Use Case Evaluation and Digital Workflow of Breast Cancer Care by Artificial Intelligence and Blockchain Technology Application
Abstract
:1. Introduction
2. Methods
2.1. Statistical Methods
2.2. Patient Selection
2.3. Data Analysis
2.4. Concept Development
3. Results
3.1. Patient Data Analysis
3.1.1. Descriptive Analysis
3.1.2. Geographical and Frequency Distribution
3.2. Breast Cancer Care Workflow
3.3. Technological Concept
3.3.1. Applied Literature
3.3.2. Artificial Intelligence Component
3.3.3. Blockchain or Distributed Ledger Technology Component
3.3.4. Cloud Storage
3.3.5. Web Application
3.3.6. Blockchain Nodes
3.3.7. Cryptographic Operations
4. Discussion
4.1. Challenges and Pain Points of Senological Oncological Care
4.1.1. Interoperability and Accessibility
4.1.2. Privacy, Security, and Data Integrity
4.1.3. Process Complexity
4.1.4. Documentation Obligations
4.1.5. Shifting Demographics and Work Environment
4.1.6. Rising Economic Pressure and Increasing Case Turnover
4.2. Use Case Potential of Breast Cancer Care
4.3. Dualistic Technological Solution Approach
4.3.1. Artificial Intelligence
4.3.2. Blockchain or Distributed Ledger Technology
4.4. Benefits
4.4.1. Ease of Use
4.4.2. Interoperability
4.4.3. Network Effects
4.4.4. Shared Governance
4.5. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubovitskaya, A.; Baig, F.; Xu, Z.; Shukla, R.; Zambani, P.S.; Swaminathan, A.; Jahangir, M.; Chowdhry, K.; Lachhani, R.; Idnani, N.; et al. ACTION-EHR: Patient-centric blockchain-based electronic health record data management for cancer care. J. Med. Internet Res. 2020, 22, e13598. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Rashid, M.; Le Kernec, J.; Philippe, B.; Barnes, S.J.; Fioranelli, F.; Yang, S.; Romain, O.; Abbasi, Q.H.; Loukas, G.; et al. A secure occupational therapy framework for monitoring cancer patients’ quality of life. Sensors 2019, 19, 5258. [Google Scholar] [CrossRef] [Green Version]
- Siyal, A.A.; Junejo, A.Z.; Zawish, M.; Ahmed, K.; Khalil, A.; Soursou, G. Applications of blockchain technology in medicine and healthcare: Challenges and future perspectives. Cryptography 2019, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Roman-Belmonte, J.M.; De La Corte-Rodriguez, H.; Rodriguez-Merchan, E.C. How blockchain technology can change medicine. Postgrad. Med. 2018, 130, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, K.; Saleous, H.; Zaki, N. Blockchains for secure digitized medicine. J. Pers. Med. 2019, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Accenture. Artificial Intelligence: Healthcare’s New Nervous System. 2017. Available online: https://www.accenture.com/us-en/insight-artificial-intelligence-future-growth (accessed on 1 September 2022).
- Patel, V.L.; Shortliffe, E.H.; Stefanelli, M.; Szolovits, P.; Berthold, M.R.; Bellazzi, R.; Abu-Hanna, A. The coming of age of artificial intelligence in medicine. Artif. Intell. Med. 2009, 46, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [Green Version]
- Barclay, I.; Cooper, M.; Hackel, J.; Perrin, P. Tokenizing behavior change: A pathway for the Sustainable Development Goals. Front. Blockchain 2022, 4, 730101. [Google Scholar] [CrossRef]
- Weir, H.K.; Bs, T.D.T.; Soman, A.; Møller, B.; Ms, S.L. The past, present, and future of cancer incidence in the United States: 1975 through 2020. Cancer 2015, 121, 1827–1837. [Google Scholar] [CrossRef] [Green Version]
- pwc. A Prescription for Blockchain in Healthcare. 2018. Available online: https://www.pwc.com/mx/es/publicaciones/archivo/2018/10/20181010-pwc-mx-a-prescription-for-blockchain-and-healthcare.pdf (accessed on 1 September 2022).
