An Enhanced Naked Mole Rat Algorithm for Optimal Cross-Layer Solution for Wireless Underground Sensor Networks
Abstract
:1. Introduction
- To improve the exploration and exploitation tendency of NMRA, a new variant of NMRA was presented.
- The exploration capability was enhanced with the implementation of GWO-inspired equations in basic NMRA.
- The local neighborhood search along with DE equations were employed for enhanced exploitation characteristics of NMRA.
- The performance of the proposed NMRA variant was evaluated using a set of CEC 2019 benchmark test functions and a real-time underground wireless sensor network problem.
2. Related Work
3. Proposed Naked Mole-Rat Algorithm Variant
3.1. Naked Mole-Rat Algorithm
Algorithm 1. Pseudocode of NMRA. |
Input: Define objective function f(NMR), NMR = (NMR1, NMR2, …, NMRD) |
Output: Determine current best solution |
Initialization: Initialize NMRs: n, breeders B: n/5, workers W: B − n |
Define breeding probability: bp |
while iterations |
fori = 1:w |
perform worker phase: |
evaluate |
end for |
fori = 1:B |
if rand >bp |
perform breeder phase: |
end if |
evaluate |
end for |
combine the updated worker and breeder population |
evaluate the population |
update the overall best d |
update iteration count |
end while |
update final bestd |
end |
3.2. Enhanced Naked Mole-Rat Algorithm
Algorithm 2. Pseudocode of Enhanced NMRA. |
Input: Define objective function (NMR), NMR = (NMR1, NMR2, …, NMRD) |
Output: Determine current best solution |
Initialization: Initialize NMRs: n, B: n/5, W: B − n |
Define breeding probability: bp |
whileiterations < |
fori = 1: workers |
perform worker phase: |
if |
else |
evaluate |
end for |
fori = 1: breeders |
ifrand >bp |
perform breeder phase: divide the whole population into three parts |
For the first part of population: |
For the second part of population: |
For the third part of the population: |
end if |
evaluate |
end for |
Updating strategy for the neighborhood search |
combine the updated worker and breeder population |
evaluate the population |
update the overall best d |
update iteration count |
end while |
update final best |
end |
4. Statistical Testing of ENMRA Algorithm
5. Real-Time Application: Energy-Throughput-Efficient Cross-Layer Solution for Wireless Underground Sensor Networks (WUSNs)
5.1. Magnetic Induction Techniques Used in WUSNs
5.2. System Model
5.2.1. Modulation
5.2.2. FEC Schemes
5.2.3. DS-CDMA Design
5.2.4. Geographical Routing Algorithm
5.2.5. Statistical QoS Guarantees
5.3. Distributed Cross-Layer Energy-Throughput-Efficient Protocol Using ENMRA for WUSNs
- (i)
- Minimize link metric using ENMRA, concerning power level , acceptable link throughput , DS-CDMA code length , and possible modulation function and channel coding combinations, i.e., , and , and each of its possible next-hop neighbors.
- (ii)
- Select the appropriate next-hop and optimum link metric physical functionalities ().
