A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve
Abstract
1. Introduction
2. The Model
2.1. The Likelihood Function
2.2. The Prior Distribution
2.3. The Posterior Distribution
2.4. The Characteristics of Interest and How to Estimate Them
3. A Real Example about COVID-19 Survey in Andalusia
3.1. Forecasts for the Characteristics of Interest at Different Scenarios
3.1.1. First Scenario: The Benefits of the Lockdown
3.1.2. Second Scenario: The Evolution of the Pandemic during the Lockdown
3.2. Detecting the Beginning of a New Wave
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef]
- Bolsen, T.; Palm, R.; Kingsland, J. Framing the Origins of COVID-19. Sci. Commun. 2020, 42, 562–585. [Google Scholar] [CrossRef]
- Kermack, W.; McKendrick, A. Contributions to the Mathematical Theory of Epidemics. Proc. R. Soc. A 1927, 115, 700–721. [Google Scholar]
- Becker, N.; Britton, T. Statistical studies of infectious disease incidence. J. R. Stat. Soc. B 1999, 61, 287–307. [Google Scholar] [CrossRef]
- O’Neill, P. A tutorial introduction to Bayesian inference for stochastic epidemic models using Markov chain Monte Carlo methods. Math. Biosci. 2002, 180, 103–114. [Google Scholar] [CrossRef]
- Grassly, N.; Fraser, C. Mathematical models of infectious disease transmission. Nat. Rev. Microbiol. 2008, 6, 477–487. [Google Scholar] [CrossRef]
- Krämer, A.; Kretzschmar, M.; Krickeberg, K. Modern Infectious Disease Epidemiology Concepts, Methods, Mathematical Models and Public Health; Springer: New York, NY, USA, 2010. [Google Scholar]
- Brauer, F.; Driessche, P.V.D.; Wu, J. Mathematical Epidemiology; Springer: New York, NY, USA, 2000. [Google Scholar]
- Clayton, D.; Hills, M. Statistical Models in Epidemiology; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Keeling, M.; Rohani, P. Modeling Infectious Diseases in Humans and Animals; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Thompson, W.; Comanor, L.; Shay, D. Epidemiology of seasonal influenza: Use of surveillance data and statistical models to estimate the burden of disease. J. Infect. Dis. 2006, 194, S82–S91. [Google Scholar] [CrossRef]
- Fineberg, H.; Wilson, M. Epidemic science in real time. Science 2009, 324, 987. [Google Scholar] [CrossRef]
- Pell, B.; Kuang, Y.; Viboud, C.; Chowell, G. Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics 2018, 22, 62–70. [Google Scholar] [CrossRef]
- Berger, J.O. Statistical Decision Theory and Bayesian Analysis, 2nd ed.; Springer: New York, NY, USA, 1985. [Google Scholar]
- Ríos Insua, D.; Ruggeri, F. Robust Bayesian Analysis; Lecture Notes in Statistics 152; Springer: New York, NY, USA, 2000. [Google Scholar]
- Bernardo, J.M. Bayesian Statitistics; Viertl, R., Ed.; Encyclopedia of Life Support Systems (EOLSS), Probability and Statistics; UNESCO: Oxford, UK, 2003. [Google Scholar]
- Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.; Coupland, H.; Mellan, T.; Zhu, H.; Berah, T.; Eaton, J.W.; Guzman, P.; et al. Estimating the number of infections and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries. Imp. Coll. Lond. 2020. [Google Scholar] [CrossRef]
- Jha, P.; Cao, L.; Oden, J. Bayesian-based predictions of COVID-19 evolution in Texas using multispecies mixture-theoretic continuum models. Comput. Mech. 2020. [Google Scholar] [CrossRef] [PubMed]
- Manevski, D.; Gorenjec, N.R.; Kejžar, N.; Blagus, R. Modeling COVID-19 pandemic using Bayesian analysis with application to Slovene data. Math. Biosci. 2020, 329. [Google Scholar] [CrossRef] [PubMed]
- Emery, J.; Russell, T.; Liu, Y.; Hellewell, J.; Pearson, C.; CMMID COVID-19 Working Group; Knight, G.; Eggo, R.; Kucharski, A.; Funk, S.F.; et al. The contribution of asymptomatic SARS- CoV-2 infections to transmission on the Diamond Princess cruise ship. eLife 2020. [Google Scholar] [CrossRef]
- Lee, S.; Lei, B.; Mallick, B. Estimation of COVID-19 spread curves integrating global data and borrowing information. PLoS ONE 2020, 7. [Google Scholar] [CrossRef]
