An Error Analysis of the CN Weighed DG θ Method of the Convection Equation
Abstract
:1. Introduction
2. Preliminaries
2.1. Formulation of the Problem
2.2. Finite Element Mesh and Space
2.3. CN-DG Approximation
3. Main Results
3.1. Stability of the CN-DG Scheme
3.2. Error Estimates
3.3. Spatial Error Estimate
4. Numerical Experiments
4.1. Experiment 1
4.2. Experiment 2
4.3. Experiment 3
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lesaint, P.; Hill, T.R. Triangular Mesh Methods for the Neutron Transport Equation; Technical Report; LA-UR-73-479; Los Alamos Scientific Laboratory: Los Alamos, NM, USA, 1973; Volume 10, pp. 142–149. [Google Scholar]
- Lesaint, P.; Raviart, P.-A. On a Finite Element Method for Solving the Neutron Transport Equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations; deBoor, C.A., Ed.; Academic Press: New York, NY, USA, 1974; pp. 89–123. [Google Scholar]
- Johnson, C.; Navert, U.; Pitkäranta, J. Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 1984, 45, 285–312. [Google Scholar] [CrossRef]
- Johnson, C.; Pitkäranta, J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 1986, 46, 1–26. [Google Scholar] [CrossRef]
- Johnson, C. Error estimates and adaptive time-step control for a class of one step methods for stiff ordinary differential equations. SIAM J. Numer. Anal. 1988, 25, 908–926. [Google Scholar] [CrossRef]
- Estep, D. A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 1995, 32, 1–48. [Google Scholar] [CrossRef]
- Böttcher, K.; Rannacher, R. Adaptive Error Control in Solving Ordinary Differnetial Equations by thr Discontinuous Galerkin Method; Tech. Report; University of Heidelberg: Heidelberg, Germany, 1996. [Google Scholar]
- Richter, G.R. An optimal-order error estimate for the discontinuous Galerkin method. Math. Comp. 1988, 50, 75–88. [Google Scholar] [CrossRef]
- Lin, Q.; Yan, N.; Zhou, A.-H. An optimal-order error estimate of the discontinuous Galerkin method. J. Eng. Math. 1996, 13, 101–105. [Google Scholar]
- Lin, Q. Full convergence for hyperbolic finite elements. In First International Symposium on Discontinuous Galerkin Methods; Lecture Notes in Computational Science and Engineering; Cockburn, B., Karniadakis, G.E., Shu, C.-W., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 33. [Google Scholar]
- Süli, E. A posteriori error analysis and global error control for adaptive finite element approximations of hyperbolicproblems. In Numerical Analysis 1995; Pitman Lecturer Notes in Mathematics Series; Griffiths, D.F., Watson, G.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 344, pp. 190–196. [Google Scholar]
- Süli, E.; Houston, P. Finite element methods for hyperbolic problems: A posteriori error analysis and adaptivity. In The State of the Art in Numerical Analysis; Duff, I.S., Watson, G.A., Eds.; Clarendon Press: Oxford, UK, 1997; pp. 441–471. [Google Scholar]
- Houston, P.; Süli, E. hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput. 2006, 23, 1226–1252. [Google Scholar] [CrossRef]
- Houston, P.; Schwab, C.; Süli, E. Stablized hp finite element method for first order hyperbolic problems. SIAM J. Numer. Anal. 2000, 37, 1618–1643. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Li, Y. A Posteriori Error Estimators for Optimal Distributed Control Governed by the First-Order Linear Hyperbolic Equation: DG Method, Numerical Methods for Partial Differential Equations. Wiley Online Libr. 2011, 27, 491–506. [Google Scholar]
- Xiong, C.; Li, Y. A posteriori error estimates for optimal distributed control governed by the evolution equations. Appl. Numer. Math. 2011, 61, 181–200. [Google Scholar] [CrossRef]
- Brezzi, F.; Marini, L.D.; Süli, E. Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Model. Methods Appl. Sci. 2004, 14, 1893–1903. [Google Scholar] [CrossRef]
- Xiong, C.; Li, Y. Error analysis for optimal control problem governed by convection diffusion equations: DG method. J. Comput. Appl. Math. 2011, 235, 3163–3177. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.G.; Luo, F.S.; Ma, X.L.; Li, Y. A priori error analysis for optimal distributed control problem governed by the first order linear hyperbolic equation: Hp-streamline diffusion discontinuous Galerkin method. J. Numer. Math. 2016, 24, 125–134. [Google Scholar] [CrossRef]
- Burman, E.; Stamm, B. Minimal Stabilization for Discontinuous Galerkin Finite Element Methods for Hyperbolic Problems. J. Sci. Comput. 2007, 33, 183–208. [Google Scholar] [CrossRef] [Green Version]