5.4. Performance Evaluation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, X.S. Nature-inspired optimization algorithms: Challenges and open problems. J. Comput. Sci. 2020, 46, 101104. [Google Scholar] [CrossRef] [Green Version]
- Storn, R.; Price, K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 210–214. [Google Scholar]
- Yang, X.S. Flower pollination algorithm for global optimization. In Proceedings of the International Conference on Unconventional Computing and Natural Computation, Orléans, France, 3–7 September 2012; Springer: Berlin, Germany, 2012; pp. 240–249. [Google Scholar]
- Salgotra, R.; Singh, U. The naked mole-rat algorithm. Neural Comput. Appl. 2019, 31, 8837–8857. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (abc) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Mittal, N.; Singh, U.; Salgotra, R.; Bansal, M. An Energy Efficient Stable Clustering Approach using Fuzzy Enhanced Flower Pollination Algorithm for WSNs. Neural Comput. Appl. 2020, 32, 7399–7419. [Google Scholar] [CrossRef]
- Singh, P.; Mittal, N. An Efficient Localization Approach to locate sensor nodes in 3D Wireless Sensor Networks using Adaptive Flower Pollination Algorithm. Wirel. Netw. 2021, 27, 1999–2014. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [Google Scholar] [CrossRef]
- Gill, P.E.; Murray, W. Quasi-newton methods for unconstrained optimization. IMA J. Appl. Math. 1972, 9, 91–108. [Google Scholar] [CrossRef]
- Shor, N.Z. The Subgradient Method. In Minimization Methods for Nondifferentiable Functions; Springer: Berlin, Germany, 1985; pp. 22–47. [Google Scholar]
- Glover, F. Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 1986, 13, 533–549. [Google Scholar] [CrossRef]
- Gutjahr, W.J. Convergence analysis of metaheuristics. In Matheuristics. Annals of Information Systems; Maniezzo, V., Stützle, T., Voß, S., Eds.; Springer: Boston, MA, USA, 2009; Volume 10, pp. 159–187. [Google Scholar]
- Holland, J.H. Genetic algorithms. Sci. Am. 1992, 267, 66–73. [Google Scholar] [CrossRef]
- Rechenberg, I. Evolution strategies—A comprehensive introduction. Nat. Comput. 1978, 1, 3–52. [Google Scholar]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef] [Green Version]
- Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press: Cambridge, MA, USA, 1992; Volume 1. [Google Scholar]
- Mirjalili, S. The ant lion optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Michalewicz, Z. Genetic Algorithms+ Data Structures = Evolution Programs; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Beni, G.; Wang, J. Swarm intelligence in cellular robotic systems. In Robots and Biological Systems: Towards a New Bionics; Springer: Berlin, Germany, 1993; pp. 703–712. [Google Scholar]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Erciyes University, Engineering Faculty, Computer Engineering Department: Kayseri, Turkey, 2005. [Google Scholar]