- Kingman, J. Poisson Processes; Clarendon Press: Oxford, UK, 1993. [Google Scholar]
- Ríos Insua, D.; Ruggeri, F.; Wiper, M. Bayesian Analysis of Stochastic Process Models; Wiley: New York, NY, USA, 2012. [Google Scholar]
- McCollin, C. Intensity Functions for Nonhomogeneous Poisson Processes; Wiley StatsRef: Statistics Reference Online; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Gompertz, B. Xxiv. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. in a letter to francis baily, esq. frs &c. R Package Version 1825, 2, 513–583. [Google Scholar]
- Madden, L. Quantification of disease progression. Prot. Ecol. 1980, 2, 159–176. [Google Scholar]
- Zwietering, M.; Jongenburger, I.; Rombouts, F.; Riet, K.V. Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef]
- Berger, R. Comparison of the Gompertz and Logistic Equations to describe plant disease progress. Phytopathology 1981, 71, 716–719. [Google Scholar] [CrossRef]
- Löytönen, M. The Spatial Diffusion of Human Immunodeficiency Virus Type 1 in Finland, 1982–1997. Ann. Assoc. Am. Geogr. 1991, 81, 127–151. [Google Scholar] [CrossRef]
- Alonso-Prados, L.; Luis-Arteaga, J.; Alvarez, M.; Moriones, E.; Batlle, A.; Laviña, A.; García-Arenal, F.; Fraile, A. Epidemics of Aphid-transmitted Viruses in Melon Crops in Spain. Eur. J. Plant Pathol. 2003, 109, 129–138. [Google Scholar] [CrossRef]
- Yang, Z.; Jiao, X.; Li, P.; Pan, Z.; Huang, J.; Gu, R.; Fang, W.; Chao, G. Predictive model of Vibrio parahaemolyticus growth and survival on salmon meat as a function of temperature. Food Microbiol. 2009, 26, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Jenner, A.L.; Kim, P.; Frascoli, F. Oncolytic virotherapy for tumours following a Gompertz growth law. J. Theor. Biol. 2019, 480, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Rypdal, K.; Rypdal, M. A Parsimonious Description and Cross-Country Analysis of COVID-19 Epidemic Curves. Int. J. Environ. Res. Public Health 2020, 18, 6487. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Pérez, F.; Chinarro, D.; Pino-Otin, R.; Díaz-Martín, R.; Díaz, M.; Guardiola-Mouhaffel, A. Comparison of Growth Patterns of COVID-19 Cases through the ARIMA and Gompertz Models. Case Studies: Austria, Switzerland, and Israel. Rambam Maimonides Med. J. 2020, 11, 1–13. [Google Scholar] [CrossRef]
- Díaz-Pérez, F.; Chinarro, D.; Pino-Otin, R.; Guardiola-Mouhaffel, A. Growth forecast of the COVID-19 with the Gompertz function, Case study: Italy, Spain, Hubei, China. Int. J. Adv. Eng. Res. Sci. 2020, 7, 67–77. [Google Scholar] [CrossRef]
- Medina-Mendieta, J.; Cortés-Cortés, M.; Cortés-Iglesias, M. COVID-19 Forecasts for Cuba Using Logistic Regression and Gompertz Curves. MEDICC Rev. 2020, 22, 32–39. [Google Scholar]
- Ohnishi, A.; Namekawa, Y.; Fukui, T. Universality in COVID-19 spread in view of the Gompertz function. Prog. Theor. Exp. Phys. 2020. [Google Scholar] [CrossRef]
- Sánchez-Villegas, P.; Colina, A. Modelos predictivos de la epidemia de COVID-19 en España con curvas de Gompertz. Gac. Sanit. 2020. [Google Scholar] [CrossRef]
- Asadi, M.; Di Crescenzo, A.; Sajadi, F.A.; Spina, S. A generalized Gompertz growth model with applications and related birth-death processes. Ric. Mat. 2020, 1–36. [Google Scholar] [CrossRef]
- Hoffman, M.D.; Gelman, A. The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 2014, 15, 1593–1623. [Google Scholar]
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language. J. Stat. Softw. 2017, 76. [Google Scholar] [CrossRef]
- Stan Development Team. RStan: The R Interface to Stan, R Package Version 2.19.3. Available online: https://mc-stan.org/users/interfaces/rstan.html (accessed on 14 April 2020).
- Gabry, J. Shinystan: Interactive visual and numerical diagnostics and posterior analysis for bayesian models. Philos. Trans. R. Soc. Lond. 2015, 115. Available online: https://mc-stan.org/users/interfaces/shinystan (accessed on 14 April 2020).
