How Physical Activity Affects Knee Cartilage and a Standard Intervention Procedure for an Exercise Program: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Data Collection
2.3. Study Record
2.4. Data Extraction and Analysis
2.5. Quality and Risk of Bias Assessment
3. Results
3.1. Characteristics of the Included Studies
3.2. Example of Interventions
3.3. Quality and Risk of Bias Assessments
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luria, A.; Chu, C.R. Articular Cartilage Changes in Maturing Athletes: New Targets for Joint Rejuvenation. Sports Health 2014, 6, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, G.; Szychlinska, M.A.; Mobasheri, A. Age-related degeneration of articular cartilage in the pathogenesis of osteoarthritis: Molecular markers of senescent chondrocytes. Histol. Histopathol. 2015, 30, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Alizai, H.; Joseph, G.B.; Srikhum, W.; Nevitt, M.C.; Lynch, J.A.; McCulloch, C.E.; Link, T.M. Physical activity in relation to knee cartilage T2 progression measured with 3 T MRI over a period of 4 years: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2013, 21, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Antony, B.; Venn, A.; Cicuttini, F.; March, L.; Blizzard, L.; Dwyer, T.; Cross, M.; Jones, G.; Ding, C. Association of physical activity and physical performance with tibial cartilage volume and bone area in young adults. Arthritis Res. Ther. 2015, 17, 298. [Google Scholar] [CrossRef]
- Eckstein, F.; Hudelmaier, M.; Putz, R. The effects of exercise on human articular cartilage. J. Anat. 2006, 208, 491–512. [Google Scholar] [CrossRef]
- Bricca, A.; Wirth, W.; Juhl, C.B.; Kemnitz, J.; Hunter, D.J.; Kwoh, C.K.; Eckstein, F.; Culvenor, A.G. Moderate Physical Activity and Prevention of Cartilage Loss in People With Knee Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Care Res. 2019, 71, 218–226. [Google Scholar] [CrossRef]
- Kwee, R.M.; Wirth, W.; Hafezi-Nejad, N.; Zikria, B.A.; Guermazi, A.; Demehri, S. Role of physical activity in cartilage damage progression of subjects with baseline full-thickness cartilage defects in medial tibiofemoral compartment: Data from the Osteoarthritis Initiative. Osteoarthr. Cartil. 2016, 24, 1898–1904. [Google Scholar] [CrossRef]
- Teichtahl, A.J.; Wluka, A.E.; Forbes, A.; Wang, Y.; English, D.R.; Giles, G.G.; Cicuttini, F.M. Longitudinal effect of vigorous physical activity on patella cartilage morphology in people without clinical knee disease. Arthritis Rheum. 2009, 61, 1095–1102. [Google Scholar] [CrossRef]
- Stahl, R.; Luke, A.; Li, X.; Carballido-Gamio, J.; Ma, B.C.; Majumdar, S.; Link, T.M. T1rho, T2 and focal knee cartilage abnormalities in physically active and sedentary healthy subjects versus early OA patients—A 3.0-Tesla MRI study. Eur. Radiol. 2009, 19, 132–143. [Google Scholar] [CrossRef]
- Hovis, K.K.; Stehling, C.; Souza, R.B.; Haughom, B.D.; Baum, T.; Nevitt, M.; McCulloch, C.; Lynch, J.A.; Link, T.M. Physical activity is associated with magnetic resonance imaging-based knee cartilage T2 measurements in asymptomatic subjects with and those without osteoarthritis risk factors. Arthritis Rheum. 2011, 63, 2248–2256. [Google Scholar] [CrossRef]
- Kumar, D.; Souza, R.B.; Singh, J.; Calixto, N.E.; Nardo, L.; Link, T.M.; Li, X.; Majumdar, S. Physical activity and spatial differences in medial knee T1rho and T2 relaxation times in knee osteoarthritis. J. Orthop. Sports Phys. Ther. 2014, 44, 964–972. [Google Scholar] [CrossRef]
