Peripheral Artery Disease Causes More Harm to Patients than COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohorts
2.2. SARS-CoV-2 Testing
2.3. Statistics
3. Results
3.1. Patient Characteristics
3.2. Impact of COVID-19 Pandemic on the Clinical Treatment of Patients with PAD
3.3. SARS-CoV-2 Prevalence among VPs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hirsch, A.T.; Duval, S. The global pandemic of peripheral artery disease. Lancet 2013, 382, 1312–1314. [Google Scholar] [CrossRef]
- Hirsch, A.T.; Haskal, Z.J.; Hertzer, N.R.; Bakal, C.W.; Creager, M.A.; Halperin, J.L.; Hiratzka, L.F.; Murphy, W.R.C.; Olin, J.W.; Puschett, J.B.; et al. ACC/AHA 2005 Practice Guidelines for the Management of Patients With Peripheral Arterial Disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic): Executive Summary. Circulation 2006, 113, 1474–1547. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.G.R.; Aboyans, V.; Fowkes, F.J.I.; McDermott, M.M.; Sampson, U.K.A.; Criqui, M.H. Peripheral artery disease: Epidemiology and global perspectives. Nat. Rev. Cardiol. 2017, 14, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Fowkes, F.G.; Rudan, D.; Rudan, I.; Aboyans, V.; Denenberg, J.O.; McDermott, M.M.; Norman, P.E.; Sampson, U.K.; Williams, L.J.; Mensah, G.A.; et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: A systematic review and analysis. Lancet 2013, 382, 1329–1340. [Google Scholar] [CrossRef]
- Nishiga, M.; Wang, D.W.; Han, Y.; Lewis, D.B.; Wu, J.C. COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020, 17, 543–558. [Google Scholar] [CrossRef]
- Sena, G.; Gallelli, G. An increased severity of peripheral arterial disease in the COVID-19 era. J. Vasc. Surg. 2020, 72, 758. [Google Scholar] [CrossRef]
- Rutherford, R.B.; Baker, J.D.; Ernst, C.; Johnston, K.W.; Porter, J.M.; Ahn, S.; Jones, D.N. Recommended standards for reports dealing with lower extremity ischemia: Revised version. J. Vasc. Surg. 1997, 26, 517–538. [Google Scholar] [CrossRef]
- Rabenau, H.F.; Kessler, H.H.; Kortenbusch, M.; Steinhorst, A.; Raggam, R.B.; Berger, A. Verification and validation of diagnostic laboratory tests in clinical virology. J. Clin. Virol. 2007, 40, 93–98. [Google Scholar] [CrossRef]
- Wilson, E.B. Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 1927, 22, 209–212. [Google Scholar] [CrossRef]
- Schuivens, P.M.E.; Buijs, M.; Boonman-de Winter, L.; Veen, E.J.; de Groot, H.G.W.; Buimer, T.G.; Ho, G.H.; van der Laan, L. Impact of the COVID-19 Lockdown Strategy on Vascular Surgery Practice: More Major Amputations than Usual. Ann. Vasc. Surg. 2020, 69, 74–79. [Google Scholar] [CrossRef]
- Jones, W.S.; Patel, M.R.; Dai, D.; Vemulapalli, S.; Subherwal, S.; Stafford, J.; Peterson, E.D. High mortality risks after major lower extremity amputation in Medicare patients with peripheral artery disease. Am. Heart J. 2013, 165, 809–815.e801. [Google Scholar] [CrossRef] [PubMed]
