | 58.0 | (14.9) | 69.6 | (16.1) |
LDL cholesterol | mg/dL | 116.4 | (30.1) | 116.9 | (29.5) | 116.1 | (30.5) |
ALT | U/L | 21.0 | (14.2) | 26.7 | (17.2) | 16.9 | (9.8) |
AST | U/L | 21.8 | (7.9) | 23.8 | (8.4) | 20.4 | (7.3) |
γ-GTP | U/L | 33.1 | (40.8) | 48.9 | (56.6) | 22.2 | (17.7) |
Creatinine | mg/dL | 0.7 | (0.5) | 0.9 | (0.7) | 0.6 | (0.3) |
Urea nitrogen | mg/dL | 14.5 | (4.5) | 15.3 | (4.5) | 13.9 | (4.4) |
Plasma pentosidine | pmol/mL | 26.5 | (16.5) | 26.2 | (19.2) | 26.8 | (14.4) |
SBP | mmHg | 120.6 | (16.9) | 123.6 | (16.8) | 118.6 | (16.7) |
DBP | mmHg | 76.9 | (11.3) | 79.6 | (11.6) | 75.0 | (10.7) |
Heart rate | bpm | 70.1 | (10.1) | 68.7 | (10.2) | 71.1 | (9.9) |
CVRR | % | 3.4 | (1.6) | 3.4 | (1.7) | 3.4 | (1.6) |
SDNN | ms | 29.5 | (14.6) | 30.0 | (15.7) | 29.1 | (13.8) |
LF | ms2 | 345.7 | (519.5) | 427.0 | (624.7) | 289.1 | (422.9) |
HF | ms2 | 256.4 | (343.7) | 249.3 | (363.3) | 261.2 | (329.7) |
LF/HF | Ratio | 2.7 | (4.6) | 3.3 | (4.8) | 2.3 | (4.4) |
Categorical variables | N | (%) | N | (%) | N | (%) | |
Diabetes mellitus | No | 926 | (94.0) | 374 | (92.3) | 552 | (95.2) |
Yes | 59 | (6.0) | 31 | (7.7) | 28 | (4.8) | |
Hyperlipidemia | No | 812 | (82.6) | 328 | (81.4) | 484 | (83.4) |
Yes | 171 | (17.4) | 75 | (18.6) | 96 | (16.6) | |
High blood pressure | No | 739 | (74.9) | 283 | (69.9) | 456 | (78.5) |
Yes | 247 | (25.1) | 122 | (30.1) | 125 | (21.5) | |
Use of antihypertensive medication | No | 757 | (76.7) | 294 | (72.6) | 463 | (79.6) |
Yes | 230 | (23.3) | 111 | (27.4) | 119 | (20.4) | |
Exercising (except in winter) | No | 761 | (77.4) | 311 | (77.2) | 450 | (77.6) |
Yes | 222 | (22.6) | 92 | (22.8) | 130 | (22.4) | |
Exercising (winter) | No | 759 | (77.7) | 314 | (78.3) | 445 | (77.3) |
Yes | 218 | (22.3) | 87 | (21.7) | 131 | (22.7) | |
Smoking | No | 616 | (62.9) | 166 | (41.4) | 450 | (77.9) |
Current | 173 | (17.7) | 121 | (30.2) | 52 | (9.0) | |
Previous | 190 | (19.4) | 114 | (28.4) | 76 | (13.1) | |
Alcohol consumption | No | 464 | (47.6) | 116 | (28.9) | 348 | (60.7) |
Current | 471 | (48.3) | 275 | (68.4) | 196 | (34.2) | |
Previous | 40 | (4.1) | 11 | (2.7) | 29 | (5.1) |
CVRR (%) | SDNN (ms) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Characteristics | Unit | β | 95% CI | p-Value | β | 95% CI | p-Value | ||||
Age | years | −0.046 | −0.052 | ~ | −0.040 | <0.001 | −0.345 | −0.402 | ~ | −0.288 | <0.001 |
Sex | women | 0.039 | −0.167 | ~ | 0.245 | 0.710 | −0.853 | −2.705 | ~ | 0.998 | 0.366 |
BMI | kg/m2 | −0.069 | −0.096 | ~ | −0.041 | <0.001 | −0.533 | −0.782 | ~ | −0.284 | <0.001 |
HbA1c | % | −0.548 | −0.710 | ~ | −0.386 | <0.001 | −4.659 | −6.122 | ~ | −3.196 | <0.001 |
