Association between Sedentary Time and Falls among Middle-Aged Women in Japan
Abstract
:1. Introduction
2. Methods
2.1. Study Sample
2.2. Self-Administered Questionnaire
2.3. Measurements
2.4. Medical Conditions
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals. Published 2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/342703/9789240027053-eng.pdf (accessed on 30 November 2021).
- The Government of Japan. The Annual Report on the Aging Society: 2018 (Summary). Published 2019. Available online: https://www8.cao.go.jp/kourei/whitepaper/w-2019/zenbun/pdf/1s2s_02_01.pdf (accessed on 30 November 2021).
- The Japan Foundation for Aging and Health. Operation of the “Kenko-Choju Net”. Published 2020. Available online: https://www.tyojyu.or.jp/net/topics/tokushu/koreisha-undoki-kenko/tento-kossetsuyobo-torikumi.html (accessed on 30 November 2021).
- Nakamura, K. A “super-aged” society and the “locomotive syndrome”. J. Orthop. Sci. 2008, 13, 1–2. [Google Scholar] [CrossRef] [Green Version]
- The Japan Foundation for Aging and Health. Operation of the “Kenko-Choju Net”. Published 2016. Available online: https://www.tyojyu.or.jp/net/byouki/locomotive-syndrome/about.html (accessed on 24 December 2021).
- Japan Locomo Challenge Promotion Conference. Locomotive Syndrome Pamphlet 2015. Published 2015. Available online: https://locomo-joa.jp/check/test/ (accessed on 30 November 2021).
- Seichi, A.; Hoshino, Y.; Doi, T.; Akai, M.; Tobimatsu, Y.; Iwaya, T. Development of a screening tool for risk of locomotive syndrome in the elderly: The 25-question Geriatric Locomotive Function Scale. J. Orthop. Sci. 2012, 17, 163–172. [Google Scholar] [CrossRef]
- Seichi, A.; Kimura, A.; Konno, S.; Yabuki, S.J. Epidemiologic survey of locomotive syndrome in Japan. Orthop. Sci. 2016, 21, 222–225. [Google Scholar] [CrossRef]
- Matsumoto, H.; Nakano, N.; Matsuura, A.; Akita, T.; Hagino, H. Relationship between severity of locomotive syndrome and the incidence of falling, prevalence of low bone mass, and sarcopenia. Phys. Ther. Jpn. 2016, 43, 38–46. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Powell, L. Fear of falling and low self-efficacy: A cause of dependence in elderly persons. J. Gerontol. 1993, 48, 35–38. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Speechley, M.; Ginter, S.F. Risk factors for falls among elderly persons living in the community. N. Engl. J. Med. 1988, 319, 1701–1707. [Google Scholar] [CrossRef]
- Murakami, Y.; Shiba, Y.; Watanabe, S.; Obuchi, S.; Inaba, Y. Factors of Fear of Falling among the Community Dwelling Elderly. Rigakuryoho Kagaku 2008, 23, 413–418. [Google Scholar] [CrossRef] [Green Version]
- Rubenstein, L.Z.; Josephson, K.R. The epidemiology of falls and syncope. Clin. Geriatr. Med. 2002, 18, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Government of Japan. Results of a Survey on Attitudes toward Housing and Living Environments for the Elderly (2010). Published 2011. Available online: https://www8.cao.go.jp/kourei/ishiki/h22/sougou/zentai/ (accessed on 30 November 2021).
