Analytical Method for Mechanism Design in Partially Observable Markov Games
Abstract
:1. Introduction
1.1. Brief Review
1.2. Main Results
1.3. Organization of the Paper
2. Markov Games with Incomplete Information
3. Main Relations
4. Ergodicity Conditions Expressed in Variables
5. Convergence Analysis
6. Political Numerical Example
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof Lemma 3.1
Appendix B. Proof of Theorem 4.1
Appendix C. Proof of Theorem 5.1
References
- Hurwicz, L. Optimality and informational efficiency in resource allocation processes. In Mathematical Methods in the Social Sciences: Proceedings of the First Stanford Symposium; Arrow, K.J., Karlin, S., Suppes, P., Eds.; Stanford University Press: Palo Alto, CA, USA, 1960; pp. 27–46. [Google Scholar]
- Nobel. The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2007: Scientific Background; Technical Report; The Nobel Foundation: Stockholm, Sweden, 2007. [Google Scholar]
- Myerson, R.B. Allocation, Information and Markets; Chapter Mechanism Design; The New Palgrave; Palgrave Macmillan: London, UK, 1989; pp. 191–206. [Google Scholar]
- Vickrey, W. Counterspeculation, auctions, and competitive sealed tenders. J. Financ. 1961, 16, 8–37. [Google Scholar] [CrossRef]
- Bergemann, D.; Välimäki, J. Dynamic mechanism design: An introduction. J. Econ. Perspect 2019, 52, 235–274. [Google Scholar] [CrossRef] [Green Version]
- Clarke, E. Multi-part pricing of public goods. Public Choice 1971, 11, 17–23. [Google Scholar] [CrossRef]
- Groves, T. Incentives in teams. Econometrica 1973, 41, 617–631. [Google Scholar] [CrossRef]
- Harsanyi, J.C. Games with incomplete information played by bayesian players. part i: The basic model. Manag. Sci. 1967, 14, 159–182. [Google Scholar] [CrossRef]
- Arrow, K. Economics and Human Welfare; Chapter The Property Rights Doctrine and Demand Revelation under Incomplete Information; Academic Press: New York, NY, USA, 1979; pp. 23–39. [Google Scholar]
- D’Aspremont, C.; Gerard-Varet, L. Incentives and incomplete information. J. Public Econ. 1979, 11, 25–45. [Google Scholar]
- Saari, D.G. On the types of information and mechanism design. J. Comput. Appl. Math. 1988, 22, 231–242. [Google Scholar] [CrossRef] [Green Version]
- Rogerson, W. Contractual solutions to the hold-up problem. Rev. Econ. Stud. 1992, 59, 777–793. [Google Scholar] [CrossRef] [Green Version]
- Mailath, G.; Postlewaite, A. Asymmetric information bargaining problems with many agents. Rev. Econ. Stud. 1990, 57, 351–360. [Google Scholar] [CrossRef]
- Miyakawa, T. Non-Cooperative Foundation of Nash Bargaining Solution under Incomplete Informational; Osaka University of Economics Working Paper Serier No. 2012-2.; Osaka University: Suita, Japan, 2012. [Google Scholar]
- Athey, S.; Bagwell, K. Collusion with persistent cost shocks. Econometrica 2008, 76, 493–540. [Google Scholar] [CrossRef] [Green Version]
- Hörner, J.; Takahashi, S.; Vieille, N. Truthful equilibria in dynamic bayesian games. Econometrica 2015, 83, 1795–1848. [Google Scholar] [CrossRef] [Green Version]
- Clempner, J.B.; Poznyak, A.S. A nucleus for bayesian partially observable markov games: Joint observer and mechanism design. Eng. Appl. Artif. Intell. 2020, 95, 103876. [Google Scholar] [CrossRef]
- Rahman, D. The power of communication. Am. Econ. Rev. 2014, 104, 3737–3751. [Google Scholar] [CrossRef]
- Bernheim, B.; Madsen, E. Price cutting and business stealing in imperfect cartels. Am. Econ. Rev. 2017, 107, 387–424. [Google Scholar] [CrossRef] [Green Version]
- Escobar, J.F.; Llanes, G. Cooperation dynamics in repeated games of adverse selection. J. Econ. Theory 2018, 176, 408–443. [Google Scholar] [CrossRef]
- Poznyak, A.S.; Najim, K.; Gómez-Ramírez, E. Self-Learning Control of Finite Markov Chains; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Clempner, J.B.; Poznyak, A.S. Simple computing of the customer lifetime value: A fixed local-optimal policy approach. J. Syst. Sci. Syst. Eng. 2014, 23, 439–459. [Google Scholar] [CrossRef]
- Clempner, J.B.; Poznyak, A.S. Observer and control design in partially observable finite markov chains. Automatica 2019, 110, 108587. [Google Scholar] [CrossRef]
- Clempner, J.B. On lyapunov game theory equilibrium: Static and dynamic approaches. Int. Game Theory Rev. 2018, 20, 1750033. [Google Scholar] [CrossRef] [Green Version]
- Clempner, J.B.; Poznyak, A.S. Finding the strong nash equilibrium: Computation, existence and characterization for markov games. J. Optim. Theory Appl. 2020, 186, 1029–1052. [Google Scholar] [CrossRef]
- Sragovich, V.G. Mathematical Theory of Adaptive Control; World Scientific Publishing Company: Singapore, 2006. [Google Scholar]
- Asiain, E.; Clempner, J.B.; Poznyak, A.S. A reinforcement learning approach for solving the mean variance customer portfolio for partially observable models. Int. J. Artif. Intell. Tools 2018, 27, 1850034-1–1850034-30. [Google Scholar] [CrossRef]
- Trejo, K.K.; Clempner, J.B.; Poznyak, A.S. Computing the lp-strong nash equilibrium for markov chains games. Appl. Math. Model. 2017, 41, 399–418. [Google Scholar] [CrossRef]
- Hotelling, H. Stability in competition. Econ. J. 1929, 39, 41–57. [Google Scholar] [CrossRef]
- Downs, A. An Economic Theory of Democracy; Harper & Brothers: New York, NY, USA, 1957. [Google Scholar]
- Solis, C.; Clempner, J.B.; Poznyak, A.S. Robust extremum seeking for a second order uncertain plant using a sliding mode controller. Int. J. Appl. Math. Comput. Sci. 2019, 29, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Solis, C.; Clempner, J.B.; Poznyak, A.S. Robust integral sliding mode controller for optimisation of measurable cost functions with constraints. Int. J. Control 2019, 1–13, To be published. [Google Scholar] [CrossRef]
- Solis, C.; Clempner, J.B.; Poznyak, A.S. Continuous-time gradient-like descent algorithm for constrained convex unknown functions: Penalty method application. J. Comput. Appl. Math. 2019, 355, 268–282. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clempner, J.B.; Poznyak, A.S. Analytical Method for Mechanism Design in Partially Observable Markov Games. Mathematics 2021, 9, 321. https://doi.org/10.3390/math9040321
Clempner JB, Poznyak AS. Analytical Method for Mechanism Design in Partially Observable Markov Games. Mathematics. 2021; 9(4):321. https://doi.org/10.3390/math9040321
Chicago/Turabian StyleClempner, Julio B., and Alexander S. Poznyak. 2021. "Analytical Method for Mechanism Design in Partially Observable Markov Games" Mathematics 9, no. 4: 321. https://doi.org/10.3390/math9040321
APA StyleClempner, J. B., & Poznyak, A. S. (2021). Analytical Method for Mechanism Design in Partially Observable Markov Games. Mathematics, 9(4), 321. https://doi.org/10.3390/math9040321