- Stehling, C.; Lane, N.E.; Nevitt, M.C.; Lynch, J.; McCulloch, C.E.; Link, T.M. Subjects with higher physical activity levels have more severe focal knee lesions diagnosed with 3T MRI: Analysis of a non-symptomatic cohort of the osteoarthritis initiative. Osteoarthr. Cartil. 2010, 18, 776–786. [Google Scholar] [CrossRef]
- Voinier, D.; Neogi, T.; Stefanik, J.J.; Guermazi, A.; Roemer, F.W.; Thoma, L.M.; Master, H.; Nevitt, M.C.; Lewis, C.E.; Torner, J.; et al. Using Cumulative Load to Explain How Body Mass Index and Daily Walking Relate to Worsening Knee Cartilage Damage Over Two Years: The MOST Study. Arthritis Rheumatol. 2020, 72, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Minor, M.A. Exercise in the management of osteoarthritis of the knee and hip. Arthritis Care Res. Off. J. Arthritis Health Prof. Assoc. 1994, 7, 198–204. [Google Scholar] [CrossRef] [PubMed]
- van Baar, M.E.; Assendelft, W.J.; Dekker, J.; Oostendorp, R.A.; Bijlsma, J.W. Effectiveness of exercise therapy in patients with osteoarthritis of the hip or knee: A systematic review of randomized clinical trials. Arthritis Rheum. 1999, 42, 1361–1369. [Google Scholar] [CrossRef]
- Petrigna, L.; Pajaujiene, S.; Delextrat, A.; Gómez-López, M.; Paoli, A.; Palma, A.; Bianco, A. The importance of standard operating procedures in physical fitness assessment: A brief review. Sport Sci. Health 2021, 18, 21–26. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef]
- Azukizawa, M.; Ito, H.; Hamamoto, Y.; Fujii, T.; Morita, Y.; Okahata, A.; Tomizawa, T.; Furu, M.; Nishitani, K.; Kuriyama, S.; et al. The Effects of Well-Rounded Exercise Program on Systemic Biomarkers Related to Cartilage Metabolism. Cartilage 2019, 10, 451–458. [Google Scholar] [CrossRef]
- Bautch, J.C.; Clayton, M.K.; Chu, Q.; Johnson, K.A. Synovial fluid chondroitin sulphate epitopes 3B3 and 7D4, and glycosaminoglycan in human knee osteoarthritis after exercise. Ann. Rheum. Dis. 2000, 59, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Boocock, M.; McNair, P.; Cicuttini, F.; Stuart, A.; Sinclair, T. The short-term effects of running on the deformation of knee articular cartilage and its relationship to biomechanical loads at the knee. Osteoarthr. Cartil. 2009, 17, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Celik, O.; Salci, Y.; Ak, E.; Kalaci, A.; Korkusuz, F. Serum cartilage oligomeric matrix protein accumulation decreases significantly after 12 weeks of running but not swimming and cycling training—A randomised controlled trial. Knee 2013, 20, 19–25. [Google Scholar] [CrossRef]
- Centeno, C.; Sheinkop, M.; Dodson, E.; Stemper, I.; Williams, C.; Hyzy, M.; Ichim, T.; Freeman, M. A specific protocol of autologous bone marrow concentrate and platelet products versus exercise therapy for symptomatic knee osteoarthritis: A randomized controlled trial with 2 year follow-up. J. Transl. Med. 2018, 16, 355. [Google Scholar] [CrossRef] [PubMed]
- Dinçer, Ü.; Arıba, S.; Saygın, H.; İncedayı, M.; Rodop, O. The effects of closed kinetic chain exercise on articular cartilage morphology: Myth or reality? A randomized controlled clinical trial. Turk. Fiz. Tip Ve Rehabil. Derg. 2016, 62, 28–36. [Google Scholar] [CrossRef]
- Esculier, J.F.; Jarrett, M.; Krowchuk, N.M.; Rauscher, A.; Wiggermann, V.; Taunton, J.E.; Wilson, D.R.; Gatti, A.A.; Hunt, M.A. Cartilage recovery in runners with and without knee osteoarthritis: A pilot study. Knee 2019, 26, 1049–1057. [Google Scholar] [CrossRef]
- Gatti, A.A.; Noseworthy, M.D.; Stratford, P.W.; Brenneman, E.C.; Totterman, S.; Tamez-Peña, J.; Maly, M.R. Acute changes in knee cartilage transverse relaxation time after running and bicycling. J. Biomech. 2017, 53, 171–177. [Google Scholar] [CrossRef]