- Hamajima, N.; The J-MICC Study Group. The Japan Multi-institutional Collaborative Cohort Study (J-MICC Study) to detect gene-environment interactions for cancer. Asian Pac. J. Cancer Prev. 2007, 8, 317–323. [Google Scholar] [PubMed]
- Takeuchi, K.; Naito, M.; Kawai, S.; Tsukamoto, M.; Kadomatsu, Y.; Kubo, Y.; Okada, R.; Nagayoshi, M.; Tamura, T.; Hishida, A.; et al. Study profile of the Japan Multi-institutional Collaborative Cohort (J-MICC) Study. J. Epidemiol. 2021, 31, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, N.; Koyama, T.; Kuriyama, N.; Ozaki, E.; Matsui, D.; Watanabe, I.; Uehara, R.; Watanabe, Y. Assessment of anthropometric indices other than BMI to evaluate arterial stiffness. Hypertens. Res. 2019, 42, 1599–1605. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Hachiya, T.; Sutoh, Y.; Matsuo, K.; Nishida, Y.; Shimanoe, C.; Tanaka, K.; Shimizu, A.; Ohnaka, K.; Kawaguchi, T.; et al. Genomewide Association Study of Leisure-Time Exercise Behavior in Japanese Adults. Med. Sci. Sport. Exerc. 2018, 50, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Waclawczyk, A.; Hartfield, D.; Yu, S.; Kuang, X.; Zhang, H.; Alamgir, H. Analysis of fall injuries by body mass index. South Med. J. 2014, 107, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muraki, S.; Akune, T.; Oka, H.; En-yo, Y.; Yoshida, M.; Nakamura, K.; Kawaguchi, H.; Yoshimura, N. Prevalence of falls and the association with knee osteoarthritis and lumbar spondylosis as well as knee and lower back pain in Japanese men and women. Arthritis Care Res. 2011, 63, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Kitayuguchi, J.; Kamada, M.; Okada, S.; Kamioka, H.; Mutoh, Y. Association between musculoskeletal pain and trips or falls in rural Japanese community-dwelling older adults: Across sectional study. Geriatr. Gerontol. Int. 2015, 15, 54–64. [Google Scholar] [CrossRef]
- Taylor, J.L.; Parker, L.J.; Szanton, S.L.; Thorpe, R.J., Jr. The association of pain, race and slow gait speed in older adults. Geriatr. Nurs. 2018, 39, 580–583. [Google Scholar] [CrossRef]
- Ayis, S.; Ebrahim, S.; Williams, S.; Jüni, P.; Dieppe, P. Determinants of reduced walking speed in people with musculoskeletal pain. J. Rheumatol. 2007, 34, 1905–1912. [Google Scholar]
- Guimaraes, R.M.; Isaacs, B. Characteristics of the gait in old people who fall. Int. Rehabil. Med. 1980, 2, 177–180. [Google Scholar] [CrossRef]
- Pizzigalli, L.; Filippini, A.; Ahmaidi, S.; Jullien, H.; Alberto, R. Prevention of falling risk in elderly people: The relevance of muscular strength and symmetry of lower limbs in postural stability. J. Strength Cond. Res. 2011, 25, 567–574. [Google Scholar] [CrossRef]
- Alonso, A.C.; Ribeiro, S.M.; Luna, N.M.S.; Peterson, M.D.; Bocalini, D.S.; Serra, M.M.; Brech, G.C.; Greve, J.M.D.; Garcez-Leme, L.E. Association between handgrip strength, balance, and knee flexion/extension strength in older adults. PLoS ONE 2018, 13, e0198185. [Google Scholar] [CrossRef] [Green Version]
- Hiraoka, A.; Tamura, R.; Oka, M.; Izumoto, H.; Ueki, H.; Tsuruta, M.; Yoshino, T.; Ono, A.; Aibiki, T.; Okudaira, T.; et al. Prediction of risk of falls based on handgrip strength in chronic liver disease patients living independently. Hepatol. Res. 2019, 49, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, N.; Murata, S.; Otao, H.; Murata, J.; Horie, J.; Mizota, K. The relationship between grip Strength and physical function in elderly community dwelling women. Rigakuryoho Kagaku 2011, 26, 255–258. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, T.; Hashimoto, S.; Kanda, H.; Hirano, N.; Kurihara, Y.; Kawashima, T.; Fukushima, T. Risk factors of falls in inpatients and their practical use in identifying high-risk persons at admission: Fukusima medical university hospital cohort study. BMJ Open. 2014, 4, e005385. [Google Scholar] [CrossRef] [Green Version]
- Mets, M.A.J.; Volkerts, E.R.; Olivier, B.; Verster, J.C. Effect of hypnotic drugs on body balance and standing steadiness. Sleep Med. Rev. 2010, 14, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Trujillo, K.M.; Brougham, R.R.; Walsh, D.A. Age differences in reasons for exercising. Curr. Psychol. 2004, 22, 348–367. [Google Scholar] [CrossRef]
- The National Health and Nutrition Survey in Japan, 2019. Published 2020. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/r1-houkoku_00002.html (accessed on 30 November 2021).
