Passive Strategies to Improve the Comfort Conditions in a Geodesic Dome
Abstract
:1. Introduction
2. Modeling a Geodesic Dome
3. Tuning and Analysis of Mathematical Model
4. Passive Strategy Simulation
4.1. First Strategy: Coating Solutions
4.2. Second Strategy: Reinforcing the Structure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Superficial area | |
Thermal capacity | |
Specific heat | |
Convection coefficient | |
Internal load | |
Thermal conductivity | |
Thickness | |
Electronic equipment number | |
Occupants number | |
Heat flux | |
Heat gain by occupants | |
Heat gain by equipment | |
Heat gain by skylight | |
Heat extracted | |
Incoming flux | |
Thermal resistance | |
Temperature | |
Ground temperature | |
Superficial internal canvas temperature | |
Superficial external canvas temperature | |
Canvas limit temperature | |
Cooling system state | |
Internal volume | |
Emissivity | |
Stefan-Boltzman constant | |
Density | |
Subscripts | |
Air | |
Canvas | |
Floor | |
Wood | |
Internal canvas | |
External canvas |
References
- ONU Agenda 2030 y los Objetivos de Desarrollo Sostenible. Patrimonio Econ. Cult. Y Educ. Para La Paz. 2017, 1, 48.
- Bourdeau, M.; Zhai, X.Q.; Nefzaoui, E.; Guo, X.; Chatellier, P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustain. Cities Soc. 2019, 48, 101533. [Google Scholar] [CrossRef]
- Jain, M.; Pathak, K.K. Thermal modelling of insulator for energy saving in existing residential building. J. Build. Eng. 2018, 19, 62–68. [Google Scholar] [CrossRef]
- Pan, L.; Xu, Q.; Nie, Y.; Qiu, T. Analysis of climate adaptive energy-saving technology approaches to residential building envelope in Shanghai. J. Build. Eng. 2018, 19, 266–272. [Google Scholar] [CrossRef]
- Gorni, D.; Castilla, M.; Visioli, A. An efficient modelling for temperature control of residential buildings. Build. Environ. 2016, 103, 86–98. [Google Scholar] [CrossRef]
- Kassas, M. Modeling and Simulation of Residential HVAC Systems Energy Consumption. Proced. Comput. Sci. 2015, 52, 754–763. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, V.; Acosta, A.; González, A.I.; Zamarre, J.M. Energy savings and guaranteed thermal comfort in hotel rooms through nonlinear model predictive controllers. Energy Build. 2016, 129, 59–68. [Google Scholar]
- Walsh, A.; Cóstola, D.; Labaki, L.C. Review of methods for climatic zoning for building energy efficiency programs. Build. Environ. 2017, 112, 337–350. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, V.; Evola, G.; Marletta, L. Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. Energy Build. 2016, 114, 247–255. [Google Scholar] [CrossRef]
- Yang, J.; Bou-Zeid, E. Scale dependence of the benefits and efficiency of green and cool roofs. Landsc. Urban Plan. 2019, 185, 127–140. [Google Scholar] [CrossRef]
- Prieto, A.; Knaack, U.; Auer, T.; Klein, T. Passive cooling & climate responsive façade design exploring the limits of passive cooling strategies to improve the performance of commercial buildings in warm climates. Energy Build. 2018, 175, 30–47. [Google Scholar]
- Longo, F.; Lassandro, P.; Moshiri, A.; Phatak, T.; Aiello, M.A.; Krakowiak, K.J. Lightweight geopolymer-based mortars for the structural and energy retrofit of buildings. Energy Build. 2020, 225, 110352. [Google Scholar] [CrossRef]
- Dominguez, A.; Kleissl, J.; Luvall, J.C. Effects of solar photovoltaic panels on roof heat transfer. Sol. Energy 2011, 85, 2244–2255. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.S.G.; Mahmud, H.B.; Ashraf, M.A. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renew. Sustain. Energy Rev. 2015, 52, 669–679. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Quezada-García, S.; Espinosa-Paredes, G.; Polo-Labarrios, M.A.; Espinosa-Martínez, E.G.; Escobedo-Izquierdo, M.A. Green roof heat and mass transfer mathematical models: A review. Build. Environ. 2020, 170, 106634. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X.; Zuo, J. Photovoltaic-green roofs: A review of benefits, limitations, and trends. Sol. Energy 2020, 202, 485–497. [Google Scholar] [CrossRef]