- Stabile, E.; Piccolo, R.; Franzese, M.; Accarino, G.; Bracale, U.M.; Cappello, E.; Cioffi, G.; Cioppa, A.; Crinisio, A.; Flora, L.; et al. A cross-sectional study evaluating hospitalization rates for chronic limb-threatening ischemia during the COVID-19 outbreak in Campania, Italy. Vasc. Med. 2021, 26, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Mesnier, J.; Cottin, Y.; Coste, P.; Ferrari, E.; Schiele, F.; Lemesle, G.; Thuaire, C.; Angoulvant, D.; Cayla, G.; Bouleti, C.; et al. Hospital admissions for acute myocardial infarction before and after lockdown according to regional prevalence of COVID-19 and patient profile in France: A registry study. Lancet Public Health 2020, 5, e536–e542. [Google Scholar] [CrossRef]
- Lodigiani, C.; Iapichino, G.; Carenzo, L.; Cecconi, M.; Ferrazzi, P.; Sebastian, T.; Kucher, N.; Studt, J.-D.; Sacco, C.; Alexia, B.; et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 2020, 191, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Reyes Valdivia, A.; Gómez Olmos, C.; Ocaña Guaita, J.; Gandarias Zúñiga, C. Cardiovascular examination should also include peripheral arterial evaluation for COVID-19 patients. J. Vasc. Surg. 2020, 72, 758–760. [Google Scholar] [CrossRef]
- Eilenberg, W.; Busch, A.; Wagenhäuser, M.; Giannoukas, A.; Wanhainen, A.; Neumayer, C.; Haulon, S. Vascular Surgery in Unreal Times. Eur. J. Vasc. Endovasc. Surg. 2020, 60, 167–168. [Google Scholar] [CrossRef]
- Mehra, M.R.; Desai, S.S.; Kuy, S.; Henry, T.D.; Patel, A.N. Cardiovascular Disease, Drug Therapy, and Mortality in COVID-19. N. Engl. J. Med. 2020, 382, e102. [Google Scholar] [CrossRef]
- Bozzani, A.; Arici, V.; Ticozzelli, G.; Franciscone, M.M.; Ragni, F.; Sterpetti, A.V. Reduced Vascular Practice And Increased Cardiovascular Mortality For Covid19 Negative Patients. J. Surg. Res. 2022, 272, 146–152. [Google Scholar] [CrossRef]
- Viswanathan, V.; Nachimuthu, S. Major Lower-Limb Amputation During the COVID Pandemic in South India. Int. J. Low. Extrem. Wounds 2021, 28, 15347346211020985. [Google Scholar] [CrossRef]
- Lou, J.-Y.; Kennedy, K.F.; Menard, M.T.; Abbott, J.D.; Secemsky, E.A.; Goodney, P.P.; Saad, M.; Soukas, P.A.; Hyder, O.N.; Aronow, H.D. North American lower-extremity revascularization and amputation during COVID-19: Observations from the Vascular Quality Initiative. Vasc. Med. 2021, 26, 613–623. [Google Scholar] [CrossRef]
- Di Giovanni, P.; Scampoli, P.; Meo, F.; Cedrone, F.; D’Addezio, M.; Di Martino, G.; Valente, A.; Romano, F.; Staniscia, T. The impact of gender on diabetes-related lower extremity amputations: An Italian regional analysis on trends and predictors. Foot Ankle Surg. 2021, 27, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Lopez-de-Andres, A.; Jiménez-García, R.; Aragón-Sánchez, J.; Jiménez-Trujillo, I.; Hernández-Barrera, V.; Méndez-Bailón, M.; de Miguel-Yanes, J.M.; Perez-Farinos, N.; Carrasco-Garrido, P. National trends in incidence and outcomes in lower extremity amputations in people with and without diabetes in Spain, 2001–2012. Diabetes Res. Clin. Pract. 2015, 108, 499–507. [Google Scholar] [CrossRef] [PubMed]