- Bauman, A.; Ainsworth, B.E.; Sallis, J.F.; Hagströmer, M.; Cora, C.; Bull, F.; Pratt, M.; Venugopal, K.; Chau, J.; Sjöström, M.; et al. The descriptive epidemiology of sitting. A 20-country comparison using the International Physical Activity Questionnaire (IPAQ). Am. J. Prev. Med. 2011, 41, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.V.; Maliniak, M.L.; Rees-Punia, E.; Matthews, C.E.; Gapstur, S.M. Prolonged leisure time spent sitting in relation to cause-specific mortality in a large US cohort. Am. J. Epidemiol. 2018, 187, 2151–2158. [Google Scholar] [CrossRef] [Green Version]
- Koyama, T.; Ozaki, E.; Kuriyama, N.; Tomida, S.; Yoshida, T.; Uehara, R.; Tanaka, K.; Hara, M.; Hishida, A.; Okada, R.; et al. Effect of underlying cardiometabolic diseases on the association between sedentary time and all-cause mortality in a large Japanese population: A cohort analysis based on the J-MICC study. J. Am. Heart Assoc. 2021, 10, e018293. [Google Scholar] [CrossRef]
- Koyama, T.; Kuriyama, N.; Ozaki, E.; Tomida, S.; Uehara, R.; Nishida, Y.; Shimanoe, C.; Hishida, A.; Tamura, T.; Tsukamoto, M.; et al. Sedentary time is associated with cardiometabolic diseases in a large Japanese population: A cross-sectional study. J. Atheroscler. Thromb. 2020, 27, 1097–1107. [Google Scholar] [CrossRef] [Green Version]
- Siddarth, P.; Burggren, A.C.; Eyre, H.A.; Small, G.W.; Merrill, D.A. Sedentary behavior associated with reduced medial temporal lobe thickness in middle-aged and older adults. PLoS ONE 2018, 13, e0195549. [Google Scholar] [CrossRef]
- Campbell, S.D.I.; Brosnan, B.J.; Chu, A.K.Y.; Skeaff, C.M.; Rehrer, N.J.; Perry, T.L.; Peddie, M.C. Sedentary behavior and body weight and composition in adults: A systematic review and meta-analysis of prospective studies. Sport Med. 2018, 48, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Ando, S.; Koyama, T.; Kuriyama, N.; Ozaki, E.; Uehara, R. The association of daily physical activity behaviors with visceral fat. Obes. Res. Clin. Pract. 2020, 14, 531–535. [Google Scholar] [CrossRef]
- Tinetti, M.E.; Kumar, C. The patient who falls: “It’s always a trade-off”. JAMA 2010, 303, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
All | No Fall | Fall/Almost-Fall | p-Value | |
---|---|---|---|---|
n (%) | 1421 | 1114 (78.4) | 307 (21.6) | |
Age (years) | 52.3 (±7.0) | 52.2 (±7.0) | 52.5 (±6.9) | 0.560 |
BMI (kg/m2) | 21.4 (±3.3) | 21.3 (±3.2) | 21.9 (±3.2) | 0.008 |
AC (cm) | 77.9 (±9.1) | 77.5 (±8.8) | 79.5 (±9.7) | 0.001 |
