Paediatric Spinal Deformity Surgery: Complications and Their Management
Abstract
:1. Introduction
2. Intraoperative Complications
2.1. Bleeding
2.2. Neurological Injury
2.3. Positioning
3. Postoperative Complications
3.1. Persistent Pain
3.2. Surgical Site Infection
3.3. Venous Thromboembolism
3.4. Pulmonary Complications
3.5. Superior Mesenteric Artery Syndrome (SMAS)
3.6. Early Recovery after Surgery Protocols
3.7. Pseudarthrosis and Implant Failure
3.8. Proximal Junctional Kyphosis
3.9. Crankshaft Phenomenon
3.10. Adding-On Deformity
3.11. Revision Surgery
3.12. Navigation and Robotic-Assisted Surgery
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsirikos, A.I.; Roberts, S.B.; Bhatti, E. Incidence of spinal deformity surgery in a national health service from 2005 to 2018: An analysis of 2,205 children and adolescents. Bone Jt. Open 2020, 1, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Yaman, O.; Dalbayrak, S. Idiopathic scoliosis. Turk Neurosurg. 2014, 24, 646–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skaggs, D.L.; Guillaume, T.; El-Hawary, R.; Emans, J.; Mendelow, M.; Smith, J. Early Onset Scoliosis Consensus Statement. Spine Deform. 2015, 3, 107. [Google Scholar] [CrossRef]
- Fletcher, N.D.; Bruce, R.W. Early onset scoliosis: Current concepts and controversies. Curr. Rev. Musculoskelet Med. 2012, 5, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Garrido, E.; Roberts, S.B.; Duckworth, A.; Fournier, J. Long-term follow-up of untreated Scheuermann’s kyphosis. Spine. Deform. 2021, 9, 1633–1639. [Google Scholar] [CrossRef]
- Essex, R.; Bruce, G.; Dibley, M.; Newton, P.; Dibley, L. A systematic scoping review and textual narrative synthesis of long-term health-related quality of life outcomes for adolescent idiopathic scoliosis. Int. J. Orthop. Trauma Nurs. 2021, 40, 100844. [Google Scholar] [CrossRef]
- Murphy, R.F.; Mooney, J.F., 3rd. Complications following spine fusion for adolescent idiopathic scoliosis. Curr. Rev. Musculoskelet Med. 2016, 9, 462–469. [Google Scholar] [CrossRef] [Green Version]
- Weiss, H.R.; Goodall, D. Rate of complications in scoliosis surgery–A systematic review of the Pub Med literature. Scoliosis 2008, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, N.D.; Bellaire, L.L.; Dilbone, E.S.; Ward, L.A.; Bruce, R.W., Jr. Variability in length of stay following neuromuscular spinal fusion. Spine Deform. 2020, 8, 725–732. [Google Scholar] [CrossRef]
- Carreon, L.Y.; Puno, R.M.; Lenke, L.G.; Richards, B.S.; Sucato, D.J.; Emans, J.B.; Erickson, M.A. Non-neurologic complications following surgery for adolescent idiopathic scoliosis. J. Bone Jt. Surg. Am. Vol. 2007, 89, 2427–2432. [Google Scholar] [CrossRef]
- Lam, S.K.; Pan, I.W.; Harris, D.A.; Sayama, C.M.; Luerssen, T.G.; Jea, A. Patient-, procedure-, and hospital-related risk factors of allogeneic and autologous blood transfusion in pediatric spinal fusion surgery in the United States. Spine 2015, 40, 560–569. [Google Scholar] [CrossRef]
- Mange, T.R.; Sucato, D.J.; Poppino, K.F.; Jo, C.H.; Ramo, B.R. The incidence and risk factors for perioperative allogeneic blood transfusion in primary idiopathic scoliosis surgery. Spine Deform. 2020, 8, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Noordeen, M.H.; Haddad, F.S.; Muntoni, F.; Gobbi, P.; Hollyer, J.S.; Bentley, G. Blood loss in Duchenne muscular dystrophy: Vascular smooth muscle dysfunction? J. Pediatr. Orthop. Part B 1999, 8, 212–215. [Google Scholar] [CrossRef]
- Shapiro, F.; Sethna, N. Blood loss in pediatric spine surgery. Eur Spine J 2004, 13 (Suppl. 1), S6–S17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samdani, A.F.; Torre-Healy, A.; Asghar, J.; Herlich, A.M.; Betz, R.R. Strategies to reduce blood loss during posterior spinal fusion for neuromuscular scoliosis: A review of current techniques and experience with a unique bipolar electrocautery device. Surg. Technol. Int. 2008, 17, 243–248. [Google Scholar] [PubMed]
- Switzer, T.; Naraine, N.; Chamlati, R.; Lau, W.; McVey, M.J.; Zaarour, C.; Faraoni, D. Association between preoperative hemoglobin levels after iron supplementation and perioperative blood transfusion requirements in children undergoing scoliosis surgery. Paediatr. Anaesth. 2020, 30, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Rigamonti, A.; Gemma, M.; Rocca, A.; Messina, M.; Bignami, E.; Beretta, L. Prone versus knee-chest position for microdiscectomy: A prospective randomized study of intra-abdominal pressure and intraoperative bleeding. Spine 2005, 30, 1918–1923. [Google Scholar] [CrossRef] [Green Version]