- Boston Consulting Group. A Prescription for Blockchain in Health Care. 2018. Available online: https://www.bcg.com/publications/2018/prescription-for-blockchain-healthcare.aspx%0Ahttps://www.bcg.com/de-de/publications/2018/prescription-for-blockchain-healthcare.aspx (accessed on 1 September 2022).
- Deloitte. Blockchain—Einsatz Im Deutschen Gesundheitswesen. 2017. Available online: https://www2.deloitte.com/content/dam/Deloitte/de/Documents/life-sciences-health-care/Blockchain_LSHC_komplett_Version_neu_safe.pdf (accessed on 1 September 2022).
- Ernst and Young. Blockchain in Health. 2016. Available online: https://www.hyperledger.org/wp-content/uploads/2016/10/ey-blockchain-in-health.pdf (accessed on 1 September 2022).
- Bittroff, M.; Sandner, P. Blockchain in Healthcare. 2020. Available online: http://explore-ip.com/2020_Blockchain-in-Healthcare.pdf (accessed on 1 September 2022).
- Deloitte. Blockchain Opportunities for Patient Data Donation & Clinical Research. 2018. Available online: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/process-and-operations/us-cons-blockchain-opportunities-patient-data-donation-clinical-research.pdf (accessed on 1 September 2022).
- Deloitte. Blockchain to Blockchains in Life Sciences and Health Care. What Broader Integration Is Making Possible Today. 2018. Available online: https://www2.deloitte.com/content/dam/Deloitte/us/Documents/life-sciences-health-care/us-lshc-tech-trends2-blockchain.pdf (accessed on 1 September 2022).
- Wissenschaftliches Institut für Gesundheitsökonomie und Gesundheitssystemforschung. Blockchain: Die Demokratisierung des Gesundheitswesens? 2017. Available online: https://www.wig2.de/fileadmin/content_uploads/PDF_Dateien/White_Paper_Blockchain_-_Demokratisierung_des_Gesundheitswesens.pdf (accessed on 1 September 2022).
- IBM. Blockchain: The Chain of Trust and Its Potential to Transform Healthcare—Our Point of View. 2016. Available online: https://www.healthit.gov/sites/default/files/8-31-blockchain-ibm_ideation-challenge_aug8.pdf (accessed on 1 September 2022).
- KPMG. Demystifying Blockchain for Life Sciences Sciences Has Two Problems. 2018. Available online: https://assets.kpmg/content/dam/kpmg/br/pdf/2018/05/br-demystifying-block-chain-for-life-sciences.pdf (accessed on 1 September 2022).
- IBM. Healthcare Rallies for Blockchains. 2016. Available online: https://www.ibm.com/downloads/cas/BBRQK3WY (accessed on 1 September 2022).
- Accenture. In Blockchain We Trust: Transforming the Life Sciences Supply Chain. 2018. Available online: https://www.accenture.com/_acnmedia/pdf-81/accenture-in-blockchain-we-trust-transcript.pdf (accessed on 1 September 2022).
- OECD. Opportunities and Challenges of Blockchain Technologies in Health Care. 2020. Available online: https://www.oecd.org/finance/Opportunities-and-Challenges-of-Blockchain-Technologies-in-Health-Care.pdf (accessed on 1 September 2022).
- pwc. Prescribing a Paperless Society: How Blockchain Can Deliver Electronic Prescriptions. 2017. Available online: https://www.pwc.co.uk/healthcare/assets/documents/prescribing-paperless-society.pdf (accessed on 1 September 2022).
- Oracle. The Internet of Things and Blockchain: Unique Opportunities for Healthcare. 2018. Available online: https://www.oracle.com/us/industries/healthcare/iot-blockchain-opp-hc-wp-5187127.pdf (accessed on 1 September 2022).
- Bain & Company. A Smarter Way for Healthcare Companies to Go Digital. 2020. Available online: https://www.bain.com/insights/a-smarter-way-for-healthcare-companies-to-go-digital/ (accessed on 1 September 2022).