SBP (mmHg) | 122.0 (±18.1) | 121.9 (±17.9) | 122.3 (±18.8) | 0.750 |
DBP (mmHg) | 76.1 (±11.2) | 75.9 (±11.0) | 76.8 (±11.8) | 0.214 |
HbA1c (%) | 5.49 (±0.36) | 5.48 (±0.34) | 5.52 (±0.43) | 0.063 |
HDL-C (mg/dL) | 75.5 (±16.2) | 76.2 (±16.2) | 72.9 (±16.0) | 0.001 |
LDL-C (mg/dL) | 126.4 (±32.3) | 125.5 (±32.0) | 129.6 (±33.4) | 0.047 |
TG (mg/dL) | 83.6 (±52.8) | 82.9 (±53.5) | 86.4 (±49.9) | 0.298 |
Physical activity (METs) | 14.2 (±9.9) | 14.1 (±9.6) | 14.6 (±11.0) | 0.487 |
GLFS-25 (point) | 5.10 (±5.81) | 4.53 (±5.22) | 7.17 (±7.22) | 0.000 |
Two-step test (m) | 1.48 (±0.14) | 1.48 (±0.14) | 1.45 (±0.14) | 0.001 |
Lower limb muscle strength (kg) | 18.8 (±6.5) | 18.9 (±6.5) | 18.6 (±6.2) | 0.410 |
Grip strength (kg) | 31.2 (±5.3) | 31.4 (±5.3) | 30.5 (±5.5) | 0.004 |
Current drinker (n, %) | 763 (53.7) | 594 (53.3) | 169 (55.0) | 0.591 |
Current smoker (n, %) | 70 (4.9) | 54 (4.8) | 16 (5.2) | 0.794 |
DM patient (n, %) | 27 (1.9) | 18 (1.6) | 9 (2.9) | 0.135 |
HT patient (n, %) | 327 (23.0) | 246 (22.1) | 81 (26.4) | 0.113 |
DL patient (n, %) | 574 (40.4) | 435 (39.0) | 139 (45.3) | 0.049 |
Prescription stabilizers or sleeping pills use (n, %) | 71 (5.0) | 50 (4.5) | 21 (6.8) | 0.094 |
40 cm single-leg sit-to-stand test successful (n, %) | 989 (69.6) | 796 (71.5) | 193 (62.9) | 0.004 |
Sedentary times | ||||
None to <5 h/day (n, %) | 369 (26.0) | 300 (26.9) | 69 (22.5) | 0.148 |
5 to <7 h/day (n, %) | 337 (23.7) | 271 (24.3) | 66 (21.5) | |
7 to <9 h/day (n, %) | 278 (19.6) | 209 (18.8) | 69 (22.5) | |
≥9 h/day (n, %) | 437 (30.7) | 334 (30.0) | 103 (33.6) |
Age | BMI | Abdominal Circumference | Physical Activity | GLFS-25 | Two-Step Test | Lower-Limb Muscle Strength | Grip Strength | |
---|---|---|---|---|---|---|---|---|
Age | 1 | 0.032 | 0.119 ** | 0.125 ** | 0.111 ** | −0.074 ** | 0.027 | −0.223 ** |
BMI | 1 | 0.839 ** | −0.013 | 0.079 ** | −0.114 ** | 0.263 ** | 0.064 * | |
Abdominal circumference | 1 | −0.025 | 0.116 ** | −0.159 ** | 0.234 ** | 0.058 * | ||
Physical activity | 1 | −0.027 | 0.041 | 0.066 * | −0.010 | |||
GLFS-25 | 1 | −0.151 ** | −0.074 ** | −0.135 ** | ||||
Two-step test | 1 | 0.221 ** | 0.226 ** | |||||
Lower-limb muscle strength | 1 | 0.281 ** | ||||||
Grip strength | 1 |
Crude | Model 1 a | Model 2 b | Model 3 c | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
BMI | 1.054 | 1.016–1.093 | 0.005 | 1.054 | 1.016–1.093 | 0.005 | 1.045 | 1.003–1.088 | 0.036 | 0.985 | 0.905–1.072 | 0.729 |