- Hartley, C.; Kerslake, R.; Folland, J.; Brooke-Wavell, K. Effect of high impact exercise on femoral neck bone mineral density and T2 relaxation times of articular cartilage in postmenopausal women. J. Bone Miner. Res. 2018, 33, 171. [Google Scholar]
- Helmark, I.C.; Mikkelsen, U.R.; Børglum, J.; Rothe, A.; Petersen, M.C.; Andersen, O.; Langberg, H.; Kjaer, M. Exercise increases interleukin-10 levels both intraarticularly and peri-synovially in patients with knee osteoarthritis: A randomized controlled trial. Arthritis Res. Ther. 2010, 12, R126. [Google Scholar] [CrossRef]
- Horga, L.M.; Henckel, J.; Fotiadou, A.; Hirschmann, A.C.; Di Laura, A.; Torlasco, C.; D’Silva, A.; Sharma, S.; Moon, J.C.; Hart, A.J. Is the immediate effect of marathon running on novice runners’ knee joints sustained within 6 months after the run? A follow-up 3.0 T MRI study. Skelet. Radiol. 2020, 49, 1221–1229. [Google Scholar] [CrossRef]
- Ikuta, F.; Takahashi, K.; Hashimoto, S.; Mochizuki, Y.; Yuzawa, Y.; Inanami, H.; Takai, S. Effect of physical therapy on early knee osteoarthritis with medial meniscal posterior tear assessed by MRI T2 mapping and 3D-to-2D registration technique: A prospective intervention study. Mod. Rheumatol. 2020, 30, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Kangeswari, P.; Murali, K.; Arulappan, J. Effectiveness of Isometric Exercise and Counseling on Level of Pain Among Patients With Knee Osteoarthritis. SAGE Open Nurs. 2021, 7, 2377960821993515. [Google Scholar] [CrossRef] [PubMed]
- Kessler, D.A.; MacKay, J.W.; McDonald, S.; McDonnell, S.; Grainger, A.J.; Roberts, A.R.; Janiczek, R.L.; Graves, M.J.; Kaggie, J.D.; Gilbert, F.J. Effectively Measuring Exercise-Related Variations in T1ρ and T2 Relaxation Times of Healthy Articular Cartilage. J. Magn. Reson. Imaging 2020, 52, 1753–1764. [Google Scholar] [CrossRef]
- Kingsley, M.I.; D’Silva, L.A.; Jennings, C.; Humphries, B.; Dalbo, V.J.; Scanlan, A.T. Moderate-intensity running causes intervertebral disc compression in young adults. Med. Sci. Sports Exerc. 2012, 44, 2199–2204. [Google Scholar] [CrossRef] [PubMed]
- Knoop, J.; Dekker, J.; Van Der Leeden, M.; Van Der Esch, M.; Klein, J.P.; Hunter, D.J.; Roorda, L.D.; Steultjens, M.P.M.; Lems, W.F. Is the severity of knee osteoarthritis on magnetic resonance imaging associated with outcome of exercise therapy? Arthritis Care Res. 2014, 66, 63–68. [Google Scholar] [CrossRef]
- Mikesky, A.E.; Mazzuca, S.A.; Brandt, K.D.; Perkins, S.M.; Damush, T.; Lane, K.A. Effects of strength training on the incidence and progression of knee osteoarthritis. Arthritis Rheum. 2006, 55, 690–699. [Google Scholar] [CrossRef]
- Multanen, J.; Nieminen, M.T.; Häkkinen, A.; Kujala, U.M.; Jämsä, T.; Kautiainen, H.; Lammentausta, E.; Ahola, R.; Selänne, H.; Ojala, R.; et al. Effects of high-impact training on bone and articular cartilage: 12-month randomized controlled quantitative MRI study. J. Bone Miner. Res. 2014, 29, 192–201. [Google Scholar] [CrossRef]
- Multanen, J.; Rantalainen, T.; Kautiainen, H.; Ahola, R.; Jämsä, T.; Nieminen, M.T.; Lammentausta, E.; Häkkinen, A.; Kiviranta, I.; Heinonen, A. Effect of progressive high-impact exercise on femoral neck structural strength in postmenopausal women with mild knee osteoarthritis: A 12-month RCT. Osteoporos. Int. 2017, 28, 1323–1333. [Google Scholar] [CrossRef]