- Sum, D.C.; Chung, P.C.; Chen, W.C. Deliberate hypotensive anesthesia with labetalol in reconstructive surgery for scoliosis. Acta. Anaesthesiol. Sin 1996, 34, 203–207. [Google Scholar]
- Liang, J.; Shen, J.; Chua, S.; Fan, Y.; Zhai, J.; Feng, B.; Cai, S.; Li, Z.; Xue, X. Does intraoperative cell salvage system effectively decrease the need for allogeneic transfusions in scoliotic patients undergoing posterior spinal fusion? A prospective randomized study. Eur. Spine. J. 2015, 24, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.A.; Howard, J.; Luntley, J.; Harder, J.; Aleissa, S.; Parsons, D. Perioperative blood transfusion requirements in pediatric scoliosis surgery: The efficacy of tranexamic acid. J. Pediatr. Orthop. 2009, 29, 300–304. [Google Scholar] [CrossRef]
- Wahlquist, S.; Nelson, S.; Glivar, P. Effect of the Ultrasonic Bone Scalpel on Blood Loss During Pediatric Spinal Deformity Correction Surgery. Spine. Deform. 2019, 7, 582–587. [Google Scholar] [CrossRef]
- Kozek-Langenecker, S.; Sorensen, B.; Hess, J.R.; Spahn, D.R. Clinical effectiveness of fresh frozen plasma compared with fibrinogen concentrate: A systematic review. Crit. Care 2011, 15, R239. [Google Scholar] [CrossRef] [Green Version]
- Loughenbury, P.R.; Berry, L.; Brooke, B.T.; Rao, A.S.; Dunsmuir, R.A.; Millner, P.A. Benefits of the use of blood conservation in scoliosis surgery. World J. Orthop. 2016, 7, 808–813. [Google Scholar] [CrossRef]
- Li, J.; Hu, Z.; Qian, Z.; Tang, Z.; Qiu, Y.; Zhu, Z.; Liu, Z. The prognosis and recovery of major postoperative neurological deficits after corrective surgery for scoliosis: An analysis of 65 cases at a single institution. Bone Jt. J. 2022, 104-B, 103–111. [Google Scholar] [CrossRef]
- Bivona, L.J.; France, J.; Daly-Seiler, C.S.; Burton, D.C.; Dolan, L.A.; Seale, J.J.; de Kleuver, M.; Ferrero, E.; Gurd, D.P.; Konya, D.; et al. Spinal deformity surgery is accompanied by serious complications: Report from the Morbidity and Mortality Database of the Scoliosis Research Society from 2013 to 2020. Spine Deform. 2022, 10, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Leong, J.J.H.; Curtis, M.; Carter, E.; Cowan, J.; Lehovsky, J. Risk of Neurological Injuries in Spinal Deformity Surgery. Spine 2016, 41, 1022–1027. [Google Scholar] [CrossRef]
- Tsirikos, A.I.; Duckworth, A.D.; Henderson, L.E.; Michaelson, C. Multimodal Intraoperative Spinal Cord Monitoring during Spinal Deformity Surgery: Efficacy, Diagnostic Characteristics, and Algorithm Development. Med. Princ. Pract. 2020, 29, 6–17. [Google Scholar] [CrossRef]
- Vitale, M.G.; Moore, D.W.; Matsumoto, H.; Emerson, R.G.; Booker, W.A.; Gomez, J.A.; Gallo, E.J.; Hyman, J.E.; Roye, D.P., Jr. Risk factors for spinal cord injury during surgery for spinal deformity. J. Bone Jt. Surg. Am. Vol. 2010, 92, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.G.; Skaggs, D.L.; Pace, G.I.; Wright, M.L.; Matsumoto, H.; Anderson, R.C.; Brockmeyer, D.L.; Dormans, J.P.; Emans, J.B.; Erickson, M.A.; et al. Best Practices in Intraoperative Neuromonitoring in Spine Deformity Surgery: Development of an Intraoperative Checklist to Optimize Response. Spine Deform. 2014, 2, 333–339. [Google Scholar] [CrossRef]
- Zuccaro, M.; Zuccaro, J.; Samdani, A.F.; Pahys, J.M.; Hwang, S.W. Intraoperative neuromonitoring alerts in a pediatric deformity center. Neurosurg. Focus. 2017, 43, E8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- West, J.L.; Arnel, M.; Palma, A.E.; Frino, J.; Powers, A.K.; Couture, D.E. Incidental durotomy in the pediatric spine population. J. Neurosurg. Pediatr. 2018, 22, 591–594. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Angileri, F.F.; Kruse, P.; Cavallo, L.M.; Solari, D.; Esposito, V.; Tomasello, F.; Cappabianca, P. Fibrin Sealants in Dura Sealing: A Systematic Literature Review. PLoS ONE 2016, 11, e0151533. [Google Scholar] [CrossRef] [Green Version]
- Sucato, D.J. Management of severe spinal deformity: Scoliosis and kyphosis. Spine 2010, 35, 2186–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehrpour, S.; Sorbi, R.; Rezaei, R.; Mazda, K. Posterior-only surgery with preoperative skeletal traction for management of severe scoliosis. Arch. Orthop. Trauma Surg. 2017, 137, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Wang, V.Y.; Ames, C.P. Vertebral column resection for rigid spinal deformity. Neurosurgery 2008, 63, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Lenke, L.G.; Sides, B.A.; Koester, L.A.; Hensley, M.; Blanke, K.M. Vertebral column resection for the treatment of severe spinal deformity. Clin. Orthop. Relat. Res. 2010, 468, 687–699. [Google Scholar] [CrossRef] [Green Version]