- USAID. Artificial Intelligence in Global Health. 2019. Available online: https://www.usaid.gov/sites/default/files/documents/1864/AI-in-Global-Health_webFinal_508.pdf (accessed on 1 September 2022).
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Boston Consulting Group. Chasing Value As AI Transforms Healthcare. 2019. Available online: https://www.bcg.com/de-de/publications/2019/chasing-value-as-ai-transforms-health-care (accessed on 1 September 2022).
- EIT Health Consultative Group. Contribution to the Discussion on the European Commission’s Data Strategy and AI White Paper. 2020. Available online: https://eithealth.eu/wp-content/uploads/2020/06/EIT-Health-Consultative-Group-on-EC-Data-Strategy-and-AI-White-Paper-31-May-2020.pdf (accessed on 1 September 2022).
- Roland Berger. Digital and Physical Innovations Stimulate the Healthcare Sector. 2021. Available online: https://www.mynewsdesk.com/rolandberger/pressreleases/digital-and-physical-innovations-stimulate-the-healthcare-sector-3130832 (accessed on 1 September 2022).
- Deloitte. Digital Transformation Shaping the Future of European Healthcare. 2020. Available online: https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/public-sector/deloitte-nl-shaping-the-future-of-european-healthcare.pdf (accessed on 1 September 2022).
- Deloitte. Digitale Transformation—Wo Steht Das Deutsche Gesundheitswesen? 2020. Available online: https://ww2.deloitte.com/content/dam/Deloitte/de/Documents/life-sciences-health-care/Deutsche_Ergebnisse_Shaping-the-future-of_European_Healthcare.pdf (accessed on 1 September 2022).
- Roland Berger. Future of Health: An Industry Goes Digital—Faster than Expected. 2019. Available online: https://content.rolandberger.com/hubfs/Roland-Berger_Future-of-health.pdf (accessed on 1 September 2022).
- BVDW. Künstliche Intelligenz Revolution für die Gesundheitsbranche. 2018. Available online: https://www.bvdw.org/der-bvdw/news/detail/artikel/kuenstliche-intelligenz-revolution-fuer-die-gesundheitsbranche/ (accessed on 1 September 2022).
- Boston Consulting Group. Mind the (AI) Gap—Leadership Makes the Difference. 2018. Available online: https://web-assets.bcg.com/img-src/Mind_the_AI_Gap-Focus_tcm9-208965.pdf (accessed on 1 September 2022).
- Philips. Mit Künstlicher Intelligenz Zum Klinischen und Betrieblichen Erfolg. 2018. Available online: https://www.philips.com/c-dam/b2bhc/de/resourcecatalog/landingpages/it-hub/mit_ki_zum_erfolg.pdf (accessed on 1 September 2022).
- Deutscher Bundestag. Projektgruppe KI und Gesundheit—Zusammenfassung der Vorläufigen Ergebnisse. 2019. Available online: https://www.bundestag.de/resource/blob/672950/fed938366dcf1b3f79c2ff177e0f86f5/PG-3-Projektgruppenbericht-data.pdf (accessed on 1 September 2022).
- pwc. Sherlock in Health: How Artificial Intelligence May Improve Quality and Efficiency, Whilst Reducing Healthcare Costs in Europe. 2017. Available online: https://www.pwc.com.tr/en/sektorler/saglik/yayinlar/sherlock-saglik-sektorunu-arastiriyor.html (accessed on 1 September 2022).
- McKinsey and Company. Transforming Healthcare with AI—The Impact on the Workforce and Organizations. 2020. Available online: https://www.mckinsey.com/industries/healthcare-systems-and-services/our-insights/transforming-healthcare-with-ai. (accessed on 1 September 2022).
- European Commission. White Paper on Artificial Intelligence: A European Approach to Excellence and Trust. 2020. Available online: https://ec.europa.eu/info/sites/default/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf (accessed on 1 September 2022).
- ITU/WHO. Whitepaper for the ITU/WHO Focus Group on Artificial Intelligence for Health. 2020. Available online: https://www.itu.int/go/fgai4h (accessed on 1 September 2022).