Abdominal circumference | 1.024 | 1.010–1.037 | 0.001 | 1.023 | 1.010–1.037 | 0.001 | 1.021 | 1.006–1.036 | 0.007 | 1.021 | 0.989–1.053 | 0.201 |
Two-step test | 0.211 | 0.084–0.525 | 0.001 | 0.213 | 0.085–0.533 | 0.001 | 0.236 | 0.093–0.597 | 0.002 | 0.569 | 0.204–1.585 | 0.281 |
Lower-limb muscle strength | 0.992 | 0.972–1.012 | 0.410 | 0.992 | 0.972–1.011 | 0.401 | 0.991 | 0.972–1.011 | 0.387 | 0.998 | 0.976–1.020 | 0.837 |
Grip strength | 0.968 | 0.942–0.989 | 0.004 | 0.965 | 0.941–0.989 | 0.005 | 0.966 | 0.942–0.991 | 0.007 | 0.974 | 0.948–1.001 | 0.056 |
Physical activity | 1.004 | 0.992–1.017 | 0.486 | 1.004 | 0.992–1.017 | 0.522 | 1.005 | 0.992–1.018 | 0.462 | 1.018 | 1.036–1.084 | 0.020 |
GLFS-25 | 1.072 | 1.049–1.095 | <0.001 | 1.072 | 1.049–1.095 | <0.001 | 1.069 | 1.046–1.092 | <0.001 | 1.060 | 1.036–1.084 | <0.001 |
40 cm single-leg sit-to-stand test | 0.676 | 0.519–0.882 | 0.004 | 0.677 | 0.517–0.888 | 0.005 | 0.700 | 0.533–0.921 | 0.011 | 0.894 | 0.663–1.205 | 0.461 |
Sedentary times | ||||||||||||
None to <5 h/day | Ref | Ref | Ref | Ref | ||||||||
5 to <7 h/day | 1.059 | 0.728–1.541 | 0.765 | 1.052 | 0.722–1.531 | 0.793 | 1.073 | 0.735–1.567 | 0.715 | 1.225 | 0.819–1.833 | 0.323 |
7 to <9h/day | 1.435 | 0.984–2.094 | 0.061 | 1.430 | 0.980–2.086 | 0.064 | 1.411 | 0.964–2.063 | 0.076 | 1.701 | 1.117–2.592 | 0.013 |
9 h/day | 1.341 | 0.952–1.888 | 0.093 | 1.313 | 0.953–1.891 | 0.092 | 1.332 | 0.943–1.882 | 0.103 | 1.680 | 1.099–2.567 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozaki, E.; Matsui, D.; Kuriyama, N.; Tomida, S.; Nukaya, Y.; Koyama, T. Association between Sedentary Time and Falls among Middle-Aged Women in Japan. Healthcare 2022, 10, 2354. https://doi.org/10.3390/healthcare10122354
Ozaki E, Matsui D, Kuriyama N, Tomida S, Nukaya Y, Koyama T. Association between Sedentary Time and Falls among Middle-Aged Women in Japan. Healthcare. 2022; 10(12):2354. https://doi.org/10.3390/healthcare10122354
Chicago/Turabian StyleOzaki, Etsuko, Daisuke Matsui, Nagato Kuriyama, Satomi Tomida, Yukiko Nukaya, and Teruhide Koyama. 2022. "Association between Sedentary Time and Falls among Middle-Aged Women in Japan" Healthcare 10, no. 12: 2354. https://doi.org/10.3390/healthcare10122354
APA StyleOzaki, E., Matsui, D., Kuriyama, N., Tomida, S., Nukaya, Y., & Koyama, T. (2022). Association between Sedentary Time and Falls among Middle-Aged Women in Japan. Healthcare, 10(12), 2354. https://doi.org/10.3390/healthcare10122354