- Boachie-Adjei, O.; Duah, H.O.; Yankey, K.P.; Lenke, L.G.; Sponseller, P.D.; Sucato, D.J.; Samdani, A.F.; Newton, P.O.; Shah, S.A.; Erickson, M.A.; et al. New neurologic deficit and recovery rates in the treatment of complex pediatric spine deformities exceeding 100 degrees or treated by vertebral column resection (VCR). Spine Deform. 2021, 9, 427–433. [Google Scholar] [CrossRef]
- Pizones, J.; Sponseller, P.D.; Izquierdo, E.; Sanz, E.; Sanchez-Mariscal, F.; Alvarez, P.; Zuniga, L. Delayed Tetraplegia After Thoracolumbar Scoliosis Surgery in Stuve-Wiedemann Syndrome. Spine Deform. 2013, 1, 72–78. [Google Scholar] [CrossRef]
- De la Garza-Ramos, R.; Samdani, A.F.; Sponseller, P.D.; Aim, M.C.; Miller, N.R.; Shaffrey, C.I.; Sciubba, D.M. Visual loss after corrective surgery for pediatric scoliosis: Incidence and risk factors from a nationwide database. Spine J. 2016, 16, 516–522. [Google Scholar] [CrossRef]
- Patil, C.G.; Lad, E.M.; Lad, S.P.; Ho, C.; Boakye, M. Visual loss after spine surgery: A population-based study. Spine 2008, 33, 1491–1496. [Google Scholar] [CrossRef]
- American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Practice advisory for perioperative visual loss associated with spine surgery: An updated report by the American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Anesthesiology 2012, 116, 274–285. [Google Scholar] [CrossRef] [PubMed]
- Kamel, I.; Barnette, R. Positioning patients for spine surgery: Avoiding uncommon position-related complications. World J. Orthop. 2014, 5, 425–443. [Google Scholar] [CrossRef] [PubMed]
- Winfree, C.J.; Kline, D.G. Intraoperative positioning nerve injuries. Surg. Neurol. 2005, 63, 5–18; discussion 18. [Google Scholar] [CrossRef] [PubMed]
- American Society of Anesthesiologists Task Force on Prevention of Perioperative Peripheral Neuropathies. Practice advisory for the prevention of perioperative peripheral neuropathies: An updated report by the American Society of Anesthesiologists Task Force on prevention of perioperative peripheral neuropathies. Anesthesiology 2011, 114, 741–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieberg, C.B.; Simons, L.E.; Edelstein, M.R.; DeAngelis, M.R.; Pielech, M.; Sethna, N.; Hresko, M.T. Pain prevalence and trajectories following pediatric spinal fusion surgery. J. Pain 2013, 14, 1694–1702. [Google Scholar] [CrossRef] [Green Version]
- Seki, H.; Ideno, S.; Ishihara, T.; Watanabe, K.; Matsumoto, M.; Morisaki, H. Postoperative pain management in patients undergoing posterior spinal fusion for adolescent idiopathic scoliosis: A narrative review. Scoliosis Spinal Disord. 2018, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Ehde, D.M.; Dillworth, T.M.; Turner, J.A. Cognitive-behavioral therapy for individuals with chronic pain: Efficacy, innovations, and directions for research. Am. Psychol. 2014, 69, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Janjua, M.B.; Toll, B.; Ghandi, S.; Sebert, M.E.; Swift, D.M.; Pahys, J.M.; Samdani, A.F.; Hwang, S.W. Risk Factors for Wound Infections after Deformity Correction Surgery in Neuromuscular Scoliosis. Pediatric. Neurosurg. 2019, 54, 108–115. [Google Scholar] [CrossRef]
- Bachy, M.; Bouyer, B.; Vialle, R. Infections after spinal correction and fusion for spinal deformities in childhood and adolescence. Int. Orthop. 2012, 36, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Divecha, H.M.; Siddique, I.; Breakwell, L.M.; Millner, P.A. British Scoliosis Society Members. Complications in spinal deformity surgery in the United Kingdom: 5-year results of the annual British Scoliosis Society National Audit of Morbidity and Mortality. Eur. Spine J. 2014, 23 (Suppl. 1), S55–S60. [Google Scholar] [CrossRef] [Green Version]
- Glotzbecker, M.P.; Riedel, M.D.; Vitale, M.G.; Matsumoto, H.; Roye, D.P.; Erickson, M.; Flynn, J.M.; Saiman, L. What’s the evidence? Systematic literature review of risk factors and preventive strategies for surgical site infection following pediatric spine surgery. J. Pediatr. Orthop. 2013, 33, 479–487. [Google Scholar] [CrossRef]
- Master, D.L.; Poe-Kochert, C.; Son-Hing, J.; Armstrong, D.G.; Thompson, G.H. Wound infections after surgery for neuromuscular scoliosis: Risk factors and treatment outcomes. Spine 2011, 36, E179–E185. [Google Scholar] [CrossRef]
- Mackenzie, W.G.; Matsumoto, H.; Williams, B.A.; Corona, J.; Lee, C.; Cody, S.R.; Covington, L.; Saiman, L.; Flynn, J.M.; Skaggs, D.L.; et al. Surgical site infection following spinal instrumentation for scoliosis: A multicenter analysis of rates, risk factors, and pathogens. J. Bone Jt. Surg. Am. Vol. 2013, 95, 800–806, S801–S802. [Google Scholar] [CrossRef]