- Liberalesso, T.; Oliveira Cruz, C.; Matos Silva, C.; Manso, M. Green infrastructure and public policies: An international review of green roofs and green walls incentives. Land Use Policy 2020, 96, 104693. [Google Scholar] [CrossRef]
- Antonaia, A.; Ascione, F.; Castaldo, A.; D’Angelo, A.; De Masi, R.F.; Ferrara, M.; Vanoli, G.P.; Vitiello, G. Cool materials for reducing summer energy consumptions in Mediterranean climate: In-lab experiments and numerical analysis of a new coating based on acrylic paint. Appl. Therm. Eng. 2016, 102, 91–107. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Mourad, A.H.; Hittini, W.; Hassan, M.; Hameedi, S. Traditional, state-of-the-art and renewable thermal building insulation materials: An overview. Constr. Build. Mater. 2019, 214, 709–735. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Shittu, E.; Santos, T.; Ramowski, L.; Mollard, A.; Rowe, K.; Wilson, E.; Filho, J.P. de B.; Novieto, D. Cool roofs: High tech low cost solution for energy efficiency and thermal comfort in low rise low income houses in high solar radiation countries. Energy Build. 2018, 176, 58–70. [Google Scholar] [CrossRef]
- Simpson, A.; Fitton, R.; Rattigan, I.G.; Marshall, A.; Parr, G.; Swan, W. Thermal performance of thermal paint and surface coatings in buildings in heating dominated climates. Energy Build. 2019, 197, 196–213. [Google Scholar] [CrossRef]
- Pedroso, M.; Flores-Colen, I.; Silvestre, J.D.; Gomes, M.G.; Silva, L.; Ilharco, L. Physical, mechanical, and microstructural characterisation of an innovative thermal insulating render incorporating silica aerogel. Energy Build. 2020, 211, 109793. [Google Scholar] [CrossRef]
- Deflorian, F. Advances in Organic Coatings 2018. Coatings 2020, 10, 555. [Google Scholar] [CrossRef]
- Florez Montes, F.; Fernández De Córdoba, P.; Higón Calvet, J.L.; Conejero, J.A.; Poza-Luján, J.L. A system to monitor and model the thermal isolation of coating compounds applied to closed spaces. Therm. Sci. 2020, 24, 1885–1892. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.; Pavía, S. Thermal performance of a selection of insulation materials suitable for historic buildings. Build. Environ. 2015, 94, 155–165. [Google Scholar] [CrossRef]
- Li, X.; Han, Z.; Zhao, T.; Gao, J. Online model for indoor temperature control based on building thermal process of air conditioning system. J. Build. Eng. 2021, 39, 102270. [Google Scholar] [CrossRef]
- Chen, Y.; Castiglione, J.; Astroza, R.; Li, Y. Parameter estimation of resistor-capacitor models for building thermal dynamics using the unscented Kalman filter. J. Build. Eng. 2021, 34, 101639. [Google Scholar] [CrossRef]
- Hagentoft, C.E.; Pallin, S. A conceptual model for how to design for building envelope characteristics. Impact of thermal comfort intervals and thermal mass on commercial buildings in U.S. climates. J. Build. Eng. 2021, 35, 101994. [Google Scholar] [CrossRef]
- Florez Montes, F.; Fernandez de cordoba, P.; Higón, J.L.; Taborda, J.; Olivar, G.; Gomez, J.B. Análisis Dinámico del Confort en Edificios: Estrategias de Control Adaptativo en Modos Deslizantes. Ph.D. Thesis, Universidad Nacional de Colombia and Universitat Politècnica de València, Manizales, Columbia, 2020. [Google Scholar]
- Ideam. Available online: http://www.ideam.gov.co/ (accessed on 2 March 2021).