- Yang, X.S. Firefly algorithm, stochastic test functions and design optimisation. arXiv 2010, arXiv:1003.1409, preprint. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Faris, H.; Mirjalili, S.; Aljarah, I.; Mafarja, M.; Heidari, A.A. Salp swarm algorithm: Theory, literature review, and application in extreme learning machines. Nat. -Inspired Optim. 2020, 185–199. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
- Abdullah, J.M.; Ahmed, T. Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process. IEEE Access 2019, 7, 43473–43486. [Google Scholar] [CrossRef]
- Santucci, V. Community of scientist optimization: An autonomy oriented approach to distributed optimization. A.I. Commun. 2012, 25, 157–172. [Google Scholar]
- Abualigah, L.; Yousri, D.; Elaziz, M.A.; Ewees, A.A.; Al-qaness, M.A.A.; Gandomi, A.H. Aquila Optimizer: A novel meta-heuristic optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Elaziz, M.A.; Gandomi, A.H. The Arithmetic Optimization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Salgotra, R.; Singh, U.; Singh, S.; Singh, G.; Mittal, N. Self-adaptive salp swarm algorithm for engineering optimization problems. Appl. Math. Model. 2021, 89, 188–207. [Google Scholar] [CrossRef]
- Singh, K.J.; Nayyar, A.; Kapoor, D.S.; Mittal, N.; Mahajan, S.; Pandit, A.K.; Masud, M. Adaptive Flower Pollination Algorithm based Energy Efficient Routing Protocol for Multi-Robot Systems. IEEE Access 2021, 9, 82417–82434. [Google Scholar] [CrossRef]
- Salgotra, R.; Singh, U.; Saha, S. New cuckoo search algorithms with enhanced exploration and exploitation properties. Expert Syst. Appl. 2018, 95, 384–442. [Google Scholar] [CrossRef]
- Singh, P.; Mittal, N.; Singh, U.; Salgotra, R. Naked Mole-Rat Algorithm with Improved Exploration and Exploitation Capabilities to Determine 2D and 3D Coordinates of Sensor Nodes in W.S.N.s. Arab. J. Sci. Eng. 2020, 46, 1155–1178. [Google Scholar] [CrossRef]
- Das, S.; Abraham, A.; Chakraborty, U.K.; Konar, A. Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 2009, 13, 526–553. [Google Scholar] [CrossRef] [Green Version]
- Mittal, N.; Garg, A.; Singh, P.; Singh, S.; Singh, H. Improvement in Learning Enthusiasm-based TLBO Algorithm with Enhanced Exploration and Exploitation Properties. Nat. Comput. 2020, 20. [Google Scholar] [CrossRef]
- Brest, J.; Maučec, M.S.; Bošković, B. The 100-Digit Challenge: Algorithm jDE100. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 19–26. [Google Scholar]
- Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2018, 1, 3–18. [Google Scholar] [CrossRef]
- Tejani, G.G.; Savsani, V.J.; Patel, V.K.; Mirjalili, S. Truss optimization with natural frequency bounds using improved symbiotic organisms search. Knowl. -Based Syst. 2018, 143, 162–178. [Google Scholar] [CrossRef] [Green Version]