Glycoalbumin | % | −0.152 | −0.203 | ~ | −0.101 | <0.001 | −1.229 | −1.687 | ~ | −0.771 | <0.001 |
Blood glucose | mg/dL | −0.021 | −0.027 | ~ | −0.015 | <0.001 | −0.190 | −0.245 | ~ | −0.136 | <0.001 |
Triglyceride | mg/dL | −0.002 | −0.003 | ~ | −0.001 | <0.001 | −0.021 | −0.032 | ~ | −0.010 | <0.001 |
Total cholesterol | mg/dL | −0.005 | −0.008 | ~ | −0.002 | <0.001 | −0.038 | −0.065 | ~ | −0.012 | 0.004 |
HDL cholesterol | mg/dL | 0.000 | −0.006 | ~ | 0.006 | 0.929 | 0.016 | −0.039 | ~ | 0.071 | 0.577 |
LDL cholesterol | mg/dL | −0.005 | −0.008 | ~ | −0.001 | 0.007 | −0.032 | −0.062 | ~ | −0.002 | 0.036 |
ALT | U/L | −0.004 | −0.011 | ~ | 0.003 | 0.249 | −0.042 | −0.107 | ~ | 0.022 | 0.198 |
AST | U/L | −0.024 | −0.037 | ~ | −0.011 | <0.001 | −0.187 | −0.302 | ~ | −0.073 | 0.001 |
γ-GTP | U/L | −0.003 | −0.005 | ~ | −0.001 | 0.019 | −0.023 | −0.046 | ~ | −0.001 | 0.040 |
Creatinine | mg/dL | −0.236 | −0.424 | ~ | −0.049 | 0.014 | −1.837 | −3.525 | ~ | −0.148 | 0.033 |
Urea nitrogen | mg/dL | −0.078 | −0.100 | ~ | −0.056 | <0.001 | −0.585 | −0.785 | ~ | −0.386 | <0.001 |
Plasma pentosidine | pmol/mL | −0.015 | −0.021 | ~ | −0.009 | <0.001 | −0.129 | −0.184 | ~ | −0.075 | <0.001 |
SBP | mmHg | −0.019 | −0.025 | ~ | −0.014 | <0.001 | −0.158 | −0.211 | ~ | −0.105 | <0.001 |
DBP | mmHg | −0.027 | −0.035 | ~ | −0.018 | <0.001 | −0.262 | −0.340 | ~ | −0.183 | <0.001 |
CVRR (%) | SDNN (ms) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Characteristics | Unit | β | 95% CI | p-Value | β | 95% CI | p-Value | ||||
HbA1c | % | −0.174 | −0.335 | ~ | −0.012 | 0.035 | −1.925 | −3.426 | ~ | −0.423 | 0.012 |
Glycoalbumin | % | −0.055 | −0.104 | ~ | −0.006 | 0.027 | −0.505 | −0.961 | ~ | −0.049 | 0.030 |
Blood glucose | mg/dL | −0.006 | −0.012 | ~ | 0.001 | 0.074 | −0.086 | −0.144 | ~ | −0.028 | 0.004 |
Triglyceride | mg/dL | −0.002 | −0.003 | ~ | −0.001 | 0.004 | −0.019 | −0.029 | ~ | −0.008 | 0.001 |
Total cholesterol | mg/dL | 0.000 | −0.003 | ~ | 0.002 | 0.847 | 0.001 | −0.024 | ~ | 0.027 | 0.920 |
HDL cholesterol | mg/dL | −0.001 | −0.007 | ~ | 0.005 | 0.704 | 0.018 | −0.040 | ~ | 0.076 | 0.541 |
LDL cholesterol | mg/dL | 0.001 | −0.002 | ~ | 0.004 | 0.453 | 0.013 | −0.017 | ~ | 0.042 | 0.397 |
ALT | U/L | −0.001 | −0.008 | ~ | 0.006 | 0.772 | −0.033 | −0.102 | ~ | 0.036 | 0.344 |
AST | U/L | −0.003 | −0.015 | ~ | 0.009 | 0.661 | −0.042 | −0.156 | ~ | 0.072 | 0.469 |
γ-GTP | U/L | −0.002 | −0.004 | ~ | 0.001 | 0.128 | −0.020 | −0.042 | ~ | 0.003 | 0.082 |
Creatinine | mg/dL | −0.185 | −0.357 | ~ | −0.012 | 0.036 | −1.682 | −3.291 | ~ | −0.073 | 0.040 |