- Clark, C.E.; Shufflebarger, H.L. Late-developing infection in instrumented idiopathic scoliosis. Spine 1999, 24, 1909–1912. [Google Scholar] [CrossRef]
- Theologis, A.A.; Tabaraee, E.; Lin, T.; Lubicky, J.; Diab, M.; Spinal Deformity Study Group. Type of bone graft or substitute does not affect outcome of spine fusion with instrumentation for adolescent idiopathic scoliosis. Spine 2015, 40, 1345–1351. [Google Scholar] [CrossRef]
- Kirzner, N.; Hilliard, L.; Martin, C.; Quan, G.; Liew, S.; Humadi, A. Bone graft in posterior spine fusion for adolescent idiopathic scoliosis: A meta-analysis. ANZ J. Surg. 2018, 88, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.H.; Wang, S.T.; Yu, W.K.; Chang, M.C.; Liu, C.L.; Chen, T.H. Postoperative spinal deep wound infection: A six-year review of 3230 selective procedures. J. Chin. Med. Assoc. 2004, 67, 398–402. [Google Scholar] [PubMed]
- Canavese, F.; Gupta, S.; Krajbich, J.I.; Emara, K.M. Vacuum-assisted closure for deep infection after spinal instrumentation for scoliosis. J. Bone Jt. Surg. Br. Vol. 2008, 90, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Di Silvestre, M.; Bakaloudis, G.; Lolli, F.; Giacomini, S. Late-developing infection following posterior fusion for adolescent idiopathic scoliosis. Eur. Spine J. 2011, 20 (Suppl. 1), S121–S127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.; Skaggs, D.L.; Weiss, J.M.; Tolo, V.T. Management of infection after instrumented posterior spine fusion in pediatric scoliosis. Spine 2007, 32, 2739–2744. [Google Scholar] [CrossRef] [Green Version]
- Hedequist, D.; Haugen, A.; Hresko, T.; Emans, J. Failure of attempted implant retention in spinal deformity delayed surgical site infections. Spine 2009, 34, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Muschik, M.; Luck, W.; Schlenzka, D. Implant removal for late-developing infection after instrumented posterior spinal fusion for scoliosis: Reinstrumentation reduces loss of correction. A retrospective analysis of 45 cases. Eur. Spine J. 2004, 13, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Vitale, M.G.; Riedel, M.D.; Glotzbecker, M.P.; Matsumoto, H.; Roye, D.P.; Akbarnia, B.A.; Anderson, R.C.; Brockmeyer, D.L.; Emans, J.B.; Erickson, M.; et al. Building consensus: Development of a Best Practice Guideline (BPG) for surgical site infection (SSI) prevention in high-risk pediatric spine surgery. J. Pediatr. Orthop. 2013, 33, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.; Karas, D.J.; Skolasky, R.L.; Sponseller, P.D. Thromboembolic complications in children after spinal fusion surgery. Spine 2014, 39, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Rudic, T.N.; Moran, T.E.; Kamalapathy, P.N.; Werner, B.C.; Bachmann, K.R. Venous Thromboembolic Events are Exceedingly Rare in Spinal Fusion for Adolescent Idiopathic Scoliosis. Clin. Spine Surg. 2022. [Google Scholar] [CrossRef]
- Erkilinc, M.; Clarke, A.; Poe-Kochert, C.; Thompson, G.H.; Hardesty, C.K.; O’Malley, N.; Mistovich, R.J. Is There Value in Venous Thromboembolism Chemoprophylaxis After Pediatric Scoliosis Surgery? A 28-Year Single Center Study. J. Pediatr. Orthop. 2021, 41, 138–142. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Wang, D.; Zhao, H.; Ma, Z.; Ma, P.; Hu, X.; Wang, S.; Kang, X.; Gao, B. Correlation analysis between the pulmonary function test and the radiological parameters of the main right thoracic curve in adolescent idiopathic scoliosis. J. Orthop. Surg. Res. 2019, 14, 443. [Google Scholar] [CrossRef]
- Alexandre, A.S.; Sperandio, E.F.; Yi, L.C.; Davidson, J.; Poletto, P.R.; Gotfryd, A.O.; Vidotto, M.C. Photogrammetry: A Proposal of Objective Assessment of Chest Wall in Adolescent Idiopathic Scoliosis. Rev. Paul. Pediatr. 2019, 37, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Farrell, J.; Garrido, E. Effect of idiopathic thoracic scoliosis on the tracheobronchial tree. BMJ Open Respir. Res. 2018, 5, e000264. [Google Scholar] [CrossRef] [Green Version]
- Karol, L.A. The Natural History of Early-onset Scoliosis. J. Pediatr. Orthop. 2019, 39 (Suppl. 1), S38–S43. [Google Scholar] [CrossRef]