- Pruksakorn, D.; Tirankgura, P.; Luevitoonvechkij, S.; Chamnongkich, S.; Sugandhavesa, N.; Leerapun, T.; Pothacharoen, P. Changes in the serum cartilage biomarker levels of healthy adults in response to an uphill walk. Singap. Med. J. 2013, 54, 702–708. [Google Scholar] [CrossRef]
- Subburaj, K.; Kumar, D.; Souza, R.B.; Alizai, H.; Li, X.; Link, T.M.; Majumdar, S. The acute effect of running on knee articular cartilage and meniscus magnetic resonance relaxation times in young healthy adults. Am. J. Sports Med. 2012, 40, 2134–2141. [Google Scholar] [CrossRef]
- Vassão, P.G.; de Souza, A.C.F.; da Silveira Campos, R.M.; Garcia, L.A.; Tucci, H.T.; Renno, A.C.M. Effects of photobiomodulation and a physical exercise program on the expression of inflammatory and cartilage degradation biomarkers and functional capacity in women with knee osteoarthritis: A randomized blinded study. Adv. Rheumatol. 2021, 61. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, O.; Oshikawa, T.; Matsunaga, N.; Adachi, G.; Kaneoka, K. Acute Physiological Response of Lumbar Intervertebral Discs to High-load Deadlift Exercise. Magn. Reson. Med. Sci. MRMS: Off. J. Jpn. Soc. Magn. Reson. Med. 2021, 20, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Juhl, C.; Christensen, R.; Roos, E.M.; Zhang, W.; Lund, H. Impact of exercise type and dose on pain and disability in knee osteoarthritis: A systematic review and meta-regression analysis of randomized controlled trials. Arthritis Rheumatol. 2014, 66, 622–636. [Google Scholar] [CrossRef] [PubMed]
- Rogind, H.; Bibow-Nielsen, B.; Jensen, B.; Moller, H.C.; Frimodt-Moller, H.; Bliddal, H. The effects of a physical training program on patients with osteoarthritis of the knees. Arch. Phys. Med. Rehabil. 1998, 79, 1421–1427. [Google Scholar] [CrossRef]
- McAlindon, T.E.; Bannuru, R.R.; Sullivan, M.C.; Arden, N.K.; Berenbaum, F.; Bierma-Zeinstra, S.M.; Hawker, G.A.; Henrotin, Y.; Hunter, D.J.; Kawaguchi, H.; et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr. Cartil. 2014, 22, 363–388. [Google Scholar] [CrossRef]
- Oiestad, B.E.; Quinn, E.; White, D.; Roemer, F.; Guermazi, A.; Nevitt, M.; Segal, N.A.; Lewis, C.E.; Felson, D.T. No association between daily walking and knee structural changes in people at risk of or with mild knee osteoarthritis. prospective data from the multicenter osteoarthritis study. J. Rheumatol. 2015, 42, 1685–1693. [Google Scholar] [CrossRef]
- Lenhart, R.L.; Smith, C.R.; Vignos, M.F.; Kaiser, J.; Heiderscheit, B.C.; Thelen, D.G. Influence of step rate and quadriceps load distribution on patellofemoral cartilage contact pressures during running. J. Biomech. 2015, 48, 2871–2878. [Google Scholar] [CrossRef]
- Bartels, E.M.; Juhl, C.B.; Christensen, R.; Hagen, K.B.; Danneskiold-Samsoe, B.; Dagfinrud, H.; Lund, H. Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database Syst. Rev. 2016, 3, CD005523. [Google Scholar] [CrossRef]
- Doré, D.A.; Winzenberg, T.M.; Ding, C.; Otahal, P.; Pelletier, J.P.; Martel-Pelletier, J.; Cicuttini, F.M.; Jones, G. The association between objectively measured physical activity and knee structural change using MRI. Ann. Rheum. Dis. 2013, 72, 1170–1175. [Google Scholar] [CrossRef]
- Ravalli, S.; Roggio, F.; Lauretta, G.; Di Rosa, M.; D’Amico, A.G.; D’Agata, V.; Maugeri, G.; Musumeci, G. Exploiting real-world data to monitor physical activity in patients with osteoarthritis: The opportunity of digital epidemiology. Heliyon 2022, 8, e08991. [Google Scholar] [CrossRef]
- Roddy, E.; Zhang, W.; Doherty, M. Aerobic walking or strengthening exercise for osteoarthritis of the knee? A systematic review. Ann. Rheum. Dis. 2005, 64, 544–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, D.J.; Eckstein, F. Exercise and osteoarthritis. J. Anat. 2009, 214, 197–207. [Google Scholar] [CrossRef]