- Zamani, H.; Nadimi-Shahraki, M.H.; Gandomi, A.H. QANA: Quantum-based avian navigation optimizer algorithm. Eng. Appl. Artif. Intell. 2021, 104, 1–30. [Google Scholar] [CrossRef]
- Alfian, G.; Rhee, J.; Ahn, H.; Lee, J.; Farooq, U.; Ijaz, M.F.; Syaekhoni, M.A. Integration of RFID, wireless sensor networks, and data mining in an e-pedigree food traceability system. J. Food Eng. 2017, 212, 65–75. [Google Scholar] [CrossRef]
- Liu, B.H.; Fu, T.H.; Wang, Y.B. Research on the model and characteristics of underground 580 magnetic induction communication channel. Prog. Electromagn. Res. M 2021, 101, 89–100. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Stuntebeck, E.P. Wireless underground sensor networks: Research challenges. Ad Hoc Netw. 2006, 4, 669–686. [Google Scholar] [CrossRef]
- Sun, Z.; Akyildiz, I.F. Magnetic induction communications for wireless underground sensor networks. IEEE Trans. Antennas Propag. 2010, 58, 2426–2435. [Google Scholar] [CrossRef] [Green Version]
- De, S.; Qiao, C.; Pados, D.A.; Chatterjee, M.; Philip, S.J. An integrated cross-layer study of wireless CDMA sensor networks. IEEE J. Sel. Areas Commun. 2004, 22, 1271–1285. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Madan, R.; Goldsmith, A.J.; Lall, S. Cross-layer energy and delay optimization in small-scale sensor networks. IEEE Trans. Wirel. Commun. 2007, 6, 3688–3699. [Google Scholar] [CrossRef] [Green Version]
- Vuran, M.C.; Akyildiz, I.F. XLP: A cross-layer protocol for efficient communication in wireless sensor networks. IEEE Trans. Mob. Comput. 2010, 9, 1578–1591. [Google Scholar] [CrossRef] [Green Version]
- Pompili, D.; Akyildiz, I.F. A multimedia cross-layer protocol for underwater acoustic sensor networks. IEEE Trans. Wirel. Commun. 2010, 9, 2924–2933. [Google Scholar] [CrossRef]
- Kisseleff, S.; Akyildiz, I.F.; Gerstacker, W. On modulation for magnetic induction based transmission in wireless underground sensor networks. In Proceedings of the 2014 IEEE International Conference on Communications (I.C.C.), Sydney, Australia, 10–14 June 2014; pp. 71–76. [Google Scholar]
- Banaseka, F.K.; Franklin, H.; Katsriku, F.A.; Abdulai, J.D.; Ekpezu, A.; Wiafe, I. Soil Medium Electromagnetic Scattering Model for the Study of Wireless Underground Sensor Networks. Wirel. Commun. Mob. Comput. 2021, 2021, 8842508. [Google Scholar]
- Tan, X.; Sun, Z.; Akyildiz, I.F. Wireless underground sensor networks: Mi-based communication systems for underground applications. IEEE Antennas Propag. Mag. 2015, 57, 74–87. [Google Scholar] [CrossRef]
- Sardar, M.S.; Xuefen, W.; Yi, Y.; Kausar, F.; Akbar, M.W. Wireless underground sensor networks. Int. J. Perform. Eng. 2019, 15, 3042–3051. [Google Scholar]