- Dreimann, M.; Hoffmann, M.; Kossowk, K.; Hitzl, W.; Meier, O.; Koller, H. Scoliosis and chest cage deformity measures predicting impairments in pulmonary function: A cross sectional study of 492 patients with scoliosis to improve the early identification of patients at risk. Spine 2014, 39, 2024–2033. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.D.; Grayhack, J. Pulmonary Implications of Pediatric Spinal Deformities. Pediatr. Clin. N. Am. 2021, 68, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Reames, D.L.; Smith, J.S.; Fu, K.M.; Polly, D.W., Jr.; Ames, C.P.; Berven, S.H.; Perra, J.H.; Glassman, S.D.; McCarthy, R.E.; Knapp, R.D., Jr.; et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: A review of the Scoliosis Research Society Morbidity and Mortality database. Spine 2011, 36, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Bellaire, L.L.; Bruce, R.W., Jr.; Ward, L.A.; Bowman, C.A.; Fletcher, N.D. Use of an Accelerated Discharge Pathway in Patients With Severe Cerebral Palsy Undergoing Posterior Spinal Fusion for Neuromuscular Scoliosis. Spine Deform. 2019, 7, 804–811. [Google Scholar] [CrossRef]
- Wozniczka, J.K.; Ledonio, C.G.T.; Polly, D.W., Jr.; Rosenstein, B.E.; Nuckley, D.J. Adolescent Idiopathic Scoliosis Thoracic Volume Modeling: The Effect of Surgical Correction. J. Pediatr. Orthop. 2017, 37, e512–e518. [Google Scholar] [CrossRef]
- Akazawa, T.; Kuroya, S.; Iinuma, M.; Asano, K.; Torii, Y.; Umehara, T.; Kotani, T.; Sakuma, T.; Minami, S.; Orita, S.; et al. Pulmonary function and thoracic deformities in adolescent idiopathic scoliosis 27 years or longer after spinal fusion with Harrington instrument. J. Orthop. Sci. Off. J. Jpn. Orthop. Assoc. 2018, 23, 45–50. [Google Scholar] [CrossRef]
- Yaszay, B.; Jankowski, P.P.; Bastrom, T.P.; Lonner, B.; Betz, R.; Shah, S.; Asghar, J.; Miyanji, F.; Samdani, A.; Newton, P.O. Progressive decline in pulmonary function 5 years post-operatively in patients who underwent anterior instrumentation for surgical correction of adolescent idiopathic scoliosis. Eur. Spine J. 2019, 28, 1322–1330. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lenke, L.G.; Bridwell, K.H.; Cheh, G.; Whorton, J.; Sides, B. Prospective pulmonary function comparison following posterior segmental spinal instrumentation and fusion of adolescent idiopathic scoliosis: Is there a relationship between major thoracic curve correction and pulmonary function test improvement? Spine 2007, 32, 2685–2693. [Google Scholar] [CrossRef]
- Altaf, F.; Drinkwater, J.; Mungovan, S.; Wong, E.; Cho, K.J.; Sebaaly, A.; Cree, A.K. Posterior scoliosis correction with thoracoplasty: Effect on pulmonary function with a mean follow-up of 4.8 years. Spine Deform. 2022, 10, 825–832. [Google Scholar] [CrossRef]
- Gitelman, Y.; Lenke, L.G.; Bridwell, K.H.; Auerbach, J.D.; Sides, B.A. Pulmonary function in adolescent idiopathic scoliosis relative to the surgical procedure: A 10-year follow-up analysis. Spine 2011, 36, 1665–1672. [Google Scholar] [CrossRef]
- Kinnear, W.J.M.; Sovani, M.; Khanna, A.; Colt, J. Correction of Paradoxical Ribcage Motion in Scoliosis by Noninvasive Ventilation. Spine 2018, 43, 900–904. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.V.; Hedden, D.M.; Howard, A.W. Superior mesenteric artery syndrome following spinal deformity correction. J. Bone Jt. Surg. Am. Vol. 2006, 88, 2252–2257. [Google Scholar] [CrossRef]
- Araujo, A.O.; Oliveira, R.G.; Arraes, A.J.C.; Mamare, E.M.; Rocha, I.D.; Gomes, C.R. Superior Mesenteric Artery Syndrome–An Uncommon Complication After Surgical Corrections of Spinal Deformities. Rev. Bras. Ortop. 2021, 56, 523–527. [Google Scholar] [CrossRef]
- Voleti, S.P.R.; Sridhar, J. Superior Mesenteric Artery Syndrome after Kyphosis Correction—A Case Report. J. Orthop. Case Rep. 2017, 7, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Tsirikos, A.I.; Jeans, L.A. Superior mesenteric artery syndrome in children and adolescents with spine deformities undergoing corrective surgery. J. Spinal Disord. Tech. 2005, 18, 263–271. [Google Scholar]
- Altiok, H.; Lubicky, J.P.; DeWald, C.J.; Herman, J.E. The superior mesenteric artery syndrome in patients with spinal deformity. Spine 2005, 30, 2164–2170. [Google Scholar] [CrossRef]
- Pennington, Z.; Cottrill, E.; Lubelski, D.; Ehresman, J.; Lehner, K.; Groves, M.L.; Sponseller, P.; Sciubba, D.M. Clinical utility of enhanced recovery after surgery pathways in pediatric spinal deformity surgery: Systematic review of the literature. J. Neurosurg. Pediatr. 2020, 27, 225–238. [Google Scholar] [CrossRef]
- Gadiya, A.D.; Koch, J.E.J.; Patel, M.S.; Shafafy, M.; Grevitt, M.P.; Quraishi, N.A. Enhanced recovery after surgery (ERAS) in adolescent idiopathic scoliosis (AIS): A meta-analysis and systematic review. Spine Deform. 2021, 9, 893–904. [Google Scholar] [CrossRef]
- Faldini, C.; Viroli, G.; Fiore, M.; Barile, F.; Manzetti, M.; Di Martino, A.; Ruffilli, A. Power-assisted pedicle screws placement: Is it as safe and as effective as manual technique? Narrative review of the literature and our technique. Musculoskelet Surg. 2021, 105, 117–123. [Google Scholar] [CrossRef]