Whole Observation Period | March–May | May–November | November–December | |||||
---|---|---|---|---|---|---|---|---|
First LD | Post-LD | Second LD | ||||||
Year | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 |
Total No. of admitted vascular patients | 2243 | 2637 | 290 | 529 | 1751 | 1903 | 202 | 205 |
No. of patients with PAD | 611 (27%) | 599 (23%) | 94 (32%) | 136 (26%) | 466 (27%) | 414 (22%) | 51 (25%) | 49 (24%) |
Sex | ||||||||
Male | 1336 (60%) | 1529 (58%) | 178 (61%) | 316 (60%) | 1030 (59%) | 1089 (57%) | 128 (63%) | 127 (62%) |
Female | 907 (40%) | 1107 (42%) | 112 (39%) | 213 (40%) | 721 (41%) | 814 (43%) | 74 (37%) | 78 (38%) |
Median age, years (Range) | 70 (18–100) | 71 (18–99) | 71 (22–100) | 71 (18–99) | 70 (18–97) | 70 (18–99) | 70 (29–94) | 71 (18–92) |
COVID-19 related characteristics | ||||||||
No. of tests performed | 13,156 | 1697 | 10,261 | 1184 | ||||
Positive SARS-CoV-2 test | 5 (0.2%) | 1 (0.3%) | 3 (0.2%) | 1 (0.5%) | ||||
Sex | ||||||||
Male | 3 (60%) | 0 | 2 | 1 | ||||
Female | 2 (40%) | 1 | 1 | 0 | ||||
Diagnosis 1 | Extracran. artery disorder | Cardiac disorder | Cardiac disorder |
Whole Observation Period | March–May | May–November | November–December | |||||
---|---|---|---|---|---|---|---|---|
First LD | Post-LD | Second LD | ||||||
Year | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 |
No. of admitted Patients with PAD | 611 (100%) | 599 (100%) | 94 (100%) | 136 (100%) | 466 (100%) | 414 (100%) | 51 (100%) | 49 (100%) |
2019 vs. 2020 | p = 0.7301 | p = 0.0056 | p = 0.0796 | p = 0.8415 | ||||
Sex | ||||||||
Male | 374 (61%) | 382 (64%) | 63 (67%) | 84 (62%) | 279 (60%) | 262 (63%) | 32 (63%) | 36 (73%) |
Female | 237 (39%) | 217 (36%) | 31 (33%) | 52 (38%) | 187 (40%) | 152 (37%) | 19 (37%) | 13 (27%) |
Median age, years (Range) | 68 (18–99) | 70 (25-91) | 75 (57–93) | 70 (30–93) | 72 (18–88) | 70 (25–95) | 70 (29–94) | 72 (46–91) |
Inpatient admission | ||||||||
Elective | 532 (87%) | 549 (92%) | 70 (75%) | 128 (94%) | 415 (89%) | 374 (90%) | 47 (92%) | 47 (96%) |
Emergency | 79 (13%) | 50 (8%) | 24 (25%) | 8 (6%) | 51 (11%) | 40 (10%) | 4 (8%) | 2 (4%) |
2019 vs. 2020 | p = 0.0098 | p < 0.0001 | p = 0.5329 | p = 0.4285 | ||||
Median Hospital stay, days (Range) | 6 (1–117) | 7 (1–195) | 6 (1–57) | 6 (1–195) | 6 (1–117) | 6 (1–179) | 5 (1–25) | 7 (1–108) |
Rutherford classification | ||||||||
1–3 | 487 (80%) | 549 (92%) | 68 (72%) | 140 (94%) | 374 (81%) | 404 (91%) | 45 (88%) | 52 (95%) |
4–6 | 122 (20%) | 50 (8%) | 26 (28%) | 9 (6%) | 90 (19%) | 38 (9%) | 6 (12%) | 3 (5%) |