- Sun, Z.; Wang, P.; Vuran, M.C.; Al-Rodhaan, M.A.; Al-Dhelaan, A.M.; Akyildiz, I.F. Mise-pipe: Magnetic induction-based wireless sensor networks for underground pipeline monitoring. Ad Hoc Netw. 2011, 9, 218–227. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.P.; Singh, Y. An Optimal Energy-Throughput Efficient Cross-layer Solution using Naked Mole Rat Algorithm for Wireless Underground Sensor Networks. In Proceedings of the Symposium on Synthesis, Characterization & Processing of Inorganic, Bio and Nano Materials (SCPINM 2021), Gharuan, India, 30–31 July 2021; pp. 1–8. [Google Scholar]
- Agbinya, J.I. A magneto-inductive link budget for wireless power transfer and inductive communication systems. Progr. Electromagn. Res. C 2013, 37, 15–28. [Google Scholar] [CrossRef] [Green Version]
- Masihpour, M.; Franklin, D.; Abolhasan, M. Multihop relay techniques for communication range extension in near-field magnetic induction communication systems. J. Netw. 2013, 8, 999–1011. [Google Scholar] [CrossRef] [Green Version]
- Bell, T.H.; Barrow, B.J.; Miller, J.T. Subsurface discrimination using electromagnetic induction sensors. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1286–1293. [Google Scholar] [CrossRef]
- Lin, X.; Shroff, N.B.; Srikant, R. A tutorial on cross-layer optimization in wireless networks. IEEE J. Sel. Areas Commun. 2006, 24, 1452–1463. [Google Scholar]
Algorithm | Parameters |
---|---|
FPA [3] | = 0.5 |
GWO [8] | A = linearly decreasing from 2 to 0 |
SSA [24] | rand[0, 1] |
CS [25] | probability (pa) = 0.25 |
DA [23] | w = [0.4–0.9], s = 0.1, a = 0.1, c = 0.7, f = 1, e = 1 |
FDO [26] | weight factor (Wf) = 0; r is rand[−1, 1] |
ASSA [29] | rand[0, 1]; |
CV 1.0 [31] | 2 to 0,r1 = r2 = rand[0, 1] |
NMRA [4] | bp = 0.5; λ = rand[0, 1]; number of breeders B = population(n)/5 |
NMRV 3.0 [32] | bp = 0.5; λ = rand[0, 1]; B = n/5 |
ENMRA | bp = 0.5; λ = rand[0, 1]; B = n/5; ; a = linearly decreasing from 2 to 0; r1 = r2 = rand[0, 1] |
Function | Metric | FPA | GWO | SSA | CS | DA | FDO | ASSA | CV 1.0 | NMRA | NMRA 3.0 | ENMRA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CEC01 | Best | 1.37E + 08 | 5.15E + 04 | 4.18E + 08 | 1.00E + 10 | 2.03E + 09 | 7.32E + 07 | 7.55E + 04 | 1.00E + 10 | 8.91E + 05 | 3.86E + 04 | 3.68E + 04 |
Median | 4.41E + 08 | 3.46E + 07 | 2.68E + 09 | 1.00E + 10 | 4.09E + 10 | 6.37E + 08 | 2.74E + 05 | 1.00E + 10 | 3.07E + 09 | 5.24E + 06 | 3.94E + 04 | |
Worst | 1.20E + 09 | 6.35E + 08 | 2.63E + 10 | 1.00E + 10 | 1.67E + 11 | 7.66E + 09 | 1.24E + 06 | 1.00E + 10 | 3.58E + 10 | 6.59E + 08 | 4.82E + 04 | |
Mean | 5.03E + 08 | 1.14E + 08 | 5.38E + 09 | 1.00E + 10 | 4.95E + 10 | 1.34E + 09 | 5.57E + 05 | 1.00E + 10 | 6.65E + 09 | 6.35E + 07 | 4.01E + 04 | |
Std | 2.78E + 08 | 1.64E + 08 | 6.16E + 09 | 0.00E + 00 | 4.73E + 10 | 1.72E + 09 | 4.12E + 05 | 0.00E + 00 | 9.21E + 09 | 1.32E + 08 | 2.45E + 03 | |
p-rank | − | − | − | − | − | − | − | − | − | − | ||
f-rank | 5 | 4 | 7 | 9 | 11 | 6 | 2 | 9 | 8 | 3 | 1 | |
CEC02 | Best | 1.81E + 01 | 1.73E + 01 | 1.73E + 01 | 1.73E + 01 | 1.74E + 01 | 1.73E + 01 | 1.75E + 01 | 7.36E + 03 | 1.74E + 01 | 1.73E + 01 | 1.73E + 01 |