- Pullano, G.; Domenico, L.D.; Sabbatini, C.; Valdano, E.; Turbelin, C.; Debin, M.; Guerrisi, C.; Kengne-Kuetche, C.; Souty, C.; Hanslik, T.; et al. Underdetection of cases of COVID-19 in France threatens epidemic control. Nature 2020. [Google Scholar] [CrossRef] [PubMed]
- Dolbeault, J.; Turinici, G. Social heterogeneity and the COVID-19 lockdown in a multi-group SEIR model. medRxiv 2020. [Google Scholar] [CrossRef]
- Arias-Nicolás, J.; Ruggeri, F.; Suárez-Llorens, A. New Classes of Priors Based on Stochastic Orders and Distortion Functions. Bayesian Anal. 2016, 11, 1107–1136. [Google Scholar] [CrossRef]
- Barrera, M.; Lira, I.; Sánchez-Sánchez, M.; Suárez-Llorens, A. Bayesian treatment of results from radioanalytical measurements. Effect of prior information modification in the final value of the activity. Radiat. Phys. Chem. 2019, 156, 266–271. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, M.; Sordo, M.A.; Suárez-Llorens, A.; Gómez-Déniz, E. Deriving Robust Bayesian Premiums under Bands of Prior Distributions with Applications. ASTIN Bull. 2019, 49, 147–168. [Google Scholar] [CrossRef]
- Ruggeri, F.; Sánchez-Sánchez, M.; Sordo, M.; Suárez-Llorens, A. On a New Class of Multivariate Prior Distributions: Theory and Application in Reliability. Bayesian Anal. Adv. Publ. 2020. [Google Scholar] [CrossRef]
Param. | Post. Mean | sd | 2.5% CI | 50% CI | 97.5% CI | ||
---|---|---|---|---|---|---|---|
a | 27,766.41 | 11,916.20 | 10,865.82 | 25,456.36 | 56,400.37 | 3221.76 | 1 |
b | 10.02 | 0.44 | 9.15 | 10.03 | 10.83 | 3138.09 | 1 |
c | 0.04 | 0.00 | 0.04 | 0.04 | 0.05 | 2919.79 | 1 |
1.14 | 0.15 | 1.00 | 1.09 | 1.53 | 4115.42 | 1 | |
53.13 | 4.48 | 44.29 | 53.10 | 61.86 | 2953.03 | 1 |
Param. | Post. Mean | sd | 2.5% CI | 50% CI | 97.5% CI | ||
---|---|---|---|---|---|---|---|
a | 1543.87 | 40.13 | 1465.62 | 1543.42 | 1622.46 | 6867.77 | 1 |
b | 7.25 | 0.09 | 7.03 | 7.28 | 7.37 | 6590.83 | 1 |
c | 0.08 | 0.00 | 0.08 | 0.08 | 0.08 | 6210.55 | 1 |
1.10 | 0.10 | 1.00 | 1.06 | 1.36 | 6583.56 | 1 | |
24.73 | 0.36 | 24.02 | 24.72 | 25.43 | 7327.45 | 1 |
1st | 2nd | 3rd | 4th | 5th | 6th | |
---|---|---|---|---|---|---|
2 | 3 | 3 | 6 | 7 | 7 |
Param. | Post. Mean | sd | 2.5% CI | 50% CI | 97.5% CI | ||
---|---|---|---|---|---|---|---|
a | 14,980.964 | 1630.937 | 12,335.926 | 14,791.462 | 18,628.804 | 1332.199 | 1.002 |
b | 5.746 | 0.116 | 5.523 | 5.745 | 5.975 | 3338.672 | 1.000 |
c | 0.032 | 0.002 | 0.028 | 0.032 | 0.035 | 1304.779 | 1.002 |
48.342 | 8.654 | 33.606 | 47.567 | 67.095 | 1550.593 | 1.001 | |
55.179 | 3.037 | 49.978 | 54.926 | 61.736 | 1318.682 | 1.002 |
Prov. | Almería | Cádiz | Córdoba | Granada | Huelva | Jaén | Málaga | Sevilla |
---|---|---|---|---|---|---|---|---|
P | 716,820 | 1,240,155 | 782,979 | 914,678 | 521,870 | 633,564 | 1,661,785 | 1,942,389 |
Param. | Post. Mean | sd | 2.5% CI | 50% CI | 97.5% CI | ||
---|---|---|---|---|---|---|---|
a | 18,009.32 | 200.45 | 17,622.73 | 18,007.82 | 18,416.35 | 3327.78 | 1 |
b | 3.76 | 0.06 | 3.63 | 3.76 | 3.89 | 3210.05 | 1 |
c | 0.052 | 0.001 | 0.050 | 0.052 | 0.053 | 2791.33 | 1 |
418.81 | 29.54 | 363.10 | 418.00 | 481.48 | 2889.03 | 1 | |
25.54 | 0.23 | 25.08 | 25.54 | 26.01 | 8387.82 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berihuete, Á.; Sánchez-Sánchez, M.; Suárez-Llorens, A. A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve. Mathematics 2021, 9, 228. https://doi.org/10.3390/math9030228
Berihuete Á, Sánchez-Sánchez M, Suárez-Llorens A. A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve. Mathematics. 2021; 9(3):228. https://doi.org/10.3390/math9030228
Chicago/Turabian StyleBerihuete, Ángel, Marta Sánchez-Sánchez, and Alfonso Suárez-Llorens. 2021. "A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve" Mathematics 9, no. 3: 228. https://doi.org/10.3390/math9030228
APA StyleBerihuete, Á., Sánchez-Sánchez, M., & Suárez-Llorens, A. (2021). A Bayesian Model of COVID-19 Cases Based on the Gompertz Curve. Mathematics, 9(3), 228. https://doi.org/10.3390/math9030228