Injectiveness and Discontinuity of Multiplicative Convex Functions
Abstract
:1. Introduction and Background Research on the Set of Multiplicative Convex Functions
- 1.
- and .
- 2.
- If , then (which, in particular, implies ).
- 3.
- If , then .
2. Other Fundamental Concepts and Classical Results
- 1.
- M is closed under addition.
- 2.
- M is closed under multiplication by scalars greater than or equal to 1.
- 3.
- M contains a set of infinite cardinality of linearly independent elements.
- 1.
- Thelinear dimensionof the truncated cone will be the maximal possible cardinality so that there exists a subset of such cardinality and consisting on linearly independent elements.
- 2.
- Thealgebraic dimensionwill be the maximal possible cardinality so that there exists a subset of such cardinality and consisting on algebraic independent elements (that is, so that the only polynomial vanishing on them is the null polynomial).
3. Study of the Injectiveness of an -Function
4. On the Set of Points of Discontinuity of an -Function
5. Algebraic Structure on
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niculescu, C.P. Convexity according to the geometric mean. Math. Inequal. Appl. 2000, 2, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Rodríguez, P.; Martínez-Gómez, M.E.; Muñoz-Fernández, G.A.; Seoane-Sepúlveda, J.B. Describing multiplicative convex functions. J. Convex Anal. 2020, 27, 935–942. [Google Scholar]
- Jiménez-Rodríguez, P.; Martínez-Gómez, M.E.; Muñoz-Fernández, G.A.; Seoane-Sepúlveda, J.B. Generalizing multiplicative convex functions. J. Convex Anal. 2021, 28. [Google Scholar]
- Aron, R.M.; Gurariy, V.I.; Seoane Sepúlveda, J.B. Lineability and spaceability of sets of functions on . Proc. Am. Math. Soc. 2005, 133, 795–803. [Google Scholar] [CrossRef]
- Aron, R.M.; Bernal-González, L.; Pellegrino, D.M.; Seoane Sepúlveda, J.B. Lineability: The Search for Linearity in Mathematics; Monographs and Research Notes in Mathematics; CRC Press: Boca Raton, FL, USA, 2016; p. xix+308. ISBN 978-1-4822-9909-0. [Google Scholar]
- Bastin, F.; Conejero, J.A.; Esser, C.; Seoane-Sepúlveda, J.B. Algebrability and nowhere Gevrey differentiability. Israel J. Math. 2015, 205, 127–143. [Google Scholar] [CrossRef] [Green Version]
- Bernal-González, L.; Pellegrino, D.; Seoane-Sepúlveda, J.B. Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. 2014, 51, 71–130. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, K.; Seoane-Sepúlveda, J. Differentiability versus continuity: Restriction and extension theorems and monstrous examples. Bull. Am. Math. Soc. 2019, 56, 211–260. [Google Scholar] [CrossRef] [Green Version]
- Froda, A. Sur la Distribution des Propriétés de Voisinage des Fonctions de Variables Réelles. Ph.D. Thesis, Paris Science Faculty, Paris, France, 1929. [Google Scholar]
- Moschovakis, Y. Notes on Set Theory. In Undergraduate Texts in Mathematics, 2nd ed.; Springer: New York, NY, USA, 2006; ISBN 978-0387-28722-5. [Google Scholar]
- Steiner, J. Über das gröβte Product der Theile oder Summanden jeder Zahl. J. FüR Die Reine Und Angew. Math. 1850, 40, 208. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Rodríguez, P.; Martínez-Gómez, M.E.; Muñoz-Fernández, G.A.; Seoane-Sepúlveda, J.B. Injectiveness and Discontinuity of Multiplicative Convex Functions. Mathematics 2021, 9, 1035. https://doi.org/10.3390/math9091035
Jiménez-Rodríguez P, Martínez-Gómez ME, Muñoz-Fernández GA, Seoane-Sepúlveda JB. Injectiveness and Discontinuity of Multiplicative Convex Functions. Mathematics. 2021; 9(9):1035. https://doi.org/10.3390/math9091035
Chicago/Turabian StyleJiménez-Rodríguez, Pablo, María E. Martínez-Gómez, Gustavo A. Muñoz-Fernández, and Juan B. Seoane-Sepúlveda. 2021. "Injectiveness and Discontinuity of Multiplicative Convex Functions" Mathematics 9, no. 9: 1035. https://doi.org/10.3390/math9091035
APA StyleJiménez-Rodríguez, P., Martínez-Gómez, M. E., Muñoz-Fernández, G. A., & Seoane-Sepúlveda, J. B. (2021). Injectiveness and Discontinuity of Multiplicative Convex Functions. Mathematics, 9(9), 1035. https://doi.org/10.3390/math9091035