- Gahunia, H.K.; Pritzker, K.P. Effect of exercise on articular cartilage. Orthop. Clin. N. Am. 2012, 43, 187–199. [Google Scholar] [CrossRef]
- Musumeci, G.; Castrogiovanni, P.; Trovato, F.M.; Imbesi, R.; Giunta, S.; Szychlinska, M.A.; Loreto, C.; Castorina, S.; Mobasheri, A. Physical activity ameliorates cartilage degeneration in a rat model of aging: A study on lubricin expression. Scand. J. Med. Sci. Sports 2015, 25, e222–e230. [Google Scholar] [CrossRef] [PubMed]
- Castrogiovanni, P.; Di Rosa, M.; Ravalli, S.; Castorina, A.; Guglielmino, C.; Imbesi, R.; Vecchio, M.; Drago, F.; Szychlinska, M.A.; Musumeci, G. Moderate physical activity as a prevention method for knee osteoarthritis and the role of synoviocytes as biological key. Int. J. Mol. Sci. 2019, 20, 511. [Google Scholar] [CrossRef]
- Ravalli, S.; Federico, C.; Lauretta, G.; Saccone, S.; Pricoco, E.; Roggio, F.; Di Rosa, M.; Maugeri, G.; Musumeci, G. Morphological Evidence of Telocytes in Skeletal Muscle Interstitium of Exercised and Sedentary Rodents. Biomedicines 2021, 9, 807. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, M.; Castrogiovanni, P.; Musumeci, G. The Synovium Theory: Can Exercise Prevent Knee Osteoarthritis? The Role of “Mechanokines”, A Possible Biological Key. J. Funct. Morphol. Kinesiol. 2019, 4, 11. [Google Scholar] [CrossRef]
- Castrogiovanni, P.; Musumeci, G. Which is the best physical treatment for osteoarthritis? J. Funct. Morphol. Kinesiol. 2016, 1, 54–68. [Google Scholar] [CrossRef]
- Shrier, I. Muscle dysfunction versus wear and tear as a cause of exercise related osteoarthritis: An epidemiological update. Brit. J. Sport Med. 2004, 38, 526–535. [Google Scholar] [CrossRef]
- Urquhart, D.M.; Tobing, J.F.; Hanna, F.S.; Berry, P.; Wluka, A.E.; Ding, C.; Cicuttini, F.M. What is the effect of physical activity on the knee joint? A systematic review. Med. Sci. Sports Exerc. 2011, 43, 432–442. [Google Scholar] [CrossRef]
- Roggio, F.; Trovato, B.; Ledda, C.; Rapisarda, V.; Musumeci, G. Kinesiological Treatment of Early Spine Osteoarthritis in a Motorcyclist. Int. J. Environ. Res. Public Health 2022, 19, 961. [Google Scholar] [CrossRef] [PubMed]
1st Author | Study Design | Pop | Number (m) | Age (sd) | Method | Biomarkers | Conclusions |
---|---|---|---|---|---|---|---|
Azukizawa 2019 [20] | IS | OA | 42 (0) | 59 (6) | blood and urine sample ELISA | sPiiCP; uCtX-ii; uC2C; sCOMP | Well-rounded exercise improves PA and has beneficial effects on type 2 collagen metabolism |
Bautch 2000 [21] | RCT | OA | 21 (7) | 70 (2) | synovial fluid (knee joints) ELISA | chondroitin sulphate epitopes 3B3, 7D4, GAG | No deleterious effects on osteoarthritic joints and ameliorated joint pain |
Boocock 2009 [22] | IS | H | 20 (10) | 33 (9) | MRI | Cartilage volume | Running resulted in deformation of femoral, medial, and lateral tibial articular cartilage volume. |
Celik 2013 [23] | RCT | H | 44 (44) | 22 (2) | blood samples ELISA | sCOMP | Regular, weight-bearing, high-impact physical exercise consolidates cartilage tissue |
Centeno 2018 [24] | RCT | OA | 48 | 55 (9) | none | none | PA is an effective alternative therapy for KOA |
Dinçer 2016 [25] | RCT | OA | 30 (6) | 51 (5) | MRI | Cartilage volume | No significant effect of closed kinetic chain exercise on the cartilage volume or morphology. |
Esculier 2019 [26] | Pilot study | OA | 20 (0) | 52 (8) | MRI | T2_s | No changes after 30 min of running. People with KOA need more time to recover |