Median | 2.16E + 01 | 1.73E + 01 | 1.73E + 01 | 1.73E + 01 | 3.77E + 01 | 1.73E + 01 | 1.77E + 01 | 1.61E + 04 | 1.75E + 01 | 1.73E + 01 | 1.73E + 01 | |
Worst | 3.37E + 01 | 1.73E + 01 | 1.74E + 01 | 1.73E + 01 | 3.16E + 02 | 1.73E + 01 | 1.90E + 01 | 2.44E + 04 | 1.77E + 01 | 1.74E + 01 | 1.73E + 01 | |
Mean | 2.24E + 01 | 1.73E + 01 | 1.73E + 01 | 1.73E + 01 | 6.00E + 01 | 1.73E + 01 | 1.79E + 01 | 1.61E + 04 | 1.75E + 01 | 1.73E + 01 | 1.73E + 01 | |
Std | 3.66E + 00 | 2.69E-04 | 1.48E-02 | 3.44E-04 | 6.71E + 01 | 1.65E-05 | 4.10E-01 | 4.57E + 03 | 7.24E-02 | 6.40E-03 | 6.24E-05 | |
p-rank | − | − | − | − | − | + | − | − | − | − | ||
f-rank | 9 | 3 | 6 | 4 | 10 | 1 | 8 | 11 | 7 | 5 | 2 | |
CEC03 | Best | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 |
Median | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | |
Worst | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | |
Mean | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | 1.27E + 01 | |
Std | 1.47E-07 | 2.18E-07 | 1.93E-13 | 9.07E-11 | 5.25E-04 | 1.40E-11 | 3.14E-05 | 9.19E-04 | 4.73E-05 | 9.00E-15 | 1.53E-16 | |
p-rank | − | − | − | − | − | − | − | − | − | − | ||
f-rank | 6 | 7 | 3 | 5 | 11 | 4 | 8 | 10 | 9 | 2 | 1 | |
CEC04 | Best | 9.52E + 01 | 2.58E + 01 | 1.58E + 01 | 1.79E + 01 | 2.17E + 01 | 1.10E + 01 | 7.14E + 02 | 9.77E + 03 | 4.53E + 02 | 4.23E + 01 | 8.50E + 00 |
Median | 1.37E + 02 | 5.56E + 01 | 3.87E + 01 | 2.56E + 01 | 3.94E + 02 | 3.27E + 01 | 2.45E + 03 | 2.82E + 04 | 1.10E + 03 | 6.75E + 02 | 4.68E + 01 | |
Worst | 1.93E + 02 | 9.38E + 01 | 7.15E + 01 | 3.91E + 01 | 9.05E + 02 | 8.56E + 01 | 4.64E + 03 | 5.43E + 04 | 2.06E + 03 | 1.96E + 03 | 6.65E + 01 | |
Mean | 1.37E + 02 | 5.87E + 01 | 4.04E + 01 | 2.74E + 01 | 3.80E + 02 | 3.75E + 01 | 2.63E + 03 | 2.97E + 04 | 1.15E + 03 | 7.05E + 02 | 4.28E + 01 | |
Std | 2.50E + 01 | 1.82E + 01 | 1.55E + 01 | 6.04E + 00 | 2.72E + 02 | 2.05E + 01 | 1.06E + 03 | 9.60E + 03 | 4.12E + 02 | 5.32E + 02 | 1.60E + 01 | |
p-rank | − | − | − | − | − | − | − | − | − | − | ||
f-rank | 6 | 4 | 3 | 2 | 8 | 5 | 10 | 11 | 7 | 9 | 1 | |
CEC05 | Best | 1.38E + 00 | 1.12E + 00 | 1.04E + 00 | 1.03E + 00 | 1.12E + 00 | 1.06E + 00 | 2.06E + 00 | 3.53E + 00 | 1.93E + 00 | 1.16E + 00 | 1.01E + 00 |
Median | 1.60E + 00 | 1.32E + 00 | 1.25E + 00 | 1.06E + 00 | 1.42E + 00 | 1.15E + 00 | 2.47E + 00 | 7.97E + 00 | 2.17E + 00 | 1.49E + 00 | 1.07E + 00 | |
Worst | 1.72E + 00 | 1.88E + 00 | 1.50E + 00 | 1.12E + 00 | 2.18E + 00 | 1.54E + 00 | 3.09E + 00 | 1.22E + 01 | 2.32E + 00 | 2.69E + 00 | 1.74E + 00 | |
Mean | 1.58E + 00 | 1.43E + 00 | 1.26E + 00 | 1.06E + 00 | 1.49E + 00 | 1.19E + 00 | 2.49E + 00 | 7.99E + 00 | 2.17E + 00 | 1.59E + 00 | 1.15E + 00 | |
Std | 8.72E-02 | 2.55E-01 | 1.39E-01 | 1.68E-02 | 3.15E-01 | 1.23E-01 | 2.91E-01 | 1.71E + 00 | 8.31E-02 | 3.44E-01 | 2.00E-01 | |
p-rank | − | − | − | − | − | − | − | − | − | − | ||