- Galimova, R.M.; Buzaev, I.V.; Ramilevich, K.A.; Yuldybaev, L.K.; Shaykhulova, A.F. Artificial Intelligence—Developments in Medicine in the Last Two Years. Chronic Dis. Transl. Med. 2019, 5, 64–68. [Google Scholar] [CrossRef]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef] [PubMed]
- Hogarty, D.T.; Mackey, D.A.; Hewitt, A.W. Current state and future prospects of artificial intelligence in ophthalmology: A review. Clin. Exp. Ophthalmol. 2019, 47, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- COCIR. Artificial Intelligence in Healthcare. 2019. Available online: https://www.cocir.org/uploads/media/COCIR_White_Paper_on_AI_in_Healthcare.pdf (accessed on 1 September 2022).
- Fülöp, M.T.; Gubán, M.; Avornicului, M. Application research of soft computing based on machine learning production scheduling. Processes 2022, 10, 520. [Google Scholar] [CrossRef]
- Meskó, B.; Hetényi, G.; Gyorffy, Z. Will artificial intelligence solve the human resource crisis in healthcare? BMC Health Serv. Res. 2018, 18, 545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; White, J.; Schmidt, D.C.; Lenz, G.; Rosenbloom, S.T. FHIRChain: Applying blockchain to securely and scalably share clinical data. Comput. Struct. Biotechnol. J. 2018, 16, 267–278. [Google Scholar] [CrossRef]
- Dubovitskaya, A.; Novotny, P.; Thiebes, S.; Sunyaev, A.; Schumacher, M.; Xu, Z.; Wang, F. Intelligent health care data management using blockchain: Current limitation and future research agenda. In Heterogeneous Data Management, Polystores, and Analytics for Healthcare; Springer: Cham, Switzerland, 2019; Volume 11721, pp. 277–288. [Google Scholar] [CrossRef]
- Kumar, R.; Wang, W.; Kumar, J.; Yang, T.; Khan, A.; Ali, W.; Ali, I. An Integration of blockchain and AI for secure data sharing and detection of CT images for the hospitals. Comput. Med. Imaging Graph. 2021, 87, 101812. [Google Scholar] [CrossRef]
- Hirano, T.; Motohashi, T.; Okumura, K.; Takajo, K.; Kuroki, T.; Ichikawa, D.; Matsuoka, Y.; Ochi, E.; Ueno, T. Data validation and verification using blockchain in a clinical trial for breast cancer: Regulatory sandbox. J. Med. Internet Res. 2020, 22, e18938. [Google Scholar] [CrossRef] [PubMed]
- Bundesärztekammer. Ärztestatistik zum 31. Dezember 2020. 2020. Available online: https://www.bundesaerztekammer.de/fileadmin/user_upload/downloads/pdf-Ordner/Statistik_2020/2020-Statistik.pdf (accessed on 1 September 2022).
- Statistisches Bundesamt (Destatis). Entwicklung der Gesundheitsausgaben in Deutschland. 2022. Available online: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Gesundheit/Gesundheitsausgaben/_inhalt.html;jsessionid=70E22C9D5E9A7DFA5131ED2B0D7A810B.live711#sprg229148 (accessed on 1 September 2022).
- Robert Koch Institut. Epidemiologie von Krebserkrankungen. 2016. Available online: https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebsgeschehen/Epidemiologie/Kapitel2_Epidemiologie.pdf;jsessionid=48E16232D56DFE7CB8DCC3A610024FA8.internet112?__blob=publicationFile (accessed on 1 September 2022).