Urea nitrogen | mg/dL | −0.019 | −0.041 | ~ | 0.003 | 0.093 | −0.167 | −0.375 | ~ | 0.041 | 0.115 |
Plasma pentosidine | pmol/mL | −0.006 | −0.012 | ~ | −0.00003 | 0.049 | −0.061 | −0.114 | ~ | −0.007 | 0.026 |
SBP | mmHg | −0.003 | −0.009 | ~ | 0.003 | 0.283 | −0.044 | −0.099 | ~ | 0.012 | 0.125 |
DBP | mmHg | −0.013 | −0.021 | ~ | −0.004 | 0.004 | −0.173 | −0.252 | ~ | −0.093 | <0.001 |
CVRR (%) | SDNN (ms) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Characteristics | Unit | β | 95% CI | p-Value | β | 95% CI | p-Value | ||||
HbA1c | % | −0.175 | −0.341 | ~ | −0.010 | 0.038 | −1.878 | −3.416 | ~ | −0.339 | 0.017 |
Glycoalbumin | % | −0.054 | −0.104 | ~ | −0.004 | 0.034 | −0.481 | −0.945 | ~ | −0.017 | 0.042 |
Blood glucose | mg/dL | −0.006 | −0.012 | ~ | 0.001 | 0.077 | −0.084 | −0.144 | ~ | −0.025 | 0.006 |
Triglyceride | mg/dL | −0.002 | −0.003 | ~ | −0.001 | 0.005 | −0.018 | −0.029 | ~ | −0.007 | 0.001 |
Total cholesterol | mg/dL | 0.000 | −0.003 | ~ | 0.003 | 0.929 | 0.002 | −0.024 | ~ | 0.028 | 0.887 |
HDL cholesterol | mg/dL | −0.001 | −0.007 | ~ | 0.006 | 0.802 | 0.018 | −0.043 | ~ | 0.079 | 0.556 |
LDL cholesterol | mg/dL | 0.001 | −0.002 | ~ | 0.005 | 0.430 | 0.013 | −0.017 | ~ | 0.044 | 0.384 |
ALT | U/L | −0.001 | −0.009 | ~ | 0.006 | 0.708 | −0.033 | −0.103 | ~ | 0.037 | 0.360 |
AST | U/L | −0.004 | −0.016 | ~ | 0.009 | 0.564 | −0.048 | −0.164 | ~ | 0.068 | 0.419 |
γ-GTP | U/L | −0.002 | −0.004 | ~ | 0.001 | 0.165 | −0.019 | −0.041 | ~ | 0.004 | 0.106 |
Creatinine | mg/dL | −0.187 | −0.364 | ~ | −0.011 | 0.037 | −1.675 | −3.316 | ~ | −0.034 | 0.045 |
Urea nitrogen | mg/dL | −0.024 | −0.047 | ~ | 0.000 | 0.051 | −0.199 | −0.419 | ~ | 0.021 | 0.076 |
Plasma pentosidine | pmol/mL | −0.006 | −0.012 | ~ | −0.00008 | 0.047 | −0.060 | −0.117 | ~ | −0.003 | 0.039 |
SBP | mmHg | −0.003 | −0.009 | ~ | 0.003 | 0.354 | −0.040 | −0.097 | ~ | 0.018 | 0.176 |
DBP | mmHg | −0.012 | −0.021 | ~ | −0.003 | 0.007 | −0.173 | −0.255 | ~ | −0.091 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsubokawa, M.; Nishimura, M.; Tamada, Y.; Nakaji, S. Factors Associated with Reduced Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Healthcare 2022, 10, 793. https://doi.org/10.3390/healthcare10050793
Tsubokawa M, Nishimura M, Tamada Y, Nakaji S. Factors Associated with Reduced Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Healthcare. 2022; 10(5):793. https://doi.org/10.3390/healthcare10050793
Chicago/Turabian StyleTsubokawa, Masaya, Miyuki Nishimura, Yoshinori Tamada, and Shigeyuki Nakaji. 2022. "Factors Associated with Reduced Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study" Healthcare 10, no. 5: 793. https://doi.org/10.3390/healthcare10050793