2020 vs. 2019 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p = 0.3243 | ||||
Comorbidities | ||||||||
Hypertension | 496 (81%) | 464 (77%) | 77 (82%) | 106 (78%) | 380 (81%) | 322 (78%) | 39 (76%) | 36 (73%) |
Diabetes | 215 (35%) | 203 (34%) | 26 (28%) | 63 (46%) | 170 (36%) | 128 (31%) | 19 (37%) | 12 (24%) |
Dyslipidemia | 365 (60%) | 336 (56%) | 47 (50%) | 90 (66%) | 283 (61%) | 221 (53%) | 35 (69%) | 25 (51%) |
Renal failure | 38 (6%) | 36 (6%) | 7 (7%) | 13 (9%) | 28 (6%) | 21 (5%) | 3 (6%) | 2 (4%) |
No. of admitted Patients with PAD | 611 (100%) | 599 (100%) | 94 (100%) | 136 (100%) | 466 (100%) | 414 (100%) | 51 (100%) | 49 (100%) |
Treatment 1 | ||||||||
Endovascular | 95 (15%) | 126 (21%) | 13 (14%) | 41 (30%) | 69 (15%) | 82 (20%) | 13 (25%) | 3 (6%) |
Open repair | 491 (80%) | 335 (56%) | 62 (66%) | 66 (48%) | 393 (84%) | 239 (58%) | 36 (71%) | 30 (61%) |
Conservative | 189 (31%) | 231 (39%) | 43 (46%) | 62 (46%) | 119 (25%) | 150 (36%) | 27 (53%) | 19 (39%) |
Whole Observation Period | March–May | May–November | November–December | |||||
---|---|---|---|---|---|---|---|---|
First LD | Post-LD | Second LD | ||||||
Year | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 | 2020 | 2019 |
Amputations | 43 (7%) | 10 (2%) | 14 (15%) | 3 (2%) | 26 (6%) | 5 (1%) | 3 (6%) | 2 (4%) |
2019 vs. 2020 | p < 0.0001 | p = 0.0003 | p = 0.0004 | p = 1 | ||||
Minor | 24 (4%) | 2 (<1%) | 7 (7%) | 0 | 15 (3%) | 2 (<1%) | 2 (4%) | 0 |
Major | 19 (3%) | 8 (1%) | 7 (7%) | 3 (2%) | 11 (2%) | 3 (<1%) | 1 (2%) | 2 (4%) |
Survival | ||||||||
Overall mortality | 45 (9%) | 92 (15%) | 15 (16%) | 28 (21%) | 27 (6%) | 58 (14%) | 1 (2%) | 6 (12%) |
30-day mortality | 21 (3%) | 14 (2%) | 8 (8%) | 4 (3%) | 12 (3%) | 9 (2%) | 1 (2%) | 1 (2%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasiri, M.M.; Mittlboek, M.; Giurgea, G.-A.; Fortner, N.; Lirk, P.; Eilenberg, W.; Gollackner, B.; Neumayer, C. Peripheral Artery Disease Causes More Harm to Patients than COVID-19. Healthcare 2022, 10, 1809. https://doi.org/10.3390/healthcare10101809
Kasiri MM, Mittlboek M, Giurgea G-A, Fortner N, Lirk P, Eilenberg W, Gollackner B, Neumayer C. Peripheral Artery Disease Causes More Harm to Patients than COVID-19. Healthcare. 2022; 10(10):1809. https://doi.org/10.3390/healthcare10101809
Chicago/Turabian StyleKasiri, Mohammad Mahdi, Martina Mittlboek, Giurgiana-Aura Giurgea, Norbert Fortner, Philip Lirk, Wolf Eilenberg, Bernd Gollackner, and Christoph Neumayer. 2022. "Peripheral Artery Disease Causes More Harm to Patients than COVID-19" Healthcare 10, no. 10: 1809. https://doi.org/10.3390/healthcare10101809
APA StyleKasiri, M. M., Mittlboek, M., Giurgea, G.-A., Fortner, N., Lirk, P., Eilenberg, W., Gollackner, B., & Neumayer, C. (2022). Peripheral Artery Disease Causes More Harm to Patients than COVID-19. Healthcare, 10(10), 1809. https://doi.org/10.3390/healthcare10101809