- Khatcheressian, J.L.; Wolff, A.; Smith, T.; Grunfeld, E.; Muss, H.B.; Vogel, V.G.; Halberg, F.; Somerfield, M.R.; Davidson, N.E. American Society of Clinical Oncology 2006 update of the breast cancer follow-up and management guidelines in the adjuvant setting. J. Clin. Oncol. 2006, 24, 5091–5097. [Google Scholar] [CrossRef]
- Moschetti, I.; Cinquini, M.; Lambertini, M.; Levaggi, A.; Liberati, A. Follow-up strategies for women treated for early breast cancer. Cochrane Database Syst. Rev. 2016, 2016, CD001768. [Google Scholar] [CrossRef]
- Fülöp, M.T.; Breaz, T.O.; He, X.; Ionescu, C.A.; Cordoş, G.S.; Stanescu, S.G. The role of universities’ sustainability, teachers’ wellbeing, and attitudes toward e-learning during COVID-19. Front. Public Health 2022, 10, 981593. [Google Scholar] [CrossRef] [PubMed]
Absolute Figures | ||||||||
---|---|---|---|---|---|---|---|---|
C50 | 2017 | 2018 | 2019 | 2020 | 2021 | 5-year average | Average Age (2017–2021) | |
Patient number | 407 | 424 | 461 | 429 | 468 | 437.8 | Male | 71.3 |
LoS | 5.3 | 5.3 | 4.8 | 5.1 | 4.7 | 5.0 | Female | 61.4 |
PCCL | 0.5 | 0.5 | 0.5 | 0.5 | 0.4 | 0.5 | ||
SD | 2.0 | 2.3 | 2.0 | 2.8 | 4.7 | 2.7 | ||
PROC | 7.0 | 6.7 | 6.0 | 5.9 | 5.2 | 6.2 | ||
C56 | 2017 | 2018 | 2019 | 2020 | 2021 | 5-year average | Average Age (2017–2021) | |
Patient number | 72 | 81 | 85 | 73 | 92 | 80.6 | Female | 59.9 |
LoS | 12.2 | 13.0 | 13.6 | 13.4 | 12.8 | 13.0 | ||
PCCL | 2.3 | 2.6 | 2.5 | 2.1 | 2.5 | 2.4 | ||
SD | 6.3 | 7.8 | 8.0 | 9.4 | 14.8 | 9.2 | ||
PROC | 8.4 | 8.8 | 9.3 | 8.8 | 9.9 | 9.0 |
Two-Digit Zip Code | 2017 | 2018 | 2019 | 2020 | 2021 | Sum | 2017 Relative Distribution | 2021 Relative Distribution |
---|---|---|---|---|---|---|---|---|
34 | 45 | 29 | 33 | 37 | 40 | 184 | 11% | 9% |
35 | 307 | 341 | 353 | 333 | 370 | 1.704 | 75% | 79% |
36 | 35 | 28 | 50 | 37 | 38 | 188 | 9% | 8% |
57 | 4 | 7 | 9 | 7 | 8 | 35 | 1% | 2% |
Others | 16 | 19 | 16 | 15 | 12 | 78 | 4% | 3% |
Sum | 407 | 424 | 461 | 429 | 468 | 2.189 | 100% | 100% |
Counties starting with | 34 | 35 | 36 | 57 | ||||
|
|
|
|
{(“Distributed Ledger” OR Blockchain) AND (Medicine OR Oncology)} | |||
---|---|---|---|
Index | Title | Year of Publication | Authorship Institution |
1 | A prescription for blockchain and healthcare: Reinvent or be reinvented [11] | 2018 | PwC |
2 | A prescription for blockchain in healthcare [12] | 2018 | BCG |
3 | Blockchain—Use in the German healthcare system (Blockchain Einsatz im deutschen Gesundheitswesen) [13] | 2017 | Deloitte |
4 | Blockchain in health [14] | 2016 | Ernst and Young |
5 | Blockchain in healthcare [15] | 2020 | Frankfurt School of Finance |
6 | Blockchain opportunities for patient data donation and clinical research [16] | 2018 | Deloitte, Pfizer |
7 | Blockchain to blockchains in life sciences and health care [17] | 2018 | Deloitte |
8 | Blockchain: the democratization of healthcare (Blockchain: Die Demokratisierung des Gesundheitswesens?) [18] | 2017 | WIG |
9 | Blockchain: The chain of trust and its potential to transform healthcare—Our point of view [19] | 2016 | IBM |
10 | Demystifying blockchain for life sciences: blockchain could be a key to interoperability and privacy [20] | 2018 | KPMG |
11 | Healthcare rallies for blockchains [21] | 2016 | IBM |
12 | In Blockchain we trust: transforming the life sciences supply chain [22] | 2018 | Accenture |
13 | Opportunities and challenges of blockchain technologies in health care [23] | 2020 | OECD |
14 | Prescribing a paperless society: how blockchain can deliver electronic prescriptions [24] | 2017 | PwC |