f-rank | 8 | 5 | 4 | 2 | 6 | 3 | 10 | 11 | 9 | 7 | 1 | |
CEC06 | Best | 9.50E + 00 | 9.91E + 00 | 1.41E + 00 | 7.34E + 00 | 5.08E + 00 | 9.31E + 00 | 9.65E + 00 | 1.13E + 01 | 9.52E + 00 | 9.65E + 00 | 9.55E + 00 |
Median | 1.07E + 01 | 1.08E + 01 | 5.03E + 00 | 9.36E + 00 | 8.78E + 00 | 1.11E + 01 | 1.16E + 01 | 1.57E + 01 | 1.07E + 01 | 1.14E + 01 | 1.08E + 01 | |
Worst | 1.15E + 01 | 1.18E + 01 | 1.02E + 01 | 1.01E + 01 | 1.11E + 01 | 1.23E + 01 | 1.30E + 01 | 1.75E + 01 | 1.17E + 01 | 1.25E + 01 | 1.19E + 01 | |
Mean | 1.07E + 01 | 1.08E + 01 | 5.01E + 00 | 9.08E + 00 | 8.78E +00 | 1.10E + 01 | 1.14E + 01 | 1.56E + 01 | 1.08E + 01 | 1.13E + 01 | 1.09E + 01 | |
Std | 6.07E-01 | 5.93E-01 | 2.06E + 00 | 7.91E-01 | 1.51E + 00 | 7.62E-01 | 9.15E-01 | 1.23E + 00 | 5.72E-01 | 7.07E-01 | 6.16E-01 | |
p-rank | + | + | + | + | + | − | − | − | + | − | ||
f-rank | 4 | 6 | 1 | 3 | 2 | 8 | 10 | 11 | 5 | 9 | 7 | |
CEC07 | Best | 5.03E + 00 | 2.57E + 00 | 3.01E + 00 | 4.61E + 00 | 5.13E + 00 | 3.36E + 00 | 3.85E + 02 | 1.14E + 03 | 4.88E + 00 | 2.67E + 02 | 6.87E + 01 |
Median | 5.76E + 00 | 4.83E + 00 | 5.13E + 00 | 5.36E + 00 | 5.92E + 00 | 5.12E + 00 | 9.19E + 02 | 2.12E + 03 | 5.91E + 00 | 8.27E + 02 | 5.38E + 02 | |
Worst | 6.27E + 00 | 6.65E + 00 | 6.38E + 00 | 5.74E + 00 | 6.79E + 00 | 6.28E + 00 | 1.47E + 03 | 2.64E + 02 | 6.92E + 00 | 1.35E + 03 | 1.02E + 03 | |
Mean | 5.70E + 00 | 4.86E + 00 | 5.08E + 00 | 5.34E + 00 | 5.85E + 00 | 5.05E + 00 | 9.08E + 02 | 2.07E + 03 | 5.85E + 00 | 7.75E + 02 | 5.11E + 02 | |
Std | 3.40E-01 | 1.11E + 00 | 7.27E-01 | 2.38E-01 | 4.22E-01 | 6.27E-01 | 2.35E + 02 | 4.13E + 02 | 5.42E-01 | 2.34E + 02 | 2.78E + 02 | |
p-rank | + | + | + | + | + | + | − | − | + | − | ||
f-rank | 5 | 1 | 2 | 4 | 6 | 3 | 10 | 11 | 7 | 9 | 8 | |
CEC08 | Best | 5.11E + 00 | 3.45E + 00 | 4.05E + 00 | 4.82E + 00 | 5.16E + 00 | 2.69E + 00 | 4.68E + 00 | 6.74E + 00 | 4.42E + 00 | 2.86E + 00 | 2.14E + 00 |
Median | 5.77E + 00 | 5.27E + 00 | 5.37E + 00 | 5.33E + 00 | 5.72E + 00 | 4.86E + 00 | 6.34E + 00 | 8.45E + 00 | 5.87E + 00 | 5.76E + 00 | 4.96E + 00 | |
Worst | 6.47E + 00 | 6.75E + 00 | 6.14E + 00 | 5.65E + 00 | 6.53E + 00 | 6.02E + 00 | 6.90E + 00 | 9.09E + 00 | 6.88E + 00 | 6.79E + 00 | 6.74E + 00 | |
Mean | 5.77E + 00 | 5.18E + 00 | 5.34E + 00 | 5.26E + 00 | 5.71E + 00 | 4.85E + 00 | 6.15E + 00 | 8.32E + 00 | 5.93E + 00 | 5.65E + 00 | 4.83E + 00 | |
Std | 3.41E-01 | 9.32E-01 | 4.67E-01 | 1.95E-01 | 4.10E-01 | 7.80E-01 | 5.84E-01 | 5.81E-01 | 5.91E-01 | 8.41E-01 | 1.83E-01 | |
p-rank | − | − | − | − | − | − | − | − | − | − | ||
f-rank | 8 | 3 | 5 | 4 | 7 | 2 | 10 | 11 | 9 | 6 | 1 | |
CEC09 | Best | 3.17E + 00 | 3.11E + 00 | 2.37E + 00 | 2.49E + 00 | 2.88E + 00 | 2.39E + 00 | 1.33E + 02 | 3.27E + 03 | 6.83E + 00 | 3.27E + 00 | 2.65E + 00 |
Median | 4.83E + 00 | 4.28E + 00 | 2.47E + 00 | 2.75E + 00 | 4.17E + 00 | 2.51E + 00 | 3.29E + 02 | 5.91E + 03 | 7.90E + 01 | 7.43E + 00 | 4.19E + 00 | |