Gatti, 2017 [27] | IS | H | 15 (15) | 26 (4) | MRI | T2_s, cartilage volume | Run shortened tibiofemoral cartilage T2, not bike |
Hartley 2019 [28] | RCT | H | 42 (0) | 55–70 | MRI | T2_s | A high-impact exercise intervention has no negative effects on KOA. |
Helmark 2010 [29] | RCT | OA | 29 (19) | 66 (6) | blood and urine samples ELISA | COMP, Aggrecan, CTX-II, IL6, IL8, IL10; TNF-α. | Positive effect of PA on a chondroprotective anti-inflammatory cytokine response in KOA |
Horga 2020 [30] | PS | H | 44 (17) | 45 | MRI | Lesions | The knees achieved sustained improvement, for at least 6 months post-marathon |
Ikuta 2020 [31] | RCT | OA | 26 (3) | 68 (9) | MRI | T2_m | PA could be a treatment to improve the course of KOA |
Kangeswari 2021 [32] | RCT | OA | 200 | 45–65 | none | none | Isometric exercise program reduce pain, stiffness and improve physical function in KOA |
Kessler 2020 [33] | PS | H | 19 (10) | 30 (6) | MRI | T2_s | Joint-loading with a stepping activity resulted in T1ρ and T2 changes above background measurement error |
Kingsley 2012 [34] | IS | H | 8 (8) | 21 (1) | MRI | T2_s, Cartilage volume | Changes were observed throughout the thoracic and lumbar vertebral regions |
Knoop, 2014 [35] | RCT | OA | 95 (31) | 61 (7) | MRI | Cartilage lesions | Effectiveness of PA is independent of OA severity |
Liangyu 2014 | RCT | H | 120 | 42 | MRI | Cartilage volume | Decrease the total knee cartilage volume |
Mikesky 2006 [36] | RCT | H | 221 (93) | 69 | radiographic evaluation | OA severity | Strength training retained more strength and exhibited less frequent progressive joint space narrowing |
Multanen 2014 [37] | RCT | OA | 80 (80) | MRI | T2_s | PA improve balance, force, and endurance. No effect on cartilage | |
Multanen 2017 [38] | RCT | OA | 78 (0) | 58 (4) | MRI | T2_s | High-impact training increase femoral neck strength not affecting knee cartilage on KOA |
Pruksakorn 2013 [39] | IS | H | 82 (32) | 20 | blood sample; ELISA | COMP, WF6, HA | Articular cartilage is susceptible to the increasing load |
Subburaj 2012 [40] | IS | H | 20 (10) | 29 | MRI | T2_s, Cartilage volume | Acute effect of run on knee cartilage and meniscus composition |
Vassao 2021 [41] | RCT | OA | 23 | 64 (4) | Blood sample ELISA | IL6, IL8, IL10, IL1β, TNF-α | Physical exercise increases the functional capacity |
Yanagisawa 2021 [42] | IS | H | 15 (11) | 23 (3) | MRI | Apparent Diffusion Coefficient | High-load deadlift exercise stress the lumbar intervertebral discs |
1st Author, Year | Length (Weeks) | Frequency (Days a Week) | Duration (Minutes) | Tutoring | Intervention |
---|---|---|---|---|---|
Azukizawa 2019 [20] | 12 | 1 | 90 | supervised them HB | stretching, balance, walk, and isometric exercises |
Bautch 2000 [21] | 1 | 3 | 60 | NI | strengthening; low-intensity walking |
Boocock 2009 [22] | AE | NI | NI | NI | run |
Celik 2013 [23] | 12 | 3 | 40 | NI | swimming, running, cycling. 60–70% of heart rate |
Centeno 2018 [24] | NI | NI | NI | HB | strengthening, resistance, functional, balance/neuro-muscular, aerobic, ROM |
Dinçer 2016 [25] | 2 | 5 | 30 | NI | strengthening |
Esculier 2019 [26] | AE | NI | NI | NI | run |
Gatti, 2017 [27] | AE | NI | NI | NI | bike and run |
Hartley 2020 [28] | 24 | NI | 50 hops | NI | high impact exercise progressing |
Helmark 2010 [29] | AE | NI | NI | NI | resistance training |
Horga 2020 [30] | 28 | NI | NI | NI | run |
Ikuta, 2020 [31] | NI | NI | NI | supervised them HB | ROM and muscle strengthening; leg stretching |