- Buonomano, A.; Montanaro, U.; Palombo, A.; Santini, S. Temperature and humidity adaptive control in multi-enclosed thermal zones under unexpected external disturbances. Energy Build. 2017, 135, 263–285. [Google Scholar] [CrossRef]
- Pekař, L.; Prokop, R. Algebraic robust control of a closed circuit heating-cooling system with a heat exchanger and internal loop delays. Appl. Therm. Eng. 2017, 113, 1464–1474. [Google Scholar] [CrossRef]
- Michiels, W.; Hilhorst, G.; Pipeleers, G.; Vyhlídal, T.; Swevers, J. Reduced modelling and fixed-order control of delay systems applied to a heat exchanger. IET Control Theory Appl. 2017, 11, 3341–3352. [Google Scholar] [CrossRef] [Green Version]
- Zítek, P.; Hlava, J. Anisochronic internal model control of time-delay systems. Control Eng. Pract. 2001, 9, 501–516. [Google Scholar] [CrossRef]
- Kramer, R.; van Schijndel, J.; Schellen, H. Simplified thermal and hygric building models: A literature review. Front. Archit. Res. 2012, 1, 318–325. [Google Scholar] [CrossRef] [Green Version]
- Djatouti, Z.; Waeytens, J.; Chamoin, L.; Chatellier, P. Goal-oriented sensor placement and model updating strategies applied to a real building in the Sense-City equipment under controlled winter and heat wave scenarios. Energy Build. 2021, 231, 110486. [Google Scholar] [CrossRef]
- Aleksandrov, M.; Cheng, C.; Rajabifard, A.; Kalantari, M. Modelling and finding optimal evacuation strategy for tall buildings. Saf. Sci. 2019, 115, 247–255. [Google Scholar] [CrossRef]
- Fazenda, P.; Lima, P.; Carreira, P. Context-based thermodynamic modeling of buildings spaces. Energy Build. 2016, 124, 164–177. [Google Scholar] [CrossRef]
- Lin, Y.; Middelkoop, T.; Barooah, P. Identification of control-oriented thermal models of rooms in multi-room buildings. In Proceedings of the 2012 IEEE 51st Annual Conference on Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 10–13. [Google Scholar]
- Florez, F.; De Cordoba, P.F.; Tost, G.O. Issues regarding the implementation of sliding controls for thermal regulation. In Proceedings of the 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019, Medellin, Colombia, 15–18 October 2019. [Google Scholar] [CrossRef]
- Jesús, J.; Navas, J.; Rodríguez, E.A.; José, F.; De, S. Estimating the temperature of the active layer of dye sensitised solar cells by using a “second-order lumped parameter mathematical model”. Sol. Energy 2016, 137, 80–89. [Google Scholar]
- Afram, A. Review of Modeling Methods for HVAC Systems. Appl. Therm. Eng. 2014, 67, 507–519. [Google Scholar] [CrossRef]
- Andrade-cabrera, C.; Rosa, M.D.; Kathirgamanathan, A.; Kapetanakis, D.; Finn, D.P. A Study on the Trade-off between Energy Forecasting Accuracy and Computational Complexity in Lumped Parameter Building Energy Models. In Proceedings of the 10th Canada Conference of International Building Performance Simulation Association (eSim 2018), Montreal, QC, Canada, 9–10 May 2018; pp. 143–152. [Google Scholar]
- Florez, F.; de Cordoba, P.F.; Taborda, J.; Polo, M.; Castro-Palacio, J.C.; Pérez-Quiles, M.J. Sliding modes control for heat transfer in geodesic domes. Mathematics 2020, 8, 902. [Google Scholar] [CrossRef]
- Cengel, Y.A. Transferencia de Calor y Masa, 3rd ed.; McGraw-Hill: Mexico City, Mexico, 2007; ISBN 978-0-07-312930-3. [Google Scholar]
- Florez, F.; Munoz, J.; Angulo, F. Modeling, simulation and experimental set-up of a boost-flyback converter. In Proceedings of the 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC), Manizales, Colombia, 14–16 October 2015. [Google Scholar] [CrossRef]
- Clima Santa Marta: Temperatura, Climograma y Temperatura del agua de Santa Marta. Available online: https://es.climate-data.org/america-del-sur/colombia/magdalena/santa-marta-3650/ (accessed on 3 September 2020).