- Mu, L.; Ye, X. A simple finite element method for linear hyperbolic problems. J. Comput. Appl. Math. 2017, 330, 330–339. [Google Scholar] [CrossRef]
- Wang, J. A New Error Analysis of Crank-Nicolson Galerkin FEMs for a Generalized Nonlinear Schrödinger Equation. J. Sci. Comput. 2014, 60, 390–407. [Google Scholar] [CrossRef]
- Bochev, P.; Choi, J. Improved least-squares error estimates for scalar hyperbolic problems. Comput. Methods Appl. Math. 2001, 1, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Stekck, H.; Manteuffel, T.; McCormick, S.; Olson, L. Least-squares finite element methods and algebraic multigrid solvers for linear hyperbolic PDEs. SIAM J. Sci. Comput. 2004, 26, 31–54. [Google Scholar]
- Houston, P.; Jensen, M.; Süli, E. Hp-discontinuous Galerkin finite element methods with least-squares stabilization. J. Sci. Comput. 2002, 17, 3–25. [Google Scholar] [CrossRef]
- Bey, K.S.; Oden, T. hp-version discontinuous Galerkin methods for hyperbolic conservation laws. Comput. Methods Appl. Mech. Eng. 1996, 133, 259–286. [Google Scholar] [CrossRef]
- Cockburn, B. Discontinuous Galerkin Methods for Convection-Dominated Problems in High-Order Methods for Computational Physics; Springer: Berlin/Heidelberg, Germany, 1999; pp. 69–224. [Google Scholar]
- Cockburn, B.; Shu, C.-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II. General framework. Math. Comp. 1989, 52, 411–435. [Google Scholar]
- Cockburn, B.; Lin, S.Y.; Shu, C.-W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III. One-dimensional systems. J. Comput. Phys. 1989, 84, 90–113. [Google Scholar] [CrossRef] [Green Version]
- Cockburn, B.; Hou, S.; Shu, C.-W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV. The multidimensional case. Math. Comp. 1990, 54, 545–581. [Google Scholar]
- Falk, R.S.; Richter, G.R. Local error estimates for a finite element method for hyperbolic and convection-diffusion equations. SIAM J. Numer. Anal. 1992, 29, 730–754. [Google Scholar] [CrossRef] [Green Version]
- Cockburn, B.; Karniadakis, G.E.; Shu, C.-W. (Eds.) Discontinuous Galerkin Method. Theory, Computation and applications; Papers from the 1st International Symposium Held in Newport, RI, May, 1999; Springer: Berlin/Heidelberg, Germany, 2000; pp. 24–26. [Google Scholar]
- Burman, E.; Quarteroni, A.; Stamm, B. Interior penalty continuous and discontinuous finite element approximations of hyperbolic equations. J. Sci. Comput. 2010, 43, 293–312. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Becker, R.; Luo, F. A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems. Numer. Methods Partial. Differ. Equ. 2017, 33, 318–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xiong, C.; Wu, H.; Luo, F. A priori and a posteriori error analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems. Adv. Comput. Math. 2019, 45, 2623–2646. [Google Scholar] [CrossRef]
- Hecht, F. New development in freefem++. J. Numer. Math. 2012, 20, 251–265. [Google Scholar] [CrossRef]
Mesh | Order | Mesh | Order | ||
---|---|---|---|---|---|
5 | 0.283202 | 40 | 0.0251048 | 1.52436 | |
10 | 0.180874 | 0.646841 | 80 | 0.00583999 | 2.10393 |
20 | 0.0722165 | 1.32459 | 160 | 0.0013437 | 2.11976 |
Mesh | Order | Mesh | Order | ||
---|---|---|---|---|---|
5 | 0.830739 | 40 | 0.00211324 | 1.83117 | |
10 | 0.097215 | 1.35544 | 80 | 0.000505464 | 2.06378 |
20 | 0.00751948 | 2.53455 | 160 | 0.000125952 | 2.00474 |
Mesh | Order | Mesh | Order | ||
---|---|---|---|---|---|
5 | 0.753748 | 40 | 0.0360737 | 2.0403 | |
10 | 0.48435 | 0.638032 | 80 | 0.00950283 | 1.92452 |
20 | 0.148383 | 1.70673 | 160 | 0.00235028 | 2.01553 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hossain, M.S.; Xiong, C. An Error Analysis of the CN Weighed DG θ Method of the Convection Equation. Mathematics 2021, 9, 970. https://doi.org/10.3390/math9090970
Hossain MS, Xiong C. An Error Analysis of the CN Weighed DG θ Method of the Convection Equation. Mathematics. 2021; 9(9):970. https://doi.org/10.3390/math9090970
Chicago/Turabian StyleHossain, Muhammad Shakhawat, and Chunguang Xiong. 2021. "An Error Analysis of the CN Weighed DG θ Method of the Convection Equation" Mathematics 9, no. 9: 970. https://doi.org/10.3390/math9090970
APA StyleHossain, M. S., & Xiong, C. (2021). An Error Analysis of the CN Weighed DG θ Method of the Convection Equation. Mathematics, 9(9), 970. https://doi.org/10.3390/math9090970