- Skaggs, D.L.; Compton, E.; Vitale, M.G.; Garg, S.; Stone, J.; Fletcher, N.D.; Illingworth, K.D.; Kim, H.J.; Ball, J.; Kim, E.B.; et al. Power versus manual pedicle tract preparation: A multi-center study of early adopters. Spine Deform. 2021, 9, 1395–1402. [Google Scholar] [CrossRef]
- Peters, M.; Willems, P.; Weijers, R.; Wierts, R.; Jutten, L.; Urbach, C.; Arts, C.; van Rhijn, L.; Brans, B. Pseudarthrosis after lumbar spinal fusion: The role of (1)(8)F-fluoride PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- How, N.E.; Street, J.T.; Dvorak, M.F.; Fisher, C.G.; Kwon, B.K.; Paquette, S.; Smith, J.S.; Shaffrey, C.I.; Ailon, T. Pseudarthrosis in adult and pediatric spinal deformity surgery: A systematic review of the literature and meta-analysis of incidence, characteristics, and risk factors. Neurosurg. Rev. 2019, 42, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Rezende, R.; Cardoso, I.M.; Leonel, R.B.; Perim, L.G.; Oliveira, T.G.; Jacob Junior, C.; Junior, J.L.; Lourenco, R.B. Bone mineral density evaluation among patients with neuromuscular scoliosis secondary to cerebral palsy. Rev. Bras. Ortop. 2015, 50, 68–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banit, D.M.; Iwinski, H.J., Jr.; Talwalkar, V.; Johnson, M. Posterior spinal fusion in paralytic scoliosis and myelomeningocele. J. Pediatr. Orthop. 2001, 21, 117–125. [Google Scholar] [CrossRef]
- Geiger, F.; Parsch, D.; Carstens, C. Complications of scoliosis surgery in children with myelomeningocele. Eur. Spine J. 1999, 8, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Steinmann, J.C.; Herkowitz, H.N. Pseudarthrosis of the spine. Clin. Orthop. Relat. Res. 1992, 284, 80–90. [Google Scholar] [CrossRef]
- Peters, M.J.M.; Bastiaenen, C.H.G.; Brans, B.T.; Weijers, R.E.; Willems, P.C. The diagnostic accuracy of imaging modalities to detect pseudarthrosis after spinal fusion-a systematic review and meta-analysis of the literature. Skelet. Radiol. 2019, 48, 1499–1510. [Google Scholar] [CrossRef]
- Benson, J.C.; Lehman, V.T.; Sebastian, A.S.; Larson, N.A.; Nassr, A.; Diehn, F.E.; Wald, J.T.; Murthy, N.S. Successful fusion versus pseudarthrosis after spinal instrumentation: A comprehensive imaging review. Neuroradiology 2022, 64, 1719–1728. [Google Scholar] [CrossRef]
- Isik, M.; Ozdemir, H.M.; Sakaogullari, A.; Cengiz, B.; Aydogan, N.H. The efficacy of in situ local autograft in adolescent idiopathic scoliosis surgery: A comparison of three different grafting methods. Turk. J. Med. Sci. 2017, 47, 1728–1735. [Google Scholar] [CrossRef]
- McMaster, M.J.; James, J.I. Pseudoarthrosis after spinal fusion for scoliosis. J. Bone Jt. Surg. Br. Vol. 1976, 58, 305–312. [Google Scholar] [CrossRef]
- Kim, H.J.; Cunningham, M.E.; Boachie-Adjei, O. Revision spine surgery to manage pediatric deformity. J. Am. Acad. Orthop. Surg. 2010, 18, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Burkhard, M.D.; Loretz, R.; Uckay, I.; Bauer, D.E.; Betz, M.; Farshad, M. Occult infection in pseudarthrosis revision after spinal fusion. Spine J. Off. J. N. Am. Spine Soc. 2021, 21, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Ghodasara, N.; Yi, P.H.; Clark, K.; Fishman, E.K.; Farshad, M.; Fritz, J. Postoperative Spinal CT: What the Radiologist Needs to Know. Radiogr. A Rev. Publ. Radiol. Soc. N. Am. Inc. 2019, 39, 1840–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glattes, R.C.; Bridwell, K.H.; Lenke, L.G.; Kim, Y.J.; Rinella, A.; Edwards, C., 2nd. Proximal junctional kyphosis in adult spinal deformity following long instrumented posterior spinal fusion: Incidence, outcomes, and risk factor analysis. Spine 2005, 30, 1643–1649. [Google Scholar] [CrossRef] [PubMed]
- Helgeson, M.D.; Shah, S.A.; Newton, P.O.; Clements, D.H., 3rd; Betz, R.R.; Marks, M.C.; Bastrom, T.; Harms Study, G. Evaluation of proximal junctional kyphosis in adolescent idiopathic scoliosis following pedicle screw, hook, or hybrid instrumentation. Spine 2010, 35, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.A.; Betz, R.R.; Clements, D.H., 3rd; Huss, G.K. Proximal kyphosis after posterior spinal fusion in patients with idiopathic scoliosis. Spine 1999, 24, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeck, S.M.; Glattes, R.C.; Asher, M.A.; Lai, S.M.; Burton, D.C. The prevalence of increased proximal junctional flexion following posterior instrumentation and arthrodesis for adolescent idiopathic scoliosis. Spine 2008, 33, 1675–1681. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lenke, L.G.; Bridwell, K.H.; Kim, J.; Cho, S.K.; Cheh, G.; Yoon, J. Proximal junctional kyphosis in adolescent idiopathic scoliosis after 3 different types of posterior segmental spinal instrumentation and fusions: Incidence and risk factor analysis of 410 cases. Spine 2007, 32, 2731–2738. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Shen, B.; Wang, C.; Li, M. Risk factor analysis of proximal junctional kyphosis after posterior fusion in patients with idiopathic scoliosis. Injury 2010, 41, 415–420. [Google Scholar] [CrossRef]