Kangeswari 2021 [32] | 12 | 3 | 40 | supervised then HB | isometric exercises |
Kessler 2020 [33] | AE | NI | NI | NI | step |
Kingsley, 2012 [34] | AE | NI | NI | NI | walk |
Knoop, 2014 [35] | 12 | 2 | 60 | supervised and HB | knee joint stabilization muscle strengthening |
Mikesky, 2006 [36] | 120 | 3 | NI | supervised then HB | resistance training |
Multanen 2014 [37] | 48 | 3 | 55 | supervised | aerobic and step-aerobic jumping exercise |
Multanen 2017 [38] | 48 | 3 | 55 | supervised | high-impact aerobic and step aerobic |
Pruksakorn 2013 [39] | AE | NI | NI | NI | walk |
Subburaj 2012 [40] | AE | NI | NI | NI | run |
Vassao, 2021 [41] | 8 | 2 | NI | supervised | strength exercises and stretching |
Yanagisawa 2021 [42] | AE | NI | NI | NI | stretching and submaximal deadlift repetitions |
Author | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 10/10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bautch 2000 [21] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 5/10 |
Celik 2013 [23] | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 9/10 |
Centeno 2018 [24] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 5/10 |
Dinçer 2016 [25] | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 7/10 |
Hartley 2019 [28] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 5/10 |
Helmark 2010 [29] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 5/10 |
Ikuta 2020 [31] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 5/10 |
Kangeswari 2021 [32] | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 8/10 |
Knoop 2014 [35] | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 7/10 |
Mikesky 2006 [36] | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 8/10 |
Multanen 2014 [37] | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 8/10 |
Multanen 2017 [38] | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 6/10 |
Vassao 2021 [41] | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 6/10 |
Total | 6.8/10 |
Training/Intervention | Aerobic intervention/walking-running |
Strength/isometric exercise | |
Flexibility/all major muscles | |
Person-specific necessity: postural balance; knee alignment; loss of weight | |
Frequency | 3 times a week |
Duration | 60 min |
Intensity | Gradually increased |
Supervision | Only in the first period. It is suggested that the intervention become a home-based exercise |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrigna, L.; Roggio, F.; Trovato, B.; Zanghì, M.; Guglielmino, C.; Musumeci, G. How Physical Activity Affects Knee Cartilage and a Standard Intervention Procedure for an Exercise Program: A Systematic Review. Healthcare 2022, 10, 1821. https://doi.org/10.3390/healthcare10101821
Petrigna L, Roggio F, Trovato B, Zanghì M, Guglielmino C, Musumeci G. How Physical Activity Affects Knee Cartilage and a Standard Intervention Procedure for an Exercise Program: A Systematic Review. Healthcare. 2022; 10(10):1821. https://doi.org/10.3390/healthcare10101821
Chicago/Turabian StylePetrigna, Luca, Federico Roggio, Bruno Trovato, Marta Zanghì, Claudia Guglielmino, and Giuseppe Musumeci. 2022. "How Physical Activity Affects Knee Cartilage and a Standard Intervention Procedure for an Exercise Program: A Systematic Review" Healthcare 10, no. 10: 1821. https://doi.org/10.3390/healthcare10101821
APA StylePetrigna, L., Roggio, F., Trovato, B., Zanghì, M., Guglielmino, C., & Musumeci, G. (2022). How Physical Activity Affects Knee Cartilage and a Standard Intervention Procedure for an Exercise Program: A Systematic Review. Healthcare, 10(10), 1821. https://doi.org/10.3390/healthcare10101821