Worst | 7.82E + 00 | 6.36E + 00 | 2.96E + 00 | 2.94E + 00 | 6.71E + 00 | 3.17E + 00 | 7.51E + 02 | 1.06E + 04 | 3.92E + 02 | 1.88E + 02 | 5.10E + 00 | |
Mean | 4.74E + 00 | 4.51E + 00 | 2.52E + 00 | 2.75E + 00 | 4.30E + 00 | 2.55E + 00 | 3.69E + 02 | 6.11E + 03 | 9.12E + 01 | 4.48E + 01 | 4.19E + 00 | |
Std | 9.58E-01 | 9.03E-01 | 1.20E-01 | 1.34E-01 | 9.20E-01 | 1.54E-01 | 1.41E + 02 | 1.94E + 03 | 6.96E + 01 | 5.65E + 01 | 6.57E-01 | |
p-rank | − | − | + | + | − | + | − | − | − | − | ||
f-rank | 7 | 6 | 1 | 3 | 5 | 2 | 10 | 11 | 9 | 8 | 4 | |
CEC10 | Best | 2.02E + 01 | 2.02E + 01 | 2.00E + 01 | 2.02E + 01 | 2.00E + 01 | 2.34E-08 | 2.03E + 01 | 2.07E + 01 | 1.97E + 01 | 1.44E + 01 | 6.35E + 00 |
Median | 2.04E + 01 | 2.05E + 01 | 2.00E + 01 | 2.03E + 01 | 2.02E + 01 | 2.00E + 01 | 2.05E + 01 | 2.11E + 01 | 2.05E + 01 | 2.05E + 01 | 2.05E + 01 | |
Worst | 2.06E + 01 | 2.06E + 01 | 2.05E + 01 | 2.04E + 01 | 2.05E + 01 | 2.00E + 01 | 2.07E + 01 | 2.15E + 01 | 2.06E + 01 | 2.07E + 01 | 2.06E + 01 | |
Mean | 2.04E + 01 | 2.05E + 01 | 2.00E + 01 | 2.03E + 01 | 2.02E + 01 | 1.93E + 01 | 2.05E + 01 | 2.11E + 01 | 2.04E + 01 | 2.02E + 01 | 2.00E + 01 | |
Std | 9.37E-02 | 9.62E-02 | 1.05E-01 | 6.07E-02 | 1.51E-01 | 3.65E + 00 | 7.44E-02 | 2.07E-01 | 1.55E-01 | 1.23E + 00 | 2.57E + 00 | |
p-rank | − | − | − | − | − | + | − | − | − | − | ||
f-rank | 7 | 9 | 3 | 6 | 5 | 1 | 10 | 11 | 8 | 4 | 2 | |
Average f-rank | 6.5 | 4.8 | 3.5 | 4.2 | 7.1 | 3.5 | 8.8 | 10.7 | 7.8 | 6.2 | 2.8 | |
Overall f-rank | 7 | 5 | 2 | 4 | 8 | 2 | 10 | 11 | 9 | 6 | 1 | |
win(w)|loss(l)|tie(t) | 4|294|2 | 28|272|0 | 53|225|2 | 2|298|0 | 5|292|3 | 56|240|4 | 4|293|3 | 8|292|0 | 12|286|2 | 8|289|3 | 165|119|16 | |
OE% | 2% | 9.33% | 18.33% | 0.67% | 2.67% | 20% | 2.33% | 2.67% | 4.67% | 3.67% | 60.33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Singh, R.P.; Singh, Y.; Shafi, J.; Ijaz, M.F. An Enhanced Naked Mole Rat Algorithm for Optimal Cross-Layer Solution for Wireless Underground Sensor Networks. Mathematics 2021, 9, 2942. https://doi.org/10.3390/math9222942
Singh P, Singh RP, Singh Y, Shafi J, Ijaz MF. An Enhanced Naked Mole Rat Algorithm for Optimal Cross-Layer Solution for Wireless Underground Sensor Networks. Mathematics. 2021; 9(22):2942. https://doi.org/10.3390/math9222942
Chicago/Turabian StyleSingh, Pratap, Rishi Pal Singh, Yudhvir Singh, Jana Shafi, and Muhammad Fazal Ijaz. 2021. "An Enhanced Naked Mole Rat Algorithm for Optimal Cross-Layer Solution for Wireless Underground Sensor Networks" Mathematics 9, no. 22: 2942. https://doi.org/10.3390/math9222942
APA StyleSingh, P., Singh, R. P., Singh, Y., Shafi, J., & Ijaz, M. F. (2021). An Enhanced Naked Mole Rat Algorithm for Optimal Cross-Layer Solution for Wireless Underground Sensor Networks. Mathematics, 9(22), 2942. https://doi.org/10.3390/math9222942