- Hosman, A.J.; Langeloo, D.D.; de Keluver, M.; Anderson, P.G.; Veth, R.P.; Slot, G.H. Analysis of the sagittal plane after surgical management for Scheuermann’s disease. A view on overcorrection and the use of an anterior release. Spine 2002, 27, 167–175. [Google Scholar] [CrossRef]
- Sarwahi, V.; Hasan, S.; Galina, J.; Atlas, A.; Fakhoury, J.; Wendolowski, S.; Goldstein, J.; Dowling, T.J., 3rd; Molloy, S.; Yu, H.; et al. In Scheuermann’s kyphosis, a proximal UIV and postop kyphosis value close to patients’ PI decreases the risk of PJK. Spine Deform. 2022, 10, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Toll, B.J.; Gandhi, S.V.; Amanullah, A.; Samdani, A.F.; Janjua, M.B.; Kong, Q.; Pahys, J.M.; Hwang, S.W. Risk Factors for Proximal Junctional Kyphosis Following Surgical Deformity Correction in Pediatric Neuromuscular Scoliosis. Spine 2021, 46, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Koller, H.; Juliane, Z.; Umstaetter, M.; Meier, O.; Schmidt, R.; Hitzl, W. Surgical treatment of Scheuermann’s kyphosis using a combined antero-posterior strategy and pedicle screw constructs: Efficacy, radiographic and clinical outcomes in 111 cases. Eur. Spine J. 2014, 23, 180–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.K.; Kim, Y.J.; Lenke, L.G. Proximal Junctional Kyphosis Following Spinal Deformity Surgery in the Pediatric Patient. J. Am. Acad. Orthop. Surg. 2015, 23, 408–414. [Google Scholar] [CrossRef]
- Lonner, B.S.; Newton, P.; Betz, R.; Scharf, C.; O’Brien, M.; Sponseller, P.; Lenke, L.; Crawford, A.; Lowe, T.; Letko, L.; et al. Operative management of Scheuermann’s kyphosis in 78 patients: Radiographic outcomes, complications, and technique. Spine 2007, 32, 2644–2652. [Google Scholar] [CrossRef]
- Dubousset, J.; Herring, J.A.; Shufflebarger, H. The crankshaft phenomenon. J. Pediatr. Orthop. 1989, 9, 541–550. [Google Scholar] [CrossRef]
- Sanders, J.O.; Little, D.G.; Richards, B.S. Prediction of the crankshaft phenomenon by peak height velocity. Spine 1997, 22, 1352–1356. [Google Scholar] [CrossRef]
- Roberto, R.F.; Lonstein, J.E.; Winter, R.B.; Denis, F. Curve progression in Risser stage 0 or 1 patients after posterior spinal fusion for idiopathic scoliosis. J. Pediatr. Orthop. 1997, 17, 718–725. [Google Scholar] [CrossRef]
- Lapinksy, A.S.; Richards, B.S. Preventing the crankshaft phenomenon by combining anterior fusion with posterior instrumentation. Does it work? Spine 1995, 20, 1392–1398. [Google Scholar]
- Burton, D.C.; Asher, M.A.; Lai, S.M. Scoliosis correction maintenance in skeletally immature patients with idiopathic scoliosis. Is anterior fusion really necessary? Spine 2000, 25, 61–68. [Google Scholar] [CrossRef]
- Tao, F.; Zhao, Y.; Wu, Y.; Xie, Y.; Li, M.; Lu, Y.; Pan, F.; Guo, F.; Li, F. The effect of differing spinal fusion instrumentation on the occurrence of postoperative crankshaft phenomenon in adolescent idiopathic scoliosis. J. Spinal Disord. Tech. 2010, 23, e75–e80. [Google Scholar] [CrossRef] [PubMed]
- Sarlak, A.Y.; Atmaca, H.; Buluc, L.; Tosun, B.; Musaoglu, R. Juvenile idiopathic scoliosis treated with posterior arthrodesis and segmental pedicle screw instrumentation before the age of 9 years: A 5-year follow-up. Scoliosis 2009, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smucker, J.D.; Miller, F. Crankshaft effect after posterior spinal fusion and unit rod instrumentation in children with cerebral palsy. J. Pediatr. Orthop. 2001, 21, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.F.; Mooney, J.F., 3rd. The Crankshaft Phenomenon. J. Am. Acad. Orthop. Surg. 2017, 25, e185–e193. [Google Scholar] [CrossRef] [PubMed]
- Bourghli, A.; Boissiere, L.; Al Akari, A.; Alsofyani, M.A.; Obeid, I. Surgical correction of a previously operated juvenile idiopathic scoliosis with crankshaft phenomenon: An illustrative case report. J. Spine Surg. 2022, 8, 397–404. [Google Scholar] [CrossRef]
- Dede, O.; Yazici, M. Revision surgery for pediatric spine deformity: Corrective osteotomies. J. Pediatr. Orthop. 2014, 34 (Suppl. 1), S6–S10. [Google Scholar] [CrossRef]