15 | The internet of things and blockchain: unique opportunities for healthcare [25] | 2018 | Oracle |
{(“Artificial Intelligence” OR “Machine Learning”) AND (Medicine OR Oncology)} | |||
Index | Title | Year of Publication | Authorship Institution |
1 | A smarter way for healthcare companies to go digital [26] | 2020 | Bain & Company |
2 | Artificial intelligence in global health [27] | 2019 | USAID |
3 | Artificial intelligence in healthcare: past, present and future [28] | 2017 | SVN |
4 | Artificial intelligence: healthcare‘s new nervous system [6] | 2017 | Accenture |
5 | Chasing value as AI transforms health care [29] | 2019 | BCG |
6 | Contribution to the discussion on the European Commission’s data strategy and AI white paper [30] | 2020 | eit Health |
7 | Digital and physical innovations stimulate the healthcare sector [31] | 2021 | Roland Berger |
8 | Digital transformation—Shaping the future of European healthcare [32] | 2020 | Deloitte |
9 | Digital transformation—Where does the German healthcare system stand? (Digitale Transformation—Wo steht das deutsche Gesundheitswesen?) [33] | 2020 | Deloitte |
10 | Future of health: an industry goes digital—Faster than expected [34] | 2019 | Roland Berger |
11 | Artificial intelligence—Revolution for the healthcare industry (Künstliche Intelligenz—Revolution für die Gesundheitsbranche) [35] | 2018 | BVDW |
12 | Mind the (AI) gap—Leadership makes the difference [36] | 2018 | BCG |
13 | With artificial intelligence to clinical and operational success (Mit künstlicher Intelligenz zum klinischen und betrieblichen Erfolg [37] | 2018 | Philips |
14 | AI and Health Project Group—Summary of preliminary results (Projektgruppe, KI und Gesundheit—Zusammenfassung der vorläufigen Ergebnisse) [38] | 2019 | Deutscher Bundestag |
15 | Sherlock in health—How artificial intelligence may improve quality and efficiency, whilst reducing healthcare costs in Europe [39] | 2017 | PwC |
16 | The potential for artificial intelligence in healthcare [8] | 2019 | Future Healthcare |
17 | Transforming healthcare with AI—The impact on the workforce and organizations [40] | 2020 | McKinsey & Company |
18 | White paper on artificial intelligence—A European approach to excellence and trust [41] | 2020 | European Commission |
19 | Whitepaper for the ITU/WHO focus group on artificial intelligence for health [42] | 2020 | ITU/WHO |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griewing, S.; Lingenfelder, M.; Wagner, U.; Gremke, N. Use Case Evaluation and Digital Workflow of Breast Cancer Care by Artificial Intelligence and Blockchain Technology Application. Healthcare 2022, 10, 2100. https://doi.org/10.3390/healthcare10102100
Griewing S, Lingenfelder M, Wagner U, Gremke N. Use Case Evaluation and Digital Workflow of Breast Cancer Care by Artificial Intelligence and Blockchain Technology Application. Healthcare. 2022; 10(10):2100. https://doi.org/10.3390/healthcare10102100
Chicago/Turabian StyleGriewing, Sebastian, Michael Lingenfelder, Uwe Wagner, and Niklas Gremke. 2022. "Use Case Evaluation and Digital Workflow of Breast Cancer Care by Artificial Intelligence and Blockchain Technology Application" Healthcare 10, no. 10: 2100. https://doi.org/10.3390/healthcare10102100
APA StyleGriewing, S., Lingenfelder, M., Wagner, U., & Gremke, N. (2022). Use Case Evaluation and Digital Workflow of Breast Cancer Care by Artificial Intelligence and Blockchain Technology Application. Healthcare, 10(10), 2100. https://doi.org/10.3390/healthcare10102100