- Turner, S.C.; Paliaga, G.; Lynch, B.M.; Arens, E.A.; Aynsley, R.M.; Brager, G.S.; Deringer, J.J.; Ferguson, J.M.; Filler, J.M.; Hogeling, J.J.; et al. Ashrae Standard Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2011; Volume 2010. [Google Scholar]
Feature\Element | Canvas | Wooden Structure | Floor | Air |
---|---|---|---|---|
Superficial area ) | ||||
Thickness ) | ||||
Thermal conductivity ) | ||||
Specific heat | ||||
Density |
Coefficient/Parameter | ||||||||
---|---|---|---|---|---|---|---|---|
Day | 138.8 | 0.9 | 67.57 | 0.9 | 116 | 0.9 | 0.55 | 0.9 |
Night | 83.3 | 0.99 | 8.45 | 0.01 | 83.3 | 0.99 | 0.27 | 0.01 |
Parameter (%) | ||||||||
---|---|---|---|---|---|---|---|---|
0.5 | 0.624 | 0.53 | 0.64 | |||||
1.0 | 0.12 | 1.1 | 1.34 | |||||
1.5 | 0.19 | 1.31 | 1.88 | |||||
2.0 | 0.25 | 1.92 | 2.63 | |||||
2.5 | 0.37 | 2.52 | 3.33 | |||||
3.0 | 0.39 | 2.7 | 3.75 | |||||
3.5 | 0.48 | 3.77 | 4.3 | |||||
4.0 | 0.59 | 3.73 | 5.17 | |||||
4.5 | 0.6 | 4.36 | 6.56 | |||||
5.0 | 0.8 | 5.17 | 5.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florez, F.; Fernández-de-Córdoba, P.; Taborda, J.; Castro-Palacio, J.C.; Higón-Calvet, J.L.; Pérez-Quiles, M.J. Passive Strategies to Improve the Comfort Conditions in a Geodesic Dome. Mathematics 2021, 9, 663. https://doi.org/10.3390/math9060663
Florez F, Fernández-de-Córdoba P, Taborda J, Castro-Palacio JC, Higón-Calvet JL, Pérez-Quiles MJ. Passive Strategies to Improve the Comfort Conditions in a Geodesic Dome. Mathematics. 2021; 9(6):663. https://doi.org/10.3390/math9060663
Chicago/Turabian StyleFlorez, Frank, Pedro Fernández-de-Córdoba, John Taborda, Juan Carlos Castro-Palacio, José Luis Higón-Calvet, and M. Jezabel Pérez-Quiles. 2021. "Passive Strategies to Improve the Comfort Conditions in a Geodesic Dome" Mathematics 9, no. 6: 663. https://doi.org/10.3390/math9060663
APA StyleFlorez, F., Fernández-de-Córdoba, P., Taborda, J., Castro-Palacio, J. C., Higón-Calvet, J. L., & Pérez-Quiles, M. J. (2021). Passive Strategies to Improve the Comfort Conditions in a Geodesic Dome. Mathematics, 9(6), 663. https://doi.org/10.3390/math9060663