- Xia, L.; Li, P.; Wang, D.; Bao, D.; Xu, J. Spinal osteotomy techniques in management of severe pediatric spinal deformity and analysis of postoperative complications. Spine 2015, 40, E286–E292. [Google Scholar] [CrossRef]
- Diab, M.G.; Franzone, J.M.; Vitale, M.G. The role of posterior spinal osteotomies in pediatric spinal deformity surgery: Indications and operative technique. J. Pediatr. Orthop. 2011, 31 (Suppl. 1), S88–S98. [Google Scholar] [CrossRef]
- Suk, S.I.; Chung, E.R.; Kim, J.H.; Kim, S.S.; Lee, J.S.; Choi, W.K. Posterior vertebral column resection for severe rigid scoliosis. Spine 2005, 30, 1682–1687. [Google Scholar] [CrossRef]
- Ould-Slimane, M.; Hossein Nabian, M.; Simon, A.L.; Happiette, A.; Julien-Marsollier, F.; Ilharreborde, B. Posterior vertebral column resection for pediatric rigid spinal deformity. Orthop. Traumatol. Surg. Res. OTSR 2022, 108, 102797. [Google Scholar] [CrossRef]
- Campbell, D.H.; McDonald, D.; Araghi, K.; Araghi, T.; Chutkan, N.; Araghi, A. The Clinical Impact of Image Guidance and Robotics in Spinal Surgery: A Review of Safety, Accuracy, Efficiency, and Complication Reduction. Int. J. Spine Surg. 2021, 15, S10–S20. [Google Scholar] [CrossRef]
- Urbanski, W.; Jurasz, W.; Wolanczyk, M.; Kulej, M.; Morasiewicz, P.; Dragan, S.L.; Zaluski, R.; Miekisiak, G.; Dragan, S.F. Increased Radiation but No Benefits in Pedicle Screw Accuracy With Navigation versus a Freehand Technique in Scoliosis Surgery. Clin. Orthop. Relat. Res. 2018, 476, 1020–1027. [Google Scholar] [CrossRef]
- O’Donnell, C.; Maertens, A.; Bompadre, V.; Wagner, T.A.; Krengel, W., 3rd. Comparative radiation exposure using standard fluoroscopy versus cone-beam computed tomography for posterior instrumented fusion in adolescent idiopathic scoliosis. Spine 2014, 39, E850–E855. [Google Scholar] [CrossRef] [PubMed]
- Dabaghi Richerand, A.; Christodoulou, E.; Li, Y.; Caird, M.S.; Jong, N.; Farley, F.A. Comparison of Effective Dose of Radiation During Pedicle Screw Placement Using Intraoperative Computed Tomography Navigation Versus Fluoroscopy in Children With Spinal Deformities. J. Pediatr. Orthop. 2016, 36, 530–533. [Google Scholar] [CrossRef]
- Perdomo-Pantoja, A.; Ishida, W.; Zygourakis, C.; Holmes, C.; Iyer, R.R.; Cottrill, E.; Theodore, N.; Witham, T.F.; Lo, S.L. Accuracy of Current Techniques for Placement of Pedicle Screws in the Spine: A Comprehensive Systematic Review and Meta-Analysis of 51,161 Screws. World Neurosurg. 2019, 126, 664–678.e3. [Google Scholar] [CrossRef] [PubMed]
- Li, H.M.; Zhang, R.J.; Shen, C.L. Accuracy of Pedicle Screw Placement and Clinical Outcomes of Robot-assisted Technique Versus Conventional Freehand Technique in Spine Surgery From Nine Randomized Controlled Trials: A Meta-analysis. Spine 2020, 45, E111–E119. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, K.D.; Kadiyala, M.; Talwar, D.; Sankar, W.N.; Flynn, J.J.M.; Anari, J.B. Does intraoperative CT navigation increase the accuracy of pedicle screw placement in pediatric spinal deformity surgery? A systematic review and meta-analysis. Spine Deform. 2022, 10, 19–29. [Google Scholar] [CrossRef]
- Chan, A.; Parent, E.; Wong, J.; Narvacan, K.; San, C.; Lou, E. Does image guidance decrease pedicle screw-related complications in surgical treatment of adolescent idiopathic scoliosis: A systematic review update and meta-analysis. Eur. Spine J. 2020, 29, 694–716. [Google Scholar] [CrossRef]
- Berlin, C.; Quante, M.; Thomsen, B.; Koeszegvary, M.; Platz, U.; Ivanits, D.; Halm, H. Intraoperative radiation exposure to patients in idiopathic scoliosis surgery with freehand insertion technique of pedicle screws and comparison to navigation techniques. Eur. Spine J. 2020, 29, 2036–2045. [Google Scholar] [CrossRef]
|
Preoperative | Intraoperative | Postoperative |
---|---|---|
|
| Day 1 postoperatively or as early as tolerated:
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, S.B.; Tsirikos, A.I. Paediatric Spinal Deformity Surgery: Complications and Their Management. Healthcare 2022, 10, 2519. https://doi.org/10.3390/healthcare10122519
Roberts SB, Tsirikos AI. Paediatric Spinal Deformity Surgery: Complications and Their Management. Healthcare. 2022; 10(12):2519. https://doi.org/10.3390/healthcare10122519
Chicago/Turabian StyleRoberts, Simon B., and Athanasios I. Tsirikos. 2022. "Paediatric Spinal Deformity Surgery: Complications and Their Management" Healthcare 10, no. 12: 2519. https://doi.org/10.3390/healthcare10122519
APA StyleRoberts, S. B., & Tsirikos, A. I. (2022). Paediatric Spinal Deformity Surgery: Complications and Their Management. Healthcare, 10(12), 2519. https://doi.org/10.